ON SIMPLE CHARACTERIZATIONS OF k-TREES*

Donald J. ROSE

Applied Mathematics, Aiken Computation Laboratory, Harvard University,
Cambridge, Mass. 02138, USA

Received 1 March 1973**

Abstract. k-trees are a special class of perfect elimination graphs which arise in the study of sparse linear systems. We present four simple characterizations of k-trees involving cliques, paths, and separators.

1. Introduction

k-trees are a special class of Michigan graphs,¹ that is, graphs $G = (X, E)$, where X is a nonempty finite set of vertices and E is a set of pairs of distinct vertices called edges. Recalling that a clique in G is a nonempty subset of vertices each distinct pair of which is an edge of G, k-trees are defined recursively as follows. A k-tree on k vertices is a graph whose vertex set is a clique on k vertices (k-clique); and given any k-tree $T_k(n)$ on n vertices, a k-tree on $n + 1$ vertices is obtained when the $(n + 1)$st vertex is made adjacent to each vertex of a k-clique in $T_k(n)$.

Let $T_k(n) = (X, E)$ be a k-tree on n vertices and let $X = \{x_i\}_{i=1}^n$, where x_i is the vertex added to the k-tree $T_k(i-1)$ to produce the k-tree $T_k(i)$, $i > k$, $\{x_i\}_{i=1}^k$ the “base” clique. Note then that k-trees are perfect elimination graphs, that is, graphs $G = (Y, E)$ for which there exists an ordering of the vertex set, say $Y = \{y_i\}_{i=1}^n$, $|Y| = n$, such that in the vertex induced subgraph $G(Y - \{y_i\}_{i=1}^{\ell-1})$ the set

$$C_\ell = \{y_\ell\} \cup \text{Adj}(y_\ell)$$

is a clique. That is, when $\ell = 1$, y_1 and its adjacent vertices in G are a

* This work was supported by the Office of Naval Research under Contract N00014-67-A-0298-0034.

** Original version received 22 February 1973.

¹ Generally our graph-theoretic terminology follows [1].
clique, while for \(i > 1 \), \(y_i \) and its adjacent vertices in the subgraph are a clique. For the \(k \)-tree \(T_k(n) = (X, E) \) with \(x_i \) as above, the perfect elimination ordering \(\{y_i\}_{i=1}^n \) is defined simply by \(y_i = x_{n+1-i} \).

Let \(G = (X, E) \) be a graph with \(c(G) \) connected components. Recall that a separator \(S \) of \(G \) is a nonempty subset of \(X \) such that the vertex induced subgraph \(G(X-S) \) has \(c(G(X-S)) > c(G) \). For connected \(G \), \(G(X-S) \) has two or more connected components, say \(C_i = (V_i, E_i) \). The subgraphs \(G(V_i \cup S) \) then are the leaves of \(G \) with respect to \(S \). Similarly, for \(x, y \in X \) with \(xy \notin E \) and \(x \) and \(y \) in the same component of \(G \), an \(x, y \) separator \(S \) is a separator such that \(x \) and \(y \) are in distinct components of \(G(X-S) \). Recall also that any minimal separator is a minimal \(x, y \) separator for some \(x, y \in X \), but a minimal \(x, y \) separator need not be a minimal separator ([4, Fig.1, p. 193]).

Perfect elimination graphs and their role in the algebraic process of symmetric Gaussian elimination in sparse symmetric matrices has been discussed extensively in [4]. Here we apply a portion of the theory developed there to provide a simple characterization of \(k \)-trees.

Theorem 1.1. A graph \(G = (X, E) \) is a \(k \)-tree if and only if

- (i) \(G \) is connected,
- (ii) \(G \) has a \(k \)-clique but no \(k+2 \)-clique,
- (iii) every minimal \(x, y \) separator of \(G \) is a \(k \)-clique.

The necessity of (iii) was essentially established in [4, p. 201], however, the presentation given below is clearer. Even in the case \(k = 1 \) (trees), the result does not appear to be well known, although in this case it follows easily from other characterizations of trees (see [1, Theorem 4.1, p. 321]). We have for trees the following:

Corollary 1.2. A graph \(G \) is a tree iff \(G \) is connected, without triangles, and every minimal \(x, y \) separator is a single vertex.

For a different approach to the characterization of \(k \)-trees via a generalization of the notion of being "acyclic", see [2]. Our presentation deals only with cliques, paths and separators.
2. Proof of Theorem 1.1

To prove Theorem 1.1, we will borrow some results about perfect elimination graphs as discussed in [4].

Proposition 2.1 ([4, p. 196]). Let \(G = (X, E) \) be connected with a separator \(S \) which is a clique (separation clique) and leaves \(L_i, 1 \leq i \leq n \). If \(S_0 \) is a separator of some \(L_i \), then \(S_0 \) is a separator of \(G \). Furthermore, if \(S_0 \) is a minimal \(x, y \) separator of \(L_i \), then \(S_0 \) is a minimal \(x, y \) separator of \(G \).

Proposition 2.2 ([4, p. 194]). A graph \(G = (X, E) \) is a perfect elimination graph if and only if every minimal \(x, y \) separator is a clique.

We now begin the proof of Theorem 1.1. Let \(G = (X, E) \) be a graph with \(|X| = n \); for any fixed \(k \leq n \), we proceed by induction on \(n \). When \(n = k \) or \(n = k + 1 \), the equivalence of the \(k \)-tree definition and (i)–(iii) is immediate since \(X \) of \(G \) must then be a clique. Assuming the equivalence for graphs with \(k + 1 \leq |X| \leq n - 1 \), we consider a graph with \(|X| = n \).

Necessity. \(G \) is a \(k \)-tree on \(n \) vertices; let \(x_n \) be the vertex added to the \(k \)-tree on \(n - 1 \) vertices in the recursive definition of \(G \). Hence \(G(X - x_n) \) is a \(k \)-tree on \(n - 1 \) vertices. \(G \) is connected, and \(G \) contains a \(k \)-clique but no \(k + 2 \) clique since this is true for \(G(X - x_n) \) and \(|\text{Adj}(x_n)| = k \).

It remains to show that every minimal \(x, y \) separator \(S \) of \(G \) is a \(k \)-clique. Certainly, \(x_n \cup \text{Adj}(x_n) \) must be in the same leaf of \(G \) with respect to \(S \). If \(S = \text{Adj}(x_n) \), \(S \) is a \(k \)-clique. Otherwise, (since \(n \geq k + 2 \)) \(S \) is a minimal \(x, y \) separator of \(G(X - x_n) \), or, if \(x = x_n \), \(S \) is a minimal \(a, y \) separator of \(G(X - x_n) \) for some \(a \in \text{Adj}(x_n) \).

Sufficiency. Let \(G = (X, E) \) with \(|X| = n \) satisfy (i)–(iii) of Theorem 1.1. Then \(G \) is a perfect elimination graph (Proposition 2.2) and has a vertex, say \(x \), such that \(\{x\} \cup \text{Adj}(x) \) is a clique. Certainly, \(|\text{Adj}(x)| \leq k \) since there are not \(k + 2 \) cliques in \(G \). Furthermore, since \(|X| \geq k + 2 \) and \(G \) is connected, \(\text{Adj}(x) \) is a separator, hence \(|\text{Adj}(x)| \geq k \).

So \(|\text{Adj}(x)| = k \) and we finish by showing that \(G(X - x) \) is a \(k \)-tree; then \(G \) is a \(k \)-tree by definition. But certainly \(G(X - x) \) satisfies (i) and (ii); (iii) follows by applying Proposition 2.1 since \(G(X - x) \) is a leaf of \(G \) with respect to \(\text{Adj}(x) \). By the induction hypothesis, \(G(X - x) \) is a \(k \)-tree.
Applying Theorem 1.1 and Proposition 2.1, we have immediately:

Corollary 2.3. Let \(G = (X, E) \) be a \(k \)-tree with separation clique \(S \). Then each leaf of \(G \) with respect to \(S \) is a \(k \)-tree. In particular, for \(|X| \geq k + 1 \), if \(\{x\} \cup \text{Adj}(x) \) is a clique of \(G \), then \(G(X - x) \) is a \(k \)-tree.

Suppose \(S \) is a minimal \(x, y \) separator of a \(k \)-tree; then \(|S| = k \). If \(S \) were not a minimal separator, it must contain properly a minimal separator, say \(S_0 \), which is a minimal \(u, v \) separator for some \(u, v \in X \). But then \(k = |S_0| \leq k - 1 \) so \(S \) itself must be a minimal separator. Hence we have:

Corollary 2.4. For a \(k \)-tree, every minimal \(x, y \) separator is a minimal separator.

3. Other characterizations

In this section we consider some related results about \(k \)-trees. Recall that a graph \(G = (X, E) \) is a tree iff \(G \) is connected and \(|E| = |X| - 1 \). For a \(k \)-tree,

\[
|E| = \frac{1}{2} k(k - 1) + (|X| - k) = k|X| - \frac{1}{2} k(k + 1).
\]

Two characterizations involving (3.1) are presented below.

Proposition 3.1. Let \(G = (X, E) \) be a graph with \(|X| \geq k \) satisfying (ii) of Theorem 1.1 and (iv) every minimal \(x, y \) separator is a clique. Then \(|E| \leq k|X| - \frac{1}{2} k(k + 1) \) with equality holding iff \(G \) is a \(k \)-tree.

Proof. We note that there exists a perfect elimination ordering, say \(X = \{x_i\}_{i=1}^n \) \((|X| = n)\), by Proposition 2.2. Furthermore, we may assume without loss of generality by [4, Corollary 4, p. 198] that the \(k \)-clique \(C \) guaranteed by (ii) is ordered last; i.e., \(C = \{x_i\}_{i=m+1}^n \) with \(m = |X| - k \). Thus \(\{x_j\} \cup \text{Adj}(x_j) \) in \(G(X - \{x_j\}_{j=1}^{i-1}) \) is a clique, \(1 \leq i \leq m \), and by (ii), \(|\text{Adj}(x_j)| \leq k \). Now such adjacency sets for \(1 \leq i \leq m \) in their respective reduced subgraphs, count exactly all edges of \(E \) except for those \(G(C) \). Hence
\[|E| \leq \frac{1}{2} k(i-1) + (|X| - k)k = k|X| - \frac{1}{2} k(k + 1). \]

Clearly the inequality is strict unless \(|\text{Adj}(x_i)| = k, \ 1 \leq i \leq m\), in which case, by definition, \(G\) is a \(k\)-tree.

The following result is an immediate corollary since necessity is clear.

Theorem 3.2. \(G = (X, E)\) is a \(k\)-tree if and only if (3.1), and (ii) and (iv) are satisfied.

Proposition 3.3. Let \(G = (X, E)\) be a graph with \(|X| \geq k\) satisfying (i) and (iii) of Theorem 1.1. Then \(|E| \geq k|X| - \frac{1}{2} k(k + 1)\).

Proof. We sketch the inductive proof, letting \(G\) be a graph with \(|X| \geq k + 1\). Let \(x\) be a vertex such that \(\{x\} \cup \text{Adj}(x)\) is a clique (existence by Proposition 2.2). Then, since \(G\) is connected, either \(X = \{x\} \cup \text{Adj}(x)\) and the inequality is satisfied, or \(\text{Adj}(x)\) is a separation clique with \(|\text{Adj}(x)| \geq k\) by (iii). Using induction on \(G(X-x) = (X', E')\), we have

\[|E'| \geq k|X'| - \frac{1}{2} k(k + 1). \]

Adding \(|\text{Adj}(x)|\) on the left and \(k\) on the right gives

\[|E| \geq k|X| - \frac{1}{2} k(k + 1). \]

Theorem 3.4. \(G = (X, E)\) is a \(k\)-tree if and only if (i), (3.1) and (iii) are satisfied.

Proof. Sufficiency is by induction and follows by observing that (3.1) implies that \(|\text{Adj}(x)| = k\) (where \(\{x\} \cup \text{Adj}(x)\) is a clique) and the inequality of Proposition 3.3 for \(G(X-x)\) is an equality. Hence by induction on \(|X|\), \(G(X-x)\) is a \(k\)-tree, implying \(G\) is a \(k\)-tree.

With a little help from Menger's theorem [1, p. 47], we have:

Theorem 3.5. A graph \(G = (X, E)\) is a \(k\)-tree iff (ii), (iv) and (v) for all distinct nonadjacent pairs \(x, y \in X\), there exist exactly \(k\) vertex-adjacent \(k\) paths (except for \(x\) and \(y\)) \(x, y\) paths are satisfied.
Proof. Sufficiency is proved by induction of \(|X|\), the cases \(|X| = k\) and \(|X| = k + 1\) being clear. For \(|X| \geq k + 2\), let \(\{x\} \cup \text{Adj}(x)\) be the clique in \(G\) guaranteed by Proposition 2.2. Since \(G\) is connected by (v), we have that (ii) and (v) imply \(|\text{Adj}(x)| = k\).

Clearly (ii) holds in \(G(X-x)\); (iv) holds by Proposition 2.1. Finally, given any nonadjacent \(u, v\) in \(G(X-x)\), the \(k\) disjoint \(u, v\) paths in \(G\) imply \(k\) disjoint \(u, v\) paths in \(G(X-x)\) since any \(u, v\) path in \(G\) containing \(x\) also contains two vertices of the clique \(\text{Adj}(x)\). Hence (v) holds in \(G(X-x)\), there being no more than \(k\) disjoint \(u, v\) paths in \(G(X-x)\). Thus by induction, \(G(X-x)\) is a \(k\)-tree as is \(G\).

We need only show necessity of (v) which follows from (iii) by Menger's theorem.

As a final remark we note that (iv) above may be replaced by any of several known equivalent conditions. See, for example, [4, p. 194] and [3].

References