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1. Introduction

Let V be a complex vector space of dimension n. A reflection is a linear transformation of V of
finite order whose space of fixed points is a hyperplane [3, Ch. V, §2]. A complex reflection group on V
is a group generated by reflections. The finite complex reflection groups were determined by Shephard
and Todd [15] in 1954; other proofs of the classification can be found in [4,5,12].

Every finite subgroup of GL(V) preserves a positive definite hermitian form (—,—) on V. Therefore,
a finite complex reflection group G is a unitary reflection group; that is, G is a group of unitary
transformations with respect to a positive definite hermitian form. From now on by reflection group we
mean a finite unitary reflection group. If r is a reflection, a root of r is an eigenvector corresponding
to the unique eigenvalue not equal to 1.

A reflection subgroup of G is a subgroup generated by reflections. A parabolic subgroup is the point-
wise stabiliser in G of a subset of V. By a fundamental theorem of Steinberg [16] a parabolic subgroup
is a reflection subgroup.
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Definition 1.1. If H is a reflection subgroup of G, a simple extension of H is a subgroup K such that
K = (H,r) for some reflection r ¢ H. The simple extension K is a minimal extension of H if for all
reflection subgroups L such that H g L C K we have L =K.

It will be evident from Theorem 3.12 below that not every simple extension is minimal.

The set of one-dimensional subspaces spanned by the roots of the reflections in G is a line system.
Simple extensions of line systems correspond to simple extensions of reflection subgroups and they
were investigated in Chapters 7 and 8 of [12]. But not all possible extensions were determined—only
those needed for a proof of the Shephard and Todd classification theorem.

In this paper all conjugacy classes of reflection subgroups of a reflection group and all pairs (H, K)
where K is a simple extension of H are determined. As a consequence, if G is a reflection group of
rank n and if R is a set of n reflections which generate G, then every subset of R generates a parabolic
subgroup. (I thank Professor Gus Lehrer for drawing this problem to my attention.) For the primitive
reflection groups the proof depends on calculations carried out using the computer algebra system
Magma [2] and tabulated in Section 6 (see Tables 1-19).

Prior work on this subject dealt with special cases. For example, the classification of the parabolic
subgroups of an imprimitive reflection group can be derived from the work of Orlik and Solomon
[13,14] on arrangements of hyperplanes. In [17] Wang and Shi describe all irreducible reflection sub-
groups of the imprimitive reflection groups in terms of graphs.

There is an extensive literature on the classification of the reflection subgroups of a Coxeter group
beginning with the works of Borel and de Siebenthal [1] and Dynkin [10]. See [6] and [9] for recent
results and a history of the finite case. Tables of conjugacy classes of the parabolic subgroups of finite
Coxeter groups can be found in the book by Geck and Pfeiffer [11].

2. Notation and preliminaries

Suppose that G is a reflection group acting on V. The support of G is the subspace M of V spanned
by the roots of the reflections in G. The rank of G is the dimension of its support. The orthogonal
complement M+ of M is the space V¢ of fixed points of G.

For v € V, let G, denote the stabiliser of v in G and for a subset X C V, let G(X) denote the
pointwise stabiliser of X. If H is a parabolic subgroup of G, then H = G(U) for some subspace U
of V. Thus H C G(VH) C G(U)=H and so H=G(VH).

If H is a reflection subgroup of G the parabolic closure of H is the subgroup G(V), which is the
smallest parabolic subgroup containing H.

If £2 is a set, Sym(s2) is the group of all permutations of §2; if n is a positive integer, Sym(n) =

Sym([n]), where [n] ={1,2,...,n}. If a and b are integers, the notation a | b means that a divides b.
We write A - n to denote that the sequence A = (ny,ny,...,ng) is a partition of n; that is,
ni,ny,...,ng are integers such that ny >ny >--->ng>0and n=ny +ny +--- +ngq.

The following well-known property of a cyclic group is used at several places throughout the
paper.

Lemma 2.1. If G is a cyclic group generated by an element x of order m and if Hy = (x™) and Hy = (x"2), then
|HiHa| =lem([H1l, |Ha|) and HiHp = (x8d0mm.n)),

3. Imprimitive reflection groups

Definition 3.1. A group G acting on a vector space V is imprimitive if, for some k > 1, V is a direct
sum of non-zero subspaces V; (1 <i < k) such that the action of G on V permutes the subspaces
V1, Va,..., Vi among themselves; otherwise G is primitive. The set 2 = {V1, Va,..., Vi} is called
a system of imprimitivity for G. If G acts transitively on £2 we say that 2 is a transitive system of
imprimitivity.

The imprimitive complex reflection groups G(m, p,n) introduced by Shephard and Todd can be
defined as follows. Let V be a complex vector space of dimension n with a positive definite hermitian
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form (—,—). Let {e; | i € [n]} be an orthonormal basis for V and let u,, be the group of mth roots
of unity. Given a function 0 : [n] - M, the linear transformation which maps e; to 6(i)e; (1 <i<n)
will be denoted by 4.

If p|m, let A(m, p,n) be the group of all linear transformations § such that [T, 6()™P =1.If
7 € Sym(n), define the action of 7 on V by 7 (e;) = ex ).

The group G(m, p,n) is the semidirect product of A(m, p,n) by the symmetric group Sym(n) with
the action on V given above. In particular, G(m, 1, n) is the wreath product u,,:Sym(n) and G(m, p,n)
is a normal subgroup of G(m, 1,n) of index p.

If n > 1, the group G(m, p,n) is imprimitive and {V1, V2, ..., V} is a transitive system of imprim-
itivity, where V; = Ce;. The group G(m, p, 1) = G(m/p, 1, 1) is cyclic of order m/p and therefore we
shall require p =1 whenever n=1.

Shephard and Todd [15] proved that every irreducible imprimitive complex reflection group is
isomorphic to G(m, p,n) for some m, p and n, where n > 1 and p | m. The group G(1, 1,n) >~ Sym(n)
is imprimitive in its action on V but for n > 5 its action on its support is primitive.

Definition 3.2. Suppose that {V, V,,..., V,} is a transitive system of imprimitivity for G(m, p,n) and
that H is a reflection subgroup of G(m, p,n). The penumbra of H is the sum of the subspaces V; such
that a € V; +r(V;), where a is a root of a reflection r € H.

The support M of H is contained in the penumbra because M is spanned by the roots of the
reflections in H. The definition of penumbra depends on a choice of system of imprimitivity. How-
ever, except for G(4,2,2), G(2,1,2) ~G(4,4,2), G(3,3,3) and G(2,2,4), the group G(m, p,n) has
a unique transitive system of imprimitivity (see [12, Theorem 2.16]).

Lemma 3.3. Let H be a reflection subgroup of G(m, p,n) and suppose that I" is an orbit of H on a tran-
sitive system of imprimitivity 2 = {V1, Va,..., Vy} for G(m, p,n) such that the subspaces in 2 \ I" are
fixed pointwise by H. Let M and P be the support and penumbra of H and choose the notation so that
I'={Vy,Vy,....,V4q}. Then P=V1 ®d V, & --- & Vy and the group of permutations induced by H on I"
is Sym([I"). Furthermore, either

(i) P=Mand H >~ G(m’, p’, d), where p’ divides m’, m’ divides m and m’/p’ divides m/p; or

(ii) P=Vij® M foralli € [d]and H~ G(1,1,d) >~ Sym(d). In this case let e1, e3, . .., ey be the orthonormal
basis for V such that V; = Ce;. Then P N M~ is spanned by a vector u = uj + uy + - - - + ug, where u; =
oiei, 6; € Ly, for alli € [d] and where H >~ Sym(d) is the group of all permutations of {uq, uz, ..., ug}.

Proof. If d =1, H is cyclic and we have case (i) with H >~ G(m’, 1, 1), where m’ = |H|. Thus we may
suppose that d > 1 and hence the set {V1, Va,..., V4} is a system of imprimitivity for H.

Then for all V; € I', there exists a reflection r € H with root a such that V; # r(V;). By [12,
Lemma 2.7] the order of r is 2, a € V; +r(V;) and r fixes every element of £ \ {V;,r(V;)} point-
wise. Therefore P = EB?:] Vi and, by [12, Lemma 2.13], H acts on I" as Sym(I").

Suppose that M is a proper H-invariant subspace of P and that a € M; is the root of a reflection
re H. If V; € M; for some i € [d], the H-orbit of V; would be contained in My and so P = My,
contrary to assumption. Thus there exists i € [d] such that V; #r(V;) and a € (V; 4+ r(V;)) N My.
Hence V; ® M1 =r(V;) ® My and since Sym([I") is at least doubly transitive it follows that V; & M =
Vj@M] = P for all je[d].

(i) Suppose that P = M. If H is reducible, then M = M; L M, for some proper H-invariant sub-
spaces My and M,. If a is a root of a reflection of H, then by [12, Corollary 1.23] a € M1 U M>.
As shown above, if a € M4, then V; @ M; = P =M and it follows that dim M, = 1. Since M7 can-
not contain roots of all the reflections of H the same argument shows that dim M; = 1. Therefore
H>~G(2,2,2).

If H is irreducible, it follows from [12, Theorem 2.14] that H >~ G(m’, p’,d) for some m’ > 1 and
some divisor p’ of m’. In all cases m’ is the order of the cyclic group of products rs where r,s € H
are reflections interchanging V¢ and V5; thus m’ | m. If p’ £ m’, the group H contains a reflection of
order m’/p’ whose root belongs to V1 and therefore m’/p’ | m/p.
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(ii) If P # M, then M itself is a proper H-invariant subspace of P and it follows that P=V; & M
for all i € [d]. Therefore dim(P N M+) =1 and if u is a basis vector of P N M1 we may write u =
uq + uy + --- + ug, where u; € Vi. For h € H we have h(u) = Z?:l &iuy ) for some & and some
permutation 7 € Sym(d). But u = h(u) and therefore & =1 for all i. Thus H ~ Sym(d), as claimed.

For i € [d] we have u; = Aje; for some A; #0. If h € H is the transposition which interchanges u4
and u; then h(e;) = 6;e; for some 6; € u,, and thus A; = 6;11. Replacing u by Al’]u completes the
proof. O

If d > 1, the distinction between cases (i) and (ii) of the previous lemma is almost, but not quite,
the distinction between imprimitive and primitive reflection subgroups of G(m, p,n). The exceptions
are the groups Sym(3) and Sym(4) which occur in case (ii). These groups are imprimitive on their
support and also occur in case (i) as G(3,3,2) and G(2, 2, 3).

Corollary 3.4. The reflection subgroups which are complements to the normal subgroup A(m, p,n) in G =
G(m, p,n) are the stabilisers G, where v = e + 62e3 + - - - + 6e, for some 02, ...,6, € fy,. Ife =e1 +
ey + -+ + ey, the stabilisers Gy and G, are conjugate in G(m, p,n) if and only if 65 - - - 6, € p;,, where k =
m/ ged(n, p).

3.1. Reflection subgroups

Suppose 2 = {Vq,Va,...,Vy} is a transitive system of imprimitivity for G, where V; = Ce; and
where A ={e; | i € [n]} is an orthonormal basis of the space V on which G acts.

Definition 3.5. Call (im’, p’,n’) a feasible triple for G(m, p,n) if m’, p’ and n’ are positive integers such
that n’ <n, p’ divides m’, m’ divides m, and m’/p’ divides m/p.
Define a total order on feasible triples by writing (mq, p1,n1) > (ma, p2,ny) if

(a) ny > ny; or
(b) n1 =ny and my > my; or
(c) ny =ny, my =my and pq > pa.

It follows from Lemma 3.3 that (m’, p’,n’) is feasible if and only if G(m’, p’,n’) is a reflection
subgroup of G(m, p,n). The triples which occur in case (i) of the lemma correspond to the subgroups
whose support equals their penumbra; triples in case (ii) have m’ = p’ =1 and correspond to the
symmetric groups Sym(n’). We shall say that a feasible triple (m’, p’,n’) is thick if m’ > 1 and that it
is thinif m'=p’ =1.

Definition 3.6. An augmented partition for G(m, p,n) is a decreasing sequence A =[11, T2, ..., Tg] of
feasible triples 7; = (m;, pj, n;) such that A = (n1,ny,...,ng) Fn.

Let ko =0 and for 1 <i<d let kj =nq +ny +--- +n;, then set A; = {ej | ki_1 < j <ki}. We say
that (Aq, Az, ..., Ag) is the standard partition of A associated with A.

The standard reflection subgroup of type A is

d

GA=1_[G(mivpi,ni) (3.1)
i=1

where G(m;j, pi, nj) acts on the subspace of V with basis A;. The factors in (3.1) will be called thick or
thin whenever the corresponding triple is thick or thin. The thin factors are the groups G(1,1,n;) >~
Sym(A;) and furthermore if n; = 1, this factor is trivial and may be omitted from (3.1).

Given « € l,,, define 0 : [n] - u,, by 6(1) =« and 0(i) =1 for i > 1, then put

G% =0Gp07 1. (3.2)
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Theorem 3.7. If H is a reflection subgroup of G(m, p,n), then there is an augmented partition A and an
element o € .y, such that H is conjugate to GS.

Proof. Let 2 = {V1,V,,...,Vy} be a transitive system of imprimitivity for G(m, p,n) and let
21,829, ..., 82q be the orbits of H on 2.

For i € [d] let P; be the (direct) sum of the subspaces in §2;, let H; be the subgroup of H generated
by the reflections whose roots belong to P; and let M; be the support of H;. For i # j, the elements
of H; fix every vector in Pj and H = Hq x Hz x --- x Hq. (If no reflections of H belong to P;, then H;
is the trivial subgroup and M; is the zero subspace.)

Since H; is transitive on £2;, if H; # 1, the penumbra of H; is P;. For i € [d] we set n; = |£2;]. It
follows from Lemma 3.3 that for all i, either

(i) P =M; and H; >~ G(m;, p;, n;) for some feasible triple (m;, p;, n;), or
(ii) P; # M; and H; >~ G(1, 1, n;) >~ Sym(£2;).

By conjugating H by an element of Sym(n) we may suppose that (ni,ny,...,ng) Fn and that
A =[(myq, p1,n1),..., (Mg, pg,Ng)] is an augmented partition for G(m, p,n).

The group G(m, p, n) is normalised by A(m, 1,n) and so, by Lemma 3.3, there exists § € A(m, 1, n)
such that 9HO~! = G . Modify the definition of @ by choosing 6(1) so that 6 € A(m, p,n). This choice
of 6 shows that H is conjugate in G(m, p,n) to G} for some o € . O

Corollary 3.8. If H is a reflection subgroup of the symmetric group Sym(n), then H is conjugate to
]_[f=1 Sym(n;), where (n1, ..., ngq) b n. In particular, every reflection subgroup is parabolic.

Proof. We have Sym(n) >~ G(1, 1,n) and it follows from the theorem that H is conjugate to G, where
the feasible triples of A have the form (1,1,n;) fori=1,2,...,d. O

Theorem 3.9. Suppose that A = [(m1, p1,11), ..., (Mg, P4, Ng)] is an augmented partition for G(m, p, n).
Then for o, € py,, the groups G and Gi are conjugate in G(m, p,n) if and only if af~! € u;
where

k=m/gcd(p,ny,na,...,ng,m/my,m/my, ..., m/my).

In particular, if mj = m for some i < d, there is a single conjugacy class of reflection subgroups of
type A.

Proof. Without loss of generality we may suppose that g = 1. As in Definition 3.6, for i € [d], let
ki=ni+ny+---+n; and set kg =0.

Suppose that § € A(m, p,n) conjugates GX to Ga. For i € [d] let & = 6(k;). Then there are ele-
ments y; such that for ki_; < j <k; we have y; € Ry, and

jand i > 1;

(i) 6(j) =yjé& for ki1 < j<k
j<ki.

(i) 6()) =C(_1)/j§1 for 1<

Therefore, for i € [d], there are elements §; € i, such that the order of a™'(5"61)(£,%82) -
(S;”Sd) divides m/p. That is, « € i, where k =m/gcd(p,nq,ny, ..., ng,m/my,m/my, ..., m/my).

Conversely, if o € puy, there exist 8; € pt,,, and & € p,, such that the order of o' (£]"81)(5,282) -
(E;"(Sd) divides m/p. Using these elements and the fact that for all i the group A(m;, 1, n;) normalises
G(m;, pi, n;j) we may construct an element e A(m, p,n) which conjugates G to GA. O

Example 3.10. The group G = G(2,2,n) is the Weyl group of type D, and if A =[(1,1,n)], we have
G]A ~ GZ1 =~ Sym(n). According to Theorem 3.9, the reflection subgroups G1A and G? are conjugate if
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and only if n is odd. For all n there is a single conjugacy class of reflection subgroups G2,2,n—1),(1,1,1)]
of type Dp_1. When n =4 we have G(2, 2, 3) >~ Sym(4) and the three conjugacy classes of reflection
subgroups isomorphic to Sym(4) are fused by the triality automorphism of D4. Similarly, there are
three conjugacy classes of subgroups isomorphic to G(2, 2,2) >~ Sym(2) x Sym(2).

3.2. Parabolic subgroups

Theorem 3.11. Retaining the notation of the previous section, if H is a parabolic subgroup of G(m, p, n) then
H is conjugate to either

(i) a reflection subgroup G A, where A has exactly one thick feasible triple (m, p, ng) for some ng, or
(ii) a reflection subgroup G4 for some o € ., where all the feasible triples of A are thin.

Proof. Let H be a parabolic subgroup of G(m, p,n). By Steinberg’s theorem H is a reflection sub-
group and, up to conjugacy in G(m, 1,n), we may suppose that H = Ga. Let (A1, A3, ..., Ag) be the
standard partition of {e1,e,,...,e,} associated with A and let T be the set of indices i such that
(mj, pi,nj) € A is thin.

ForieT, the elements E; = ZEGAI_ e form a basis for V. Therefore, if v =3, 1 iE;, the parabolic
closure of H is G,. If A contains at least one thick triple, then G, = G, where I' is the augmented
partition consisting of the thin triples of A and a single thick triple (m, p,ng), where ng is the sum
of the n; such that (mj, p;, n;) is thick. In this case it follows from Theorem 3.9 that G is conjugate
to G} for all a € pp,.

If there are no thick triples in A, then G, =GA. O

The well-known fact that the partially ordered set of parabolic subgroups of G(m,1,n) is iso-
morphic to the Dowling lattice Q (i,,,) introduced in [7,8] is a consequence of this theorem and
Lemma 3.3.

The conjugacy classes of parabolic subgroups of the Coxeter groups of types A,, B, and Dj
are described in Propositions 2.3.8, 2.3.10 and 2.3.13 of [11]. These are the groups Sym(n + 1) >~
G(1,1,n+1), G2,1,n) and G(2, 2,n) in the notation of Shephard and Todd.

3.3. Simple extensions

The following theorem describes, up to conjugacy, all simple extensions (see Definition 1.1) of the
reflection subgroups of G(m, p, n).

Theorem 3.12. Suppose that H is the reflection subgroup Ga of G(m, p,n), as defined in (3.1), where
A =[(m1,p1,n1),..., (Mg, pq,nq)]. Let (A1, Ay, ..., Ag) be the standard partition of A = {e1, ez, ...,en}
associated with A. If r ¢ H is a reflection with root a, then (H,r) = gGrg~! for some I and some element g
in the centraliser of H in A(m, 1, n). The augmented partition I" is obtained from A in one of the following
ways.

(i) a € V; for some i and the order of r is k, where k | m/p. In this case we may take g = 1.
Ife; € Aj, the triple (mj, pj,n;) is replaced by (m’, p, nj), where

m’ =lem(mj, k) and p’'= w
ged(mj, k)
In particular, if (mj, pj, nj) is thin, the factor Sym(nj;) is replaced by G(k, 1, n;).
(ii) a € Vi + V| for some i # j, the order of r is 2 and r(e;) = £ej for some & € .
(a) If ei, ej € Ay, the triple (mp, pp, ny) is replaced by (m', p’, ny), where m’ = lem(my,, k) and p’ =
m’ pp, /my. In this case we may take g = 1.
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(b) Ifej € Ay and ej € Ay where h # £, the triples (mp, pp, np) and (mg, pe,ng) in A are replaced by
a single triple (m’, p’,n’), where m’ = lecm(my,, my), p’ =m’/lem(my, /pp, me/pe) and n’ = ny +ny.

Proof. In the group G(m, p,n), if n > 1, the integer m is characterised as the order of the cyclic sub-
group whose elements are rs, where r and s are reflections which interchange V; and V5. Similarly,
m/p is the order of the cyclic group generated by the reflections whose roots lie in V7.

The theorem is the result of explicit calculations using the observation of the previous paragraph
coupled with Lemma 2.1. In cases (i) and (ii)(a) this is straightforward.

In case (ii)(b), let  be the element of A(m,1,n) which fixes each element of A for s+ j and
which multiplies each element of A; by &. Then 6 centralises H and conjugates r to the reflec-
tion which interchanges e; and e;. Thus n" =nj + n, and the values of m" and p’ follow from
Lemma 2.1. O

4. Simple extensions and parabolic subgroups

As an application of the results of the previous section, we have the following characterisation of
parabolic subgroups.

Theorem 4.1. Suppose that H is a reflection subgroup of the finite unitary reflection group G and that K is
a simple extension of H. If K is parabolic and the rank of K is greater than the rank of H, then H is parabolic.

Proof. We may suppose that G is irreducible and that K = (H, r), where r is a reflection.

If G=G(m,p,n) and if H is not parabolic, then not all factors of H are thin. If H has more
than one thick factor, these factors must be contained in a single thick factor of K. But then, from
Theorem 3.12(ii)(b), rank(K) = rank(H), which is a contradiction.

Thus we may suppose that H has a single thick factor G(m’, p’,n’) with support M and either
m’ #m or p’ # p. Let a be a root of r. Since rank(K) > rank(H) we have a ¢ M and since K is
parabolic, a ¢ M+, Thus for some Vi S M we have V;#r(V;) and hence r is a reflection of order 2.
It follows from Theorems 3.11 and 3.12 that K cannot be a parabolic subgroup. This is a contradiction
and therefore we may suppose that G is primitive.

We have used the computer algebra system Magma [2] to obtain a case-by-case description of the
conjugacy classes of simple extensions of all reflection subgroups of the 15 primitive reflection groups
Gy (23 <k < 37) and the results can be found in Section 6. An inspection of the tables shows that if
H is a non-parabolic reflection subgroup, either H has no parabolic simple extension or else the only
parabolic simple extension of H is its parabolic closure.

If the rank of G is 2, then G is one of the groups Gy for 4 <k < 22. If H is a non-parabolic
subgroup of rank 1, then H is generated by the square of a reflection of order 4. Thus from [12,
Table D.1], G is Gg, Gg, G1p or G11. The only rank 2 parabolic subgroup is G itself and it can be seen
from [12, §6.3] that G is not a simple extension of H. This completes the proof. O

Theorem 4.2. If G is a finite reflection group of rank n and if R = {r1, 12, ..., 1z} is a set of n reflections which
generate G, then for any subset S of R, the subgroup generated by S is a parabolic subgroup of G.

Proof. For 1 <i<n let Hj = (r1,r2,...,1i), let M; be the support of H; and let d; = dim M;. Then
1=d; <dy<---<dp=n.Butdit; <dj+1 and therefore d; =i for all i.

If there is a subset of R which generates a non-parabolic subgroup, we may reorder the r; if neces-
sary and find a subgroup Hy which is not parabolic but such that Hy, is parabolic. This contradiction
to Theorem 4.1 completes the proof. O

5. Reading the tables

The tables in Section 6 were constructed with the assistance of approximately 300 lines of Magma
code. The code and accompanying documentation is available at http://www.maths.usyd.edu.au/u/don/
details.html#programs.
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The conjugacy classes of reflection subgroups and their simple extensions are calculated by an
iterative process which begins with the conjugacy classes of subgroups of rank one.

Cohen [4] introduced a notation for primitive complex reflection groups of rank at least 3 which
extends the standard Killing-Cartan notation for Coxeter groups. In this notation the complex reflec-
tion groups which are not Coxeter groups are labelled ]_5,4), ]55), Ks, Ke, L3, Lg, M3, N4 and ENg4. In
the tables which follow the labels for the conjugacy classes of reflection subgroups use this notation
except that, as in [12], O4 is used instead of EN4. The captions on the tables use both the Cohen and
the Shephard and Todd naming schemes.

A reflection subgroup which is the direct product of irreducible reflection groups of types
Tq,Ty,..., Ty will be labelled T1 + T2 + --- + Ty and if T; = T for all i we denote the group
by kT.

For the imprimitive reflection subgroups which occur in the tables we use the notation introduced
in [12, section 7.5] rather than the Shephard and Todd notation G(m, p,n). That is, B,(fp) denotes
the group G(2p, p,n) and D,ﬂp) denotes the group G(p, p,n). For consistency with the Killing-Cartan
names we write B, instead of B,(12) and D; instead of D,SZ). Similarly Ap—1 denotes the symmetric
group Sym(n) ~ G(1, 1,n). However, we use D;m) rather than I,(m) to denote the dihedral group of
order 2m.

For small values of the parameters there are isomorphisms between the groups: A; >~ D?),

A3 ~ D3 and B >~ D(24). The tables use the first named symbol for these groups. The cyclic groups
of order 2 and 3 are denoted by A; and L; respectively, and L, denotes the Shephard and Todd
group Gy4.

If there is more than one conjugacy class of reflection subgroups of type T we label the conjugacy
classes T.1, T.2, and so on. There is no significance to the order in which these indices occur.

For those (conjugacy classes of) reflection subgroups H whose parabolic closure is a simple ex-
tension of H we place the parabolic closure first in the list of simple extensions and use a bold
font.

The conjugacy classes of parabolic subgroups are labelled with the symbol .

6. The tables

Tables of conjugacy classes of the reflection subgroups of the Coxeter groups of types Eg, E7, Eg,
F4, H3 and H4 can also be found in [6].

The data in Table 11 below corrects an error in [12, Table D.4], where D?) + A, is incorrectly
listed as a subsystem of Ks.

Table 1 Table 2
Reflection subgroup classes of Reflection subgroup classes of Gy = ];4’.
Go3 = Hs. Class Simple extensions
Class Simple extensions o Ar By, Ay, 2A1.1, 2A;.2
© A Dy, A, 241 2411 By, B3.1, Ay +By, As.1, 3A1.1
o 2A; Hs, 344 2412 By, B3.2, A1+ By, A3.2, 3A:.2
o Az Hs o As ISP, B3, B3.2, Asl, A32
o DY Hs 9 B2 J5" Bad. Ba2. Av+Bs
3A: Hs 3A1.1 B3.1, A1+ B>
3A1.2 B3.2, A1+ B2
A1+ B, 1P, B3.1, B3.2
Asl 159, Bs.1
As.2 1P, Bs.2
B3.1 1P

4
B3.2 1P
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Table 3 Table 4
Reflection subgroup classes of Reflection subgroup classes of G = M3.
Gos =L3. - X
5 3 Class Simple extensions
Cl, Simple extensi
ass imple extensions o L L. 2L;. B(23)’ A+ Lo
e L L2 2l p A B, A1 +1L1, A
5 2L1 L3, 3[_1
o Lo Is 214 BY, L3, B + 1y, 3L
(3) 3) (3)
3L L A; B,", By, D37, Ax+14
p Lo Ms, L3, A1 +L
p BY M3, B, BSY +Ly
9 A+l Ms, B, BY 411, Ar+1Lo Ay+1Ly
(3) 3)
D3 B3
3L, L3, BY + 1,

3 3
B +1; M, BY
AL Ms, B, B 41

BY M;
L M3
A+ 1L M;

Table 5
Reflection subgroup classes of Gy7 = jgs)‘
Class Simple extensions
P Al By, DY, Ax.1, A2, 2A1.1, 2412
2411 By, Hs.1, B3.1, Ay + By, As.1,
3411
2412 By, H3.2, B3.2, Aj+ By, A32,
3A1.2
p Azl 7, H3.2, Bs.1, DY, As.1
P A2.2 19, Hi.1, B3.2, DY, As2
p DY 1, H3.1, H3.2
» B I, B3, B3.2, Aj+ B,
3411 Hs.1, B3.1, A +B;
3A;.2 Hs.2, B3.2, A +B;
A3l 1, Bs.1
As.2 1, Bs.2
A1+ B> 1, B3.1, B3.2
Hs.1 1
H3.2 1
B3.1 1
B3.2 1

® ®)
D3 J3
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Table 6
Reflection subgroup classes of Gs = F4.
Class Simple extensions
o A].] Bz, Az.l, 2A].1, 2/\1.3
o A1.2 Bz, A2.2, 2A1.2, 2A1.3
2A1.1 By, (A1 + B).2, As.1, 3A1.1, 3A1.2
2A1.2 By, (A1 +B).1, A3.2, 3A1.3, 3A1.4
© 2A1.3 B3.1, B3.2, (A1+B2).2, (A1 +B3).1,
(A1 + A2).1, (A1 +A2).2, 3A1.2, 3A1.3
o Azl B3.1, As3.1, (A1 + Ap).1
o A2 B3.2, A3.2, (A1+Ap).2
© Ba B3.1, B3.2, (A1+ B2).1, (A1 +B3).2
Asz.1 Bs.1, B4.1, D4.1, (A1 + A3).1
Asz.2 B3.2, B4.2, D4.2, (A1 + A3).2
3A1.1 (A1 +B32).2, (2A1+ B3).1, D4.1, 4A1.1
3A1.2 B3.1, (A1 + B3).2, (A1 + B2).1,
(2A1 + B2).1, (A1 + A3).1, 4A1.2
3A1.3 B3.2, (A1+B3).1, (A1 +B2).2,
(2A1 +B2).2, (A1+A3).2, 4A1.2
3A1.4 (A1 +By).1, (2A1 + B3).2, D4.2, 4A1.3
(A1 + By).1 B3.1, B4.2, 2By, (A1 + B3).1, (2A1+By).2
(A1+B2).2 B3.2, B4.1, 2By, (A1 + B3).2, (2A1+B>).1
© (A1+Az).1 F4, B4.1, (A1 + B3).1, 243, (A1 +A3).1
o (A1+Ay).2 Fa, B4.2, (A1 + B3).2, 2A;, (A1 + A3).2
© Bs.1 Fa, B4.1, (A1 + B3).1
» Bs.2 F4, B4.2, (A1 +B3).2

4A1.1 D4.1, (2A1+ B2).1

4A1.2 (2A1+ By).1, (2A1 + By).2,

(A1+B3).1, (A1 +B3).2
4A1.3 D4.2, (2A1+ By).2
Dy.1 Bs.1
Dy.2 Bs.2
(2A1 + By).1 2B, B4.1, (A1 +B3).2
(2A1 +B).2 2By, B4.2, (A1 +B3).1
2B, B4.1, B4.2
(A1 +A3).1 F4, B4.1, (A1 +B3).1
(A1 +A3).2 F4, B4.2, (A1 + B3).2
(A1 + B3).1 F4, B4.1
(A1 +B3).2 F4, B4.2
By.1 F4
B4.2 F4
2A, F4
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Table 7
Reflection subgroup classes of Gyg = Ng.
Class Simple extensions
o A By, Ay, 2A1.1, 2412
2A1.1 By, A1+ By, As.1, A3.4, 3A1.1, 3A1.2
» 2A1.2 B3, A1+ By, A1+ Az, 3A1.2, A3.2, A33
P A B3, DSV, A1+ Az, Asl, A32, A33, Asd
o By B3, DY, A1+ B
3411 A1+ By, 2A1 + By, Da1, 4A1.1
3A1.2 B3, A1+ By, Ay + B3, 2A1 + By, D4.2,
4A12, Aj + As
A1+ B B3, 2B, Bs4, A1+ B3, 2A1 + B>, Dr)
As.1 B3, Dg4.1, DE;D, A1+ As
As.4 D", B4, Da.1, Ds.2, DY
o As2 N4, D42, DP, Ag1
o As3 N4, D42, D, A42
» A1+ Az N4, B4, A1+ B3, A1+ A3z, As.1, As.2
» B3 N4, Ba, A1+ B3
p DY N4, DSP
4A1.1 D4.1, 2A1 + B>
4A1.2 Dgy.2, 2A1 4+ By, A1+ B3
2A14+B;  Bs, A1+Bs3, DY, 2B,
2B, Bs, DY
Da.1 Bs, DY
D42 Ns, DY
A1+ A3z Ny, A1+ B3, By
A1+ B3 N4, By
Ag1 Ny
Ay.2 Ny
By Ny
Dy Na
Table 8
Reflection subgroup classes of G3g = Hg.
Class Simple extensions
o A DY, As, 24
o 2A Hs, A1+DY, A1+ Ay, A3, 34
p Az Hi3, A1+ A3, A3
o DY Hs, A1 +DY
3A1 Hs, A1+ H3, D4, 4A4
» Az Hy4, D4, A4
» A1+ A; Hy, A1+ Hs, A4, 2A;
© A1+DY  Hs, Aj+Hs, 2D
© Hs H4, A1+ Hs
4Aq A1+ Hs, Dy
A1+ Hs Hy
D4 Ha
2D Hy
Ay Hy

2A; Hy
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Reflection subgroup classes of G31 = 04.

Class Simple extensions
» A By, Ay, 2A1.1, 2A1.2
2412 Ba. (A1+B2).1, A3.2, 3A1.1, 3A;.2
By BYY, B3, DS, (A1 +B2).1, (A1 +B>).2
p 2A1.1 B3, (A1+B2).1, (A1 +B2).2, Ay + Ay, As.1, 3A;.1
P A B3, DSV, A1+ Az, Asl, As2
o BYY B, Ar+BYY
A2 B3, DYY, Ba.1, DY, Ds.l, Da.2, Ar+As
3411 B3, (A1+B2).1, (A1+B3).2, Ds.1, A1 + B3, A1+ A3,
(2A1 4 By).1, (2A1 + B2).2, 4A;.1
3412 (A1 +B2).1, Dg.2, QA1+ By).1, 4A1.2
(A1 +By).1 B3, A1+ B, Ba.1, 2B.1, 2B2.2, DY, Ay +Bs, (241 +By).1
(A1 + B2).2 BYY, A1 +BY", Ba2, A1+ D", 2B,.2, (2A1 + By).2
Ar+B5Y By, By, A1 +BY", B+ By, 24, + B
B3 B’ Na, Fa, Ba.l, Ba2, A1 +B3
hIg BY", N4, DY, A+ DY
o As.l Na, Ba.2, DYV, Da1, Ag1, As2
P A+ A Na, Fa, Bs1, Ba.2, Ay +B3, Ay +DS, Ay +As, 24, Agl, Ag2
o BYY 04, B, Ay +BY"
4441 A1+ B3, (A1 +By).1, (2A1 +B2).2, D1
4A,.2 D42, (2A1+B2).1
(2A1 + B2).1 Bs.1, DS, Ay +Bs, 24, +BSY, 2B,.1, 2B,.2
(2A1 + B2).2 A1+BS", 2B,.2, B4.2, 2A; + B
Al + A3 Na, Fa, Ba.l, Ba.2, A1 +D, A1 +B;
A1 + B3 Na, Fa, A1+ B, Ba.1, By.2
2By.1 B4.1, DY, By +BYY
2B,.2 B4.2, B, By + B
241 + B B, A1 +BYY, B, +BYY
By +BYY B, 2B
Dy.1 Na, B2, DY
D42 B4.1, DY
2B5Y By
DY N4, BY)
By.1 Na, B, Fa
B4.2 04, BY
Ar+DYY 04, B, Ay +BYP
A1+ B 04, BYY
Agl 04, Ny
Aq2 04, Ny
24, 04, Fy
BY 0,
F4 04
N4 04
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Table 10 Table 11
Reflection subgroup classes of G3, = Lg4. Reflection subgroup classes of G33 = Ks.
Class Simple extensions Class Simple extensions
» L Ly, 2L, » A Az, 2A4
® 2L L3, Ly +La, 3L, ® 2A1 A1+ Az, A3, 3A1
p L2 s hi+Lo o A DD, A+ Ay, A
3L L3, L1+ L3, 4L, 3)
o L3 Ly, L1 +13 e Atz Dy ?31)+A3’ Aa 282
o Li+1L Ly, L1 +1L3, 2Ly ® Az D4, Dg”°, A1+ A3, A4
3A Dy, A Az, 4A
4L, Li+1s & 1 4, A1+ A3 1
D(3) D(3)
Li+1L3 Ly # Us 4
22 Ly 4Aq Dy, A1+ D4, 5A;
24, Dy, As
p A1+ As Ks, A1+ D4, As
® D4 Ks, A1+ D4
® Asg Ks, As
p DY Ks
5A1 A1+ Dy
A1+ Dy Ks
As Ks
Table 12
Reflection subgroup classes of G34 = Kg.
Class Simple extensions (ranks 1 to 4)
» Al Az, 2Aq
P 2A A1+ Az, As, 3A;
p Az D(33), A1+ Az, A3
P A1+ Az DY, A1 +DP, A1+ As, 241+ Az, A, 2A2.1, 24,2
p As Ag, Dy, Df), A1+ A3
» 3Aq D4, A1+ A3z, 2A1 + Ay, 4A4
p DY DY, A1+ DY
4A1 Dy, A1+ D4, 2A1+ A3, 5A1
2A5.2 DY, Ay + DY, A1 +24;, As2
P 2421 DY, A2+ D, Ay +As, As.1, As3
o A1+As Ks, Ds, A1+DS, A1+ Da, Ay+As, Ar+As, 2A1 +As, As.1, As2, As3
o 2A1+ A Ds, A1 +D, Ay+As, A1+ As, A +2A, 241+ A3
o Ai+DY DS, A2 +DS, Ay +DY
& Da Ks, Ds, A1+ Dy
P As Ks, Ds, D&, Ai+As, As.1, As.2, As3
» DY Ks. DY, A1+ DY




D.E. Taylor / Journal of Algebra 366 (2012) 218-234

Table 13
Reflection subgroup classes of G34 = Kg (continued).
Class Simple extensions (ranks 5 and 6)
5A1 A1+ Dyg, 2A1 + Dy, 6Aq
A+ DY p{, by, 20, A, + DY
A1+ Dy Ks, A1+ Ks, Dg, 2A1+ Dy
2A1 + A3 Ds, A1+ Ks, Dg, 2A1 + D4, A1 + As, 2A3
A1 +2A; A1 +DY), Es, A2+DY), A1+ As, 3A;
As.2 Ks, Es, DS, A1+ As
o As.1 Ks, Ds, DS, Ag.1
o As3 Ks, Ds, DS, Ag.2
» Ar+As Ks, Dg, Dg), A2+D£l3>, 2A3, Ag.1, Ag.2
o A1+ As Kg¢, Eg, A1+ K5, A1+ As, Ag.1, Ag.2
o A;+DP Ke, Ai+Ks, DY, Ay + DY
® Ds Ke, Ee, Ds
o DY Ke. DY
» Ks Ks, A1+ Ks
6A4 2A1+ Dy
2A1+4 Dy A1+ Ks, Dg
34, Ee, A2+DY
20y S
A1+ As Ks, A1+ Ks, Eg
Az +DP Ks, DS
2A3 1(61 DG
Ag.1 Ks
Ag.2 Ks
A1+ Ks Ke
Y Ks
Dg Ks
EG KS
Table 14
Reflection subgroup classes of G35 = Eg.
Class Simple extensions
» Al Az, 2Aq
© 2A A1+ Az, A3z, 3A
» Az A1+ Ay, A3
» A1+ A 2A1 + Az, A1+ A3, Ay, 2A2
» A3 D4, A1+ A3, A4
» 3Aq D4, A1+ A3z, 2A1 + Ay, 4A4
4Aq D4, 2A1 + A3
» 241+ A Ds, Ay + As4, 2A1 + A3, A1 +2A;
» A1+ As Ds, A1+ A4, 2A1+ A3, As
» A4 Ds, A1+ A4, As
» 2A2 A1 +2A;, As
© Da Ds
2A1+ Az Ds, A1+ As
» A1 +2A; Eg, A1+ As, 3A;
» A1+ As Eg, A1+ As
® As Es, A1+ As
» Ds Es
A1+ As Eg

3A2 E6
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Table 15
Reflection subgroup classes of G3g = E7.
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Class Simple extensions (ranks 1 to 5)
o A] 2A1, Az
o 2A1 A1+ Ay, Az, 3A1.1, 3A1.2
» A2 As, A1+ A2
» A1+ Az (A1 + A3).1, (A1 + A3).2, 2A1 + Ay, Ag, 2A;
p Az Dy, (A1+ A3).1, (A1+A3).2, Ay
» 3A1.1 Dy4, 2A1 + Az, (A1 + A3).1, 4A1.1, 4A1.2
o 3A12 (A1 + A3).2, 4A;.2
4A1.1 D4, (2A1+ A3).1, 5A4
o 4A1.2 A1+ D4, 2A1+ A3).2, 3A1 + A2, 5A
p (A1 +A3).1 Ds, A1+ Da, A1+ Asa, Az + A3, (2A1 + A3).1, (2A1 + A3).2, As.1
© (A1+A3).2 A1+ D4, (2A1 +A3).2, As.2
P 2A1+ A2 Ds, A1+ Asg, A1 +2Az, Ax+ Az, 3A1+ Az, (2A1+A3).1, (2A1+ A3).2
P Ag Ds, A1+ Ay, As.1, As.2
» 2A, Ay + A3z, A1 +2A;, As.1, As5.2
# Da Ds, A1+ Dy
5A1 A1 +Dy4, 2A1 + D4, 3A1 + A3, 6Aq
(2A1+ A3).1 Ds, 2A1 + D4, 3A1+ A3, (A1 +As).1, 2A3
» (A1 + A3).2 De, A1+ Ds, 2A1 + D4, (A1 +As5).2, A1 +Ax+ A3, 3A1+ A3
© A1+ Dy Dg, A1+ D5, 2A1+ Dy
» A1+ A Ee, A2+ A4, A1+ Ds, As, (A1+As).1, (A1 +As).2
p A2+ A3 D¢, As, A1+ Ay + A3, Ay +Ayg, 2A3
p A1+2A; Ee, A1+ A2+ A3, (A1+As).1, (A1 +As5).2, Ay + As, 3A;
p 3A1+ A A1+ Ds, 3A1+ A3, At +Ax+As
p As.l Es, As, Dg, (A1+ As).1
p As.2 D¢, (A1 + As).2
& Ds Ee, Dg, A1+ Ds

Table 16
Reflection subgroup classes of G3g = E7 (continued).

Class Simple extensions (ranks 6 and 7)
6A1 2A1+ D4, 3A1+ Dy, 7A;

2A1+ Dy De, A1+ Dg, 3A1+ Dy

2A3 De, A7, A1+ 2A3

3A1+ A3 A1 +Ds, A1+ Dg, A1+2As, 3A1+ Dy
3A; Eg, Az + As

(A1 +As).1 Es, A1+ Dg, A7

(A1 + As).2 E7, A2 +As, A1+ Dg

A1 +Ds E7, A1+ Dg

Ay + A4 E7, Ay +As, A7

A1+ Az + As E7, A1+ Dg, Ay + As, Aj+2A3
As E7, A7

Dg E7, A1+ Dg

Es E7

7A1 3A1+ Dy

3A1+ Dy A1+ Dg

A1 +2A3 E7, A1+ Ds

A1+ Dg E7

Ay +As E7

A7 E7




Table 18
Reflection subgroup classes of G37 = Eg (continued).
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Table 17
Reflection subgroup classes of G37 = Eg.

Class Simple extensions (ranks 1 to 4)
» Al 2A1, A2
© 2A A1+ Az, 3A1, A3
© Az A1+ Az, A3
» A1+ Az 2A1+ Az, 2A2, A4, A1+ A3
» A3 Dy, A4, A1+ A3
» 3Aq Dy, 2A1+ Az, A1+ A3z, 4A1.1, 4A1.2
4A1.1 D4, (2A1+ A3).1, 5A4
p 4A1.2 A1+ D4, (2A1+ A3).2, 3A1+ Az, 5A
» 2A1+ A Ds, A1+ As, A1+2A;3, A+ A3, 3A1+ Ay,
(2A1 + A3).1, (2A1 + A3).2
» 2A; Ay + A3, As, A1 +2A;
o Aa Ds, A1+ A4, As
» A1+ A3 Ds, A1+ Da, A1+ As, Ay + Az, As,
(2A1 + A3).1, (2A1+ A3).2
® Ds Ds, A1+ Dy

Class Simple extensions (ranks 5 and 6)
5A1 A1 + Dy, 3A1 + A3, 2A1 + D4, 4A1 4+ Az, 6A
(2A1 + A3).1 Ds, (A1 + As).1, 2A3.1, 2A1 + Dy4, 3A1 + A3
o (2A1+ A3).2 Dg, (A1 + As).2, 2A3.2, 2A1 + D4, A1+ Ds, 3A1 + As,
2A1+ A4, AL+ A2+ A3
© A1+ A Eg, A1+ Ds, (A1+As).1, (A1 +As).2, Ay + A4, 2A1 + Ag, Ag
» A1+2A; Eg, (A1+As).1, (A1+As).2, A+ Ag, A1+ Az + A3, 2A1 +24;, 3A;
©» Ar+As Dg, Ay + D4, Ag, Az + Asg, 2A3.1, 2A3.2, A1+ Ar + A3
© 3A1+ Az A1+ Ds, Ay + Dyg, A1+ Az + A3z, 2A1 + Ag, 3A1 + A3, 2A1 +2A,, 4A1+ Ay
 Ds Es, D, A1+ Ds
» As Eg, Dg, Ag, (A1+ As).1, (A1 + As).2
© A1+ Dy Dg, Az + D4, A1+ Ds, 2A1 + Dy
6A4 2A1+ D4, 3A1+ Dy, 4A1 + A3, 7TAq
2A1+ Dy Dgs, A1+ Dg, A3+ D4, 2A1 + D5, 3A1+ Dy
3A1 + A3 A1 +Ds, 2A1+ As, A1+ De, 2A1+ Ds, A3+ Dy,
A1+ 2A3, 3A1 + D4, 2A1+ Az + A3, 4A1+ A3
4A1 + Az Ay +Dy4, 2A1 + Ds, 2A1 + Az + A3, 4A1 + A3
3A; Es, A2+ As, A1 +3A2
2A3.1 Dg, A7.1, A3+ D4, A1 +2A3
(A1 + As).1 Es, A7.1, A1 + D¢, 2A1 + As
© 2A3.2 A7.2, D7, A3+ Aa, A3+ Dy
© (A1+As).2 E7, A7.2, A1+ Ds, 2A1+ As, A1+ Es, A1+ As, A2+ As
 Es E7, A1 +Eg
» De E7, D7, A1+ Dsg
© As E;, D7, A7.1, A7.2, A1+ Ag
o Az -+ As E7, A7.1, A7.2, A3+ Ag, Ay +Ds, Ay +As, Ay + Az + As
» A1+ Ds E7, A1+ Ds, D7, A1+ Es, 2A1+ Ds, Ay + Ds
© A1+ Ar+As E7, A1+ Ds, Ay + Ds, A3+ As, A1+ As, 2A1 + Ay + Az,
A1+ Az + Asg, Ax+ As, A1 +2A3
p 2A1+ A4 D7, 2A1 + As, A1+ As, A3+ A4, 2A1+Ds, A1 +Ees, A1+ A2+ As
© 2A1 +2A; 2A1 +As, A2+ Ds, A1+ Ax+As, A1+ Es, A1 +3A2, 2A1+ A2+ As
» A2+ D4 D7, Ay +Ds, A3+ D4
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Table 19
Reflection subgroup classes of G37 = Eg (continued).

Class Simple extensions (ranks 7 and 8)
7A1 3A1 + Dy4, 4A1 + D4, 8Aq
4A1 + A3 2A1+ Ds, A3+ Dy, 2A1 + De, 2A1 +2A3, 4A1+ Dy
3A1+ Dy A1 +Dg, 2A1 + Dg, 2Dy4, 4A1+ Dy
2A1 +Ds D7, A1 +E7, 2A1+Ds, A3+ Ds
A3+ Dy D7, Dg, A3+ D5, 2Dy
2A1+ Ay + A3 Ay +Ds, 2A1+ Ds, A1 +E7, A3+ Ds, A1+ Az + As, 2A1 +2A3
A1 +3A; A1 +Es, A1+ Ay + As, Ay +Eg, 4A;
2A1+ As A1 +Eg, Dg, A1+ A7, 2A1+Ds, A1 +E7, A1+ A2+ As
A1 +2A3 E7, A1+ De, A3+ Ds, A1+ A7, 2A1 +2A3
Az + As E7, As, A2+ Eg, A1+ A2+ As
A1+ D¢ E7, Ds, A1 +E7, 2A1 +Dg
A7.1 E;, Dg, A1+ Ay

£ A7.2 Es, Ds, Ag

» Dy Es, Ds

© E7 Eg, A1 +E7

» A1+ A6 Eg, A1+ A7, Ag, A1+ E7

» A1+Ee Es, A1 +E7, A2 +Es

© A3+ A Eg, Dg, Ag, A3+ Ds, 2A4

» A2+ Ds Eg, Dg, Ay +Es, A3+ Ds

» Ar+ A+ Ay Es, A1 +E7, Ax+Es, A1+ A7, A1+ A+ As, 2A4
2A1 +2A3 2A1+ De, A1+ E7, A3+ Ds
8Aq 4A1 + Dy
4A1 + Dy 2Dy, 2A1 + Dg
2A1 + Dsg Dg, A1+ E7
4A, Ay +Eg
2Dy Ds
A1+ Az + As Eg, A1 +E7, A2 +Es
A3+ Ds Eg, Dg
A1+ A7 Es, A1+ E7
2A4 Eg
Az +Eg Eg
As Es
A1+ E7 Es
Dg Eg
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