Stability Result for the Inverse Transmissivity Problem

Hamid Bellout
Department of Mathematical Sciences, Northern Illinois University, DeKalb, Illinois 60115

Submitted by Avner Friedman
Received February 19, 1991

0. Introduction

Let Ω be a bounded subdomain of R^{n}, Γ its boundary, $Q_{T}=\Omega \times(0, T)$, $\Gamma_{T}=\Gamma \times(0, T)$ and consider the boundary value problem (in all that follows we will use the standard summation convention)

$$
\begin{align*}
u_{t} & =\left(a_{j} u_{x_{j}}\right)_{x_{j}} & & \text { in } Q_{T}, \tag{0.1}\\
u(x, t) & =f(x, t) & & \text { on } \Gamma_{T}, \tag{0.2}\\
u(x, 0) & =u_{0}(x) & & \text { in } \Omega, \tag{0.3}
\end{align*}
$$

with $a_{j}(x)=A_{j}+K_{j} \chi_{D}(x) ; A_{j}>0, K_{j}>0, \forall j=1, \ldots, n$, where D is an unknown subdomain of Ω. The inverse problem associated with (0.1)-(0.3) is the determination of D from measurement of the Neumann data

$$
\begin{equation*}
a_{j} u_{v_{j}}=g(x, t) \quad \text { on } \Gamma_{T}^{1} \tag{0.4}
\end{equation*}
$$

where $\Gamma_{T}^{1}=\Gamma^{1} \times(0, T)$ and Γ^{1} is an open subset of Γ.
The physical origin of this problem will be discussed in Subsection 0.1.
In this paper we establish a local stability result; more precisely, if D_{h} is a family of domains such that $D_{h} \rightarrow D$ if $h \rightarrow 0$, and if we denote by g_{h} the data on Γ_{T}^{1} corresponding to D_{h}, then

$$
\begin{align*}
& \liminf _{h \rightarrow 0} \int_{\Gamma_{T}^{\frac{1}{2}}} \frac{\left|g_{h}-g\right|}{h} d x d t>0 \\
& \quad \text { provided } \quad \liminf _{h \rightarrow 0} \frac{1}{h} \operatorname{meas}\left(D_{h} \Delta D\right)>0 . \tag{0.5}
\end{align*}
$$

The author and A. Friedman [3], established (0.5) for the isotropic (a_{j} independent of j) elliptic case under the assumption that

$$
\begin{equation*}
D_{h} \subseteq D \quad\left(\text { or } D \subseteq D_{h}\right) \forall h \tag{0.6}
\end{equation*}
$$

Here we will not make assumption (0.6).

0.1. Physical Origin

The governing equation of an unsteady flow in a nonhomogeneous confined aquifer can be represented by

$$
\begin{align*}
S(x) u_{t}-\left(a_{j}(x) u_{x_{j}}\right)_{x_{j}} & =q(x, t) & & \text { in } \Omega \times(0, \infty) \tag{0.7}\\
u(x, 0) & =g(x) & & \text { in } \Omega \tag{0.8}\\
u(x, t) & =f(x, t) & & \text { on } \partial \Omega \times(0, \infty), \tag{0.9}
\end{align*}
$$

where u, q, S, and a_{j} represent the piezometric head, the source sink term, the storage coefficient and the transmissivity coefficients, and Ω is an open subset of R^{n} representing the studied region.

The forward problem (i.e., finding a solution u of problem (0.7)-(0.9) for a given set of data) is used by hydrologists to simulate, for management purposes, the level of aquifers under different use and replenishment conditions (i.e., for different functions q). However, in general, the functions α_{j}, S are not known and experimental determination can be done (practically) only at finitely many points. It is easy to measure u also in the same experiment. This leads hydrologists to try to determine the functions S and a_{j} from their values at certain points and some information on the function u for a specific set of data f, g, and q. The type of information available on the function u varies with the situation being considered, and leads to different inverse problems. For instance, if the flow through one of the walls delimiting the region has been monitored for a certain period of time, then the available information is the function $h(x, t)$ defined by

$$
\begin{equation*}
a_{j}(x) u_{v_{j}}(x, t)=h(x, t) \quad \text { on } \quad \Gamma \times(0, T) \tag{0.10}
\end{equation*}
$$

where Γ is a given hypersurface, part of the boundary of Ω, and v is the outward unitary vector normal to Γ. See $[13,12]$ for more on this subject.

We will assume $S \equiv 1$, for simplicity, and consider the following inverse problems: given $\Omega, g, f, q,(0.7)-(0.9)$, and (0.10), find the function a_{j} in (0.7).

It is well known that for this kind of problem the a priori assumptions on the type of functions a_{j} are an essential part of the problem. In the given
situation the most natural assumption is that a_{j} is piecewise constant, i.e., that

$$
\begin{equation*}
a_{j}(x)=a_{j}^{\mathrm{G}}+\sum_{i-1}^{1} a_{j}^{i} \chi\left(\Omega_{i}\right) \quad j=1, \ldots, n, \tag{0.11}
\end{equation*}
$$

where the a_{j}^{i} are positive constants, $\chi\left(\Omega_{i}\right)$ is the characteristic function of the set Ω_{i}, and $\mathscr{F}=\left\{\Omega_{i}: i=1, \ldots, I\right\}$ is a family of (mutually disjoint) open subsets of Ω such that $\cup \bar{\Omega}_{i} \subset \bar{\Omega}$.

We will assume that I and the constants a_{j}^{i} are known and that the regions Ω_{i} are unknown. The inverse problem is thus reduced to finding the family of regions Ω_{i}.

The above assumption on the structure of the function a is based on the fact that aquifer heterogeneities are due to the presence underground of different materials such as sand, rock, and clay. Also, due to geological processes, those different materials exist in the form of layers and/or lumped bodies. See $[4,11]$ for more on this subject. The number I of different bodies present in a given area can easily be found from available geological data. The constant transmissivity a_{j}^{i} of each homogeneous body needs to be sampled at only one site. On the other hand, the exact shape of the given body would be very hard, if not practically impossible, to find experimentally. The object of the inverse problem is to try to identify the shape of those bodies (i.e., to find Ω_{i}) in the situations described above.

To the author's best knowledge, the only work that has been done on this problem is the work done by hydrologists, who consider the discrete version of this problem. Once discretized, this problem becomes a problem of identification in a finite dimensional space and different methods have been used to solve this finite dimensional identification problem. On the other hand, mathematicians have considered inverse problems associated with (0.7), but only for continuous functions a_{j}. See $[10,1]$ and the references therein.

The relevance of the discretized problem (which is solved numerically) to the actual problem (0.7) hinges on the stability of the inverse problem, i.e., if a small error in h can result in a relatively large error in a_{j}, then the numerically computed solution using an approximation h^{*} of h may result in a discretized a^{*} bearing no connection with the actual a sought.

Discontinuous diffusion coefficients have been considered in inverse problems in the steady state case. See $[3,5,6]$ and the references therein.

The inverse problem described in the introduction corresponds then to the case of coefficients a_{j} given by (0.11); more specifically $I=2$, with $\Omega_{1}=D$ and $d(D, \partial \Omega)>0$.

1. Notation and Statement of the Main Results

Let Ω be a bounded domain in $R^{n}(n \geqslant 2)$ with $C^{1 . x}$ boundary Γ and let D be a bounded subdomain of $\Omega, \bar{D} \subset \Omega$, with $C^{2 . x}$ boundary.
Let $D_{h}\left(0<h \leqslant h_{0}\right)$ be a family of domains in R^{n}, such that ∂D_{h} has the representation

$$
\begin{equation*}
\partial D_{h}: x=x_{0}+h \sigma_{h}\left(x_{0}\right) v\left(x_{0}\right), \tag{1.12}
\end{equation*}
$$

where x_{0} varies on $\partial D, v\left(x_{0}\right)$ is the outward normal unit vector to $\partial D, \sigma_{h}\left(x_{0}\right)$ is continuously differentiable in x_{0}, and

$$
\begin{equation*}
\left|\sigma_{h}\right|_{C^{1+x}} \leqslant B, \tag{1.13}
\end{equation*}
$$

where B is a constant independent of h.
We will assume also that

$$
\begin{equation*}
\sigma_{h}(x) \rightarrow \sigma(x) \quad \text { if } \quad h \rightarrow 0, \sigma(x) \not \equiv 0 \tag{1.14}
\end{equation*}
$$

and define the sets S_{1}, S_{2}, and \tilde{S}_{ε} as

$$
\begin{aligned}
& S_{1}=\overline{\{x \in \partial D \text { such that } \sigma(x)<0\}}, \\
& S_{2}=\overline{\{x \in \partial D \text { such that } \sigma(x)>0\}}, \\
& \tilde{S}_{c}=\left\{x \in \partial D \text { such that } d\left(x, S_{1} \cap S_{2}\right) \leqslant \varepsilon\right\} .
\end{aligned}
$$

Let u, respectively, u_{h}, be the solution of the parabolic diffraction problems,

$$
\begin{align*}
u_{t}-\left(a_{j} u_{x_{j}}\right)_{x_{j}}=q(x, t) & \text { in } Q_{T} \tag{1.15}\\
u(x, 0)=u_{0}(x), u(x, t)=f(x, t) & \text { on } \Gamma_{T}, \tag{1.16}
\end{align*}
$$

respectively,

$$
\begin{align*}
u_{i}^{h}-\left(a_{j}^{h} u_{v_{j}}^{h}\right)_{x_{j}}=q(x, t) & \text { in } Q_{T} \tag{1.17}\\
u^{h}(x, 0)=u_{0}^{h}(x), u^{h}(x, t)=f(x, t) & \text { in } \Gamma_{T}, \tag{1.18}
\end{align*}
$$

where $a_{j}(x)=A_{j}+K_{j} \chi(D) ; A_{j}>0, K_{j}>0, \forall j=1, \ldots, n$, respectively, $a_{j}^{h}(x)=$ $A_{j}+K_{j} \chi\left(D_{h}\right) ; A_{j}>0, K_{j}>0, \forall j=1, \ldots, n$.

We will make the following assumptions on the free terms.
(A1) $\left.q \in H^{2}((0, T)) ; H^{n}(\Omega)\right), f \in H^{1}\left((0, T) ; H^{3}(\Gamma)\right), u_{0}^{h}, u_{0}$ are in $H^{1}(\Omega)$.
(A2) $\left\|u_{0}^{h}\right\|_{H^{1}}$ is bounded independently of h.
(A3) $\lim _{h \rightarrow 0} \int_{\Omega}\left(h^{-1}\left(u_{0}-u_{0}^{h}\right)\right)^{2} d x=0$.
(A4) Compatibility conditions of order 0 are satisfied.
(A5) $u_{0}(x)$ is not constant.

Under the above assumptions, it is well known (see [8], for instance) that problem (1.15), (1.16), respectively problem (1.17), (1.18), has a unique solution u, respectively, u^{h}, in $H^{1}\left(Q_{T}\right)$. Furthermore, from [7, Theorem 7], it follows that u, respectively, u^{h}, is in $L^{2}\left(0, T ; H^{2}(\Omega \backslash D) \cap\right.$ $\left.H^{2}(D)\right)$, respectively, in $L^{2}\left(0, T ; H^{2}\left(\Omega \backslash D_{h}\right) \cap H^{2}\left(D_{h}\right)\right)$. Also, it results from (A2) that the norm of u^{h} in the space $L^{2}\left(0, T ; H^{2}\left(\Omega \backslash D_{h}\right) \cap H^{2}\left(D_{h}\right)\right.$ is bounded independently of h.

Set

$$
\begin{equation*}
g^{h}=a_{j}^{h} u_{v j}^{h}, \quad g=a_{j} u_{v_{j}} \quad \text { on } \Gamma_{T}^{1} \tag{1.19}
\end{equation*}
$$

and

$$
u^{e}=\left.u\right|_{\Omega \backslash D \times(0, T)}, \quad u^{i}=\left.u\right|_{D \times(0, T)} .
$$

We will distinguish and treat separately the cases where the set $\{\sigma=0\}$ has an empty interior or not.

Theorem 1.1. Assume that
(1) $\left(a_{j}\left(u_{0}\right)_{x_{j}}\right)_{x_{j}} \in C^{0, \alpha}$,
(2) $S_{1} \cap S_{2}$ is a C^{1} manifold of dimension $n-2$ and

$$
\begin{equation*}
a_{j}\left(u_{0}\right)_{v_{j}}(x) \neq 0, \quad \forall x \in \partial D . \tag{1.20}
\end{equation*}
$$

Then for any nonempty open subset Γ^{1} of $\partial \Omega$

$$
\begin{equation*}
\liminf _{h \rightarrow 0} \int_{0}^{T} \int_{\Gamma^{1}} \frac{\left|g^{h}-g\right|}{h} d x d t>0 \tag{1.21}
\end{equation*}
$$

Remark. Condition 1 is not a real restriction in view of the arbitrariness of the choice (by the observer) of the time $t=0$ and the fact that $\forall t>0$, $\left(a_{j} u_{x_{j}}\right)_{x_{j}}(x, t) \in C^{0, x}(\Omega)$ (even for u_{0} only in L^{2}, see [7]).

Theorem 1.2. Assume that $\sigma=0$ on an open subset Σ of ∂D. Then (1.21) holds for any nonempty open subset Γ^{1} of Γ.

2. Auxiliary Results

Set

$$
\begin{equation*}
U^{h}=\frac{u^{h}-u}{h} ; \quad S^{h}=D_{h} \Delta D . \tag{2.22}
\end{equation*}
$$

Taking the difference of Eq. (1.15) and (1.17) we find that U^{h} is a solution of the parabolic problem

$$
\begin{array}{cc}
U_{t}^{h}-\left(a_{j}^{h} U_{x_{j}}^{h}\right)_{x_{j}}=\frac{1}{h}\left(\left(a_{j}^{h}-a_{j}\right) u_{x_{j}}\right)_{x_{j}} & \text { in } Q_{T} \\
U^{h}(x, 0)=\frac{u_{0}^{h}(x)-u_{0}(x)}{h}, \quad u(x, t)=0 & \text { on } \Gamma_{T} . \tag{2.24}
\end{array}
$$

Lemma 2.1. There exists $C>0$ such that $\forall h \geqslant 0$

$$
\int_{0}^{T} \int_{\Omega}\left(U^{h}\right)^{2} d x d t \leqslant C
$$

Proof. Let w^{h} be the unique solution of the parabolic problem

$$
\begin{gather*}
w_{t}^{h}(x, t)-\left(a_{j}^{h} w_{x_{j}}^{h}(x, t)\right)_{x_{j}}=U^{h}(x, T-t) \quad \text { in } Q_{T} \tag{2.25}\\
w^{h}(x, 0)=0, \quad w^{h}(x, t)=0 \quad \text { on } \Gamma_{T} . \tag{2.26}
\end{gather*}
$$

By standard results for parabolic equations the problem (2.25), (2.26) has a unique solution w^{h} in $H^{1}\left(Q_{T}\right)$. Furthermore, it was proved in [7, Sect. 2] that the following estimate holds for w^{h}

$$
\begin{equation*}
\left\|w^{h}\right\|_{L^{2}\left(0, T ; H^{2}\left(\Omega \backslash D_{h}\right)\right)}+\left\|w^{h}\right\|_{L^{2}\left(0, T ; H^{2}\left(D_{h}\right)\right)} \leqslant C\left\|U^{h}\right\|_{L^{2}\left(Q_{T}\right)} \tag{2.27}
\end{equation*}
$$

Multiplying Eq. (2.25), respectively (2.23), by $U^{h}(x, t)$, respectively $w^{h}(x, T-t)$, integrating by parts over Q_{T} and taking the difference we find

$$
\begin{align*}
& \int_{\Omega} U_{0}^{h}(x) w^{h}(x, T) d x+\int_{0}^{T} \int_{\Omega}\left(U^{h}(x, t)\right)^{2} d x d t \\
& \quad=\int_{0}^{T} \frac{1}{h}\left(\int_{S^{h}} K_{j}\left(U^{h}(x, t)\right)_{x_{j}}\left(w^{\dot{h}}(x, T-t)\right)_{x_{j}}\right) d x d t \\
& \quad=\frac{1}{h} \int_{0}^{h}\left(\int_{0}^{T} \int_{\partial D_{j}}\left(K_{j}\left(U^{h}(x, t)\right)_{x_{j}}\left(w^{h}(x, T-t)\right)_{x_{j}}\right) d \mu d t\right) d \lambda \tag{2.28}
\end{align*}
$$

where D_{λ} is defined by $\partial D_{\lambda}: x=x_{0}+\lambda \sigma_{\lambda}\left(x_{0}\right) v\left(x_{0}\right)$.
Let $\quad \partial D_{\lambda}=\partial D_{\lambda, 1} \cup \partial D_{\lambda, 2}$, where $\partial D_{\lambda, 1}=\partial D_{\lambda} \cap\left(D_{h} \backslash D\right)$, and $\partial D_{\lambda, 2}=$ $\partial D_{\lambda} \cap\left(D \backslash D_{h}\right)$. Since $u \in L^{2}\left(0, T ; H^{2}(D) \cap H^{2}(\Omega \backslash D)\right.$), using (2.27) and the traces theorem we have

$$
\begin{aligned}
& \int_{0}^{T}\left|\int_{\partial D_{i, 1}}\left(a_{j}^{h}-a_{j}\right)(u(x, t))_{x_{j}}\left(w^{h}(x, T-t)\right)_{x_{j}} d \mu\right| d t \\
& \quad \leqslant C \int_{0}^{T}\left(\int_{\partial D_{i, 1}}|\nabla u(x, t)|^{2} d \mu\right)^{1 / 2} \\
& \quad \times\left(\int_{\partial D_{i, 1}}\left|\nabla w^{h}(x, T-t)\right|^{2} d \mu\right)^{1 / 2} d t
\end{aligned}
$$

$$
\begin{align*}
& \leqslant C \int_{0}^{T}\|u(x, t)\|_{H^{2}(\Omega \backslash D)}^{1 / 2}\|w(x, T-t)\|_{H^{2}\left(D_{h}\right)}^{1 / 2} d t \\
& \leqslant C\left(\int_{0}^{T} \int_{\Omega}\left(U^{h}\right)^{2} d x d t\right)^{1 / 2} . \tag{2.29}
\end{align*}
$$

Similarly,

$$
\begin{align*}
& \int_{0}^{T}\left|\int_{\partial D_{j, 2}}\left(a_{j}^{h}-a_{j}\right)(u(x, t))_{x_{j}}\left(w^{h}(x, T-t)\right)_{x_{j}} d \mu\right| d t \\
& \quad \leqslant C \int_{0}^{T}\|u(x, t)\|_{H^{2}(D)}^{1 / 2}\left\|w^{h}(x, T-t)\right\|_{H^{2}\left(\Omega \backslash D_{h}\right)}^{1 / 2} d t \\
& \quad \leqslant C\left(\int_{0}^{T} \int_{\Omega}\left(U^{h}\right)^{2} d x d t\right)^{1 / 2} . \tag{2.30}
\end{align*}
$$

Consequently,

$$
\begin{align*}
& \left|\int_{0}^{T} \int_{\partial D_{\lambda}}\left(K_{j}\left(U^{h}(x, t)\right)_{x_{j}}\left(w^{h}(x, T-t)\right)_{x_{j}}\right) d \mu d t\right| \\
& \quad \leqslant C\left(\int_{0}^{T} \int_{\Omega}\left(U^{h}\right)^{2} d x d t\right)^{1 / 2} \tag{2.31}
\end{align*}
$$

From (2.28) and the above estimate it follows that

$$
\begin{align*}
& \int_{0}^{T} \int_{\Omega}\left(U^{h}(x, t)\right)^{2} d x d t \\
& \leqslant-\int_{\Omega} U_{0}^{h}(w) w^{h}(x, T) d x \\
&+C \frac{1}{h} \int_{0}^{h}\left(\int_{0}^{T} \int_{\Omega}\left(U^{h}(x, t)\right)^{2} d x d t\right)^{1 / 2} d \lambda \\
& \leqslant C\left(\int_{0}^{T} \int_{\Omega}\left(U^{h}(x, t)\right)^{2} d x d t\right)^{1 / 2} \\
&+C \frac{1}{h} \int_{0}^{h}\left(\int_{0}^{T} \int_{\Omega}\left(U^{h}(x, t)\right)^{2} d x d t\right)^{1 / 2} d \lambda \tag{3.32}
\end{align*}
$$

from which the lemma easily follows.
Lemma 2.2. If for a sequence $h \rightarrow 0$ we have that $U^{h} \rightarrow U$ weakly in $L^{2}\left(Q_{T}\right)$, and $\lim _{h \rightarrow 0} \int_{0}^{T} \int_{\Gamma^{1}}\left|g^{h}-g\right| / h d x d t=0$, then $U \equiv 0$ in $(\Omega \backslash D) \times(0, T)$.

Proof. Letting $h \rightarrow 0$ in (2.23) we find that U satisfies in a weak sense the equation

$$
U_{1}-\left(a_{j} U_{x_{j}}\right)_{x_{j}}=0 \quad \text { in } \quad(\Omega \backslash D) \times(0, T)
$$

Let $x_{0} \in \Gamma^{1}$, and $r>0$ be small enough and denote $B\left(x_{0}, r\right) \cap \Omega$ by W. From (2.23) and (2.24) it follows, by standard regularity results for parabolic equations (see [8], for instance), that the sequence U^{h} is bounded in $C^{1, x}\left(\left(t_{0}, \Gamma\right) ; C^{2+\alpha}(\bar{W})\right)$ for some positive α and any positive t_{0}. Consequently, U is a classical solution of

$$
\begin{align*}
U_{t}-\left(a_{j} U_{x_{j}}\right)_{x_{j}}=0 & \text { in } \quad W \times(0, T) \tag{2.33}\\
U(x, t)=0, a_{j} U_{v_{j}}=0 & \text { on } \quad(\partial W \cap \Gamma \times(0, T)) .
\end{align*}
$$

From this we easily deduce that U has a zero of infinite order at the point $\left(x_{0}, t\right), \forall t \in(0, T)$; it then follow by [19, Theorem 7] that $U=0$ in $W \times(0, T)$.
The lemma is then a direct consequence of the equation

$$
U_{t}-\left(a_{j} U_{x_{j}}\right)_{x_{j}}=0 \quad \text { in } \quad(\Omega \backslash D) \times(0, T)
$$

and the unique continuation theorem (see [9]) for parabolic equations.
Lemma 2.3. If for a sequence $h \rightarrow 0$ we have that $U^{h} \rightarrow U$ weakly in $L^{2}\left(Q_{T}\right)$ and $\lim _{h \rightarrow 0} \int_{0}^{T} \int_{\Gamma^{1}}\left|g^{h}-g\right| / h d x d t=0$, then $\forall v \in H^{1}\left((0, T) ; H^{2}(D)\right)$, $v(x, T)=0$ we have that

$$
\begin{equation*}
\int_{0}^{T} \int_{D} U\left(v_{i}+\left(a_{j} v_{x_{j}}\right) x_{j}\right) d x d t=\int_{0}^{T} \int_{\partial D} \sigma(x) b_{j}(x, t) v_{x_{j}}(x, t) d \mu d t \tag{2.34}
\end{equation*}
$$

where $\forall j=1, \ldots, n, b_{j} \in L^{2}\left(0, T ; H^{3 / 2}\left(S_{1}\right) \cap H^{3 / 2}\left(S_{2}\right)\right)$.
Proof. Let v be a C^{∞} function with compact support in $[0, T) \times \Omega$. Multiplying Eq. (2.23) by v and integrating by parts over Q_{T} we find

$$
\begin{align*}
& \int_{0}^{T} \int_{D_{h}} U^{h}\left(v_{t}+a_{j}^{h} v_{x_{j}, x_{j}}\right) d x d t \\
& \quad+\int_{0}^{T} \int_{\Omega \backslash D_{h}} U^{h}\left(v_{t}+a_{j}^{h} v_{x_{j}, x_{j}}\right) d x d t-\int_{0}^{T} \int_{\hat{i} D_{h}} U^{h}\left(K_{j} v_{v_{j}}\right) d \mu d t \\
& = \tag{2.35}\\
& \quad-\frac{1}{h} \int_{0}^{T} \int_{D \backslash D_{h}} K_{j} u_{x_{j}}^{i} v_{x_{j}} d t d x+\frac{1}{h} \int_{0}^{T} \int_{D_{h} \backslash D} K_{j} u_{x_{j}}^{e} v_{j} d t d x .
\end{align*}
$$

We first investigate the limit of $\int_{0}^{T} \int_{\partial D_{h}} U^{h}\left(K_{j} v_{v_{j}}\right) d \mu d t$. For this purpose we let z^{h} be a sequence of functions bounded in $C^{2}\left(\left(\Omega \backslash D_{h}\right) \times[0, T]\right)$ independently of h and such that $z^{h}=0$ in a neighborhood of $(\partial \Omega \times[0, T]) \cup$
$(\Omega \times T)$, and that $z^{h}=0$ and $\left(A_{j} z_{v_{j}^{e}}^{h}\right)=\left(K_{j} v_{v_{j}^{e}}\right)$ on $\left(\partial D_{h}\right) \times(0, T)$. Multiplying Eq. (2.23) by z^{h} and integrating by parts over ($\left.\Omega \backslash D_{h}\right) \times(0, T)$ we find that

$$
\begin{align*}
-\int_{0}^{T} \int_{\partial D_{h}} U^{h}\left(A_{j} z_{v_{j}^{e}}^{h}\right) d \mu d t= & \int_{0}^{T} \int_{\Omega \backslash D_{h}} U^{h}\left(z_{t}^{h}+a_{j}^{h} z_{x_{j} x_{j}}^{h}\right) d x d t \\
& -\frac{1}{h} \int_{0}^{T} \int_{\Omega \backslash D_{h}}\left(a_{j}^{h}-a_{j}\right) u_{x_{j}} z_{x_{j}}^{h} d x d t \tag{2.36}
\end{align*}
$$

Taking the limit as $h \rightarrow 0$ we find, after using Lemma 2.2,

$$
\begin{equation*}
\lim _{h \rightarrow 0} \int_{0}^{T} \int_{\partial D_{h}} U^{h}\left(A_{j} z_{v_{j}^{e}}^{h}\right) d \mu d t=\int_{0}^{T} \int_{S_{1}} \sigma K_{j} u_{x_{j}}^{i} z_{x_{j}} d \mu d t \tag{2.37}
\end{equation*}
$$

where z is the limit of the sequence z^{h}. Taking $h \rightarrow 0$ in (2.35), we obtain after using (2.37) and Lemma 2.1

$$
\begin{align*}
& \int_{0}^{T} \int_{D} U\left(v_{t}+a_{j} v_{x_{j} x_{j}}\right) d x d t \\
& \quad=\int_{0}^{T} \int_{S_{2}} \sigma K_{j} u_{x_{j}}^{e} v_{x_{j}} d \mu d t \\
& \quad+\int_{0}^{T} \int_{S_{1}} \sigma K_{j} u_{x_{j}}^{i} v_{x_{j}} d \mu d t+\int_{0}^{T} \int_{S_{1}} \sigma K_{j} u_{x_{j}}^{i} z_{x_{j}} d \mu d t \tag{2.38}
\end{align*}
$$

This last surface integral is a functional of v. Indeed, since S_{1} is a C^{2} surface there exist p open subsets V_{m} such that $S_{1} \subset \bigcup V_{m}$ and $S_{1} \cap V_{m}$ can be represented in the form

$$
S_{1} \cap V_{m}: x_{n}=\gamma_{m}\left(x_{1}, \ldots, x_{n} \quad 1\right)
$$

where γ_{m} is a C^{2} function. After an elementary but lengthy computation we find that

$$
\begin{align*}
& \int_{0}^{T} \int_{S_{1} \cap v_{m}} \sigma K_{j} u_{x_{j}}^{i} z_{x_{j}} d \mu d t \\
&= \int_{0}^{T} \int_{S_{1} \cap v_{m}^{\prime}} \sigma \frac{1+\left|\nabla \gamma_{m}\right|^{2}}{\sum_{j=1}^{n-1} A_{j} \gamma_{m, x_{j}}^{2}+A_{n}} \\
& \times\left(\sum_{j=1}^{n} K_{j} u_{v_{j}^{i}}^{i}\right)\left(\sum_{j=1}^{n} K_{j} v_{v_{j}^{\prime}}\right) d \mu d t \\
&= \int_{0}^{T} \int_{S_{1} \cap \gamma_{m}} \sigma \frac{1+\left|\nabla \gamma_{m}\right|^{2}}{\sum_{j=1}^{n-1} A_{j} \gamma_{m, x}^{2}+A_{n}} \\
& \times\left(\sum_{j=1}^{n} K_{j} u_{v_{j}^{e}}^{i}\right) K_{j} v_{x_{j}} v_{j}^{e} d \mu d t . \tag{2.39}
\end{align*}
$$

For $j=1, \ldots, n$ we define the functions b_{j}^{e}, b_{j}^{i} and b_{j} by

$$
\begin{aligned}
b_{j}^{e}(x, t)= & K_{j} u_{x_{j}}^{e}(x, t) \\
b_{j}^{i}(x, t)= & K_{j} u_{x_{j}}^{i}(x, t)+v_{j}^{e} K_{j} \frac{1+\left|\nabla \gamma_{m}\right|^{2}}{\sum_{l=1}^{n-1} A_{l} \gamma_{m, x l}^{2}+A_{n}} \\
& \times\left(\sum_{l=1}^{n} K_{l} u_{v_{l}^{i}}^{i}\right) \quad \text { for } \quad x \in V_{m} \\
b_{j}(x, t)= & \left\{\begin{array}{lll}
b_{j}^{e}(x, t) & \text { if } & x \in S_{2} \\
b_{j}^{i}(x, t) & \text { if } & x \in S_{1} .
\end{array}\right.
\end{aligned}
$$

This proves the lemma.

3. Proof of Theorem 1.1

We will prove the theorem by exhibiting a function $v \in H^{1}((0, T)$; $\left.H^{2}(D)\right), v(x, T)=0$ for which (2.34) does not hold. For this purpose we will need the following lemma.

Lemma 3.1. Let $\alpha \in(0,1)$ be a fixed positive number, $\forall \varepsilon>0, \exists T_{2}>0$ and a function $v_{\varepsilon} \in H^{1}\left(\left(0, T_{2}\right) ; H^{2}(D)\right)$ such that

$$
\begin{array}{rlrl}
v_{\varepsilon, t}+\left(a_{j} v_{\varepsilon, x_{j}}\right) x_{j} & =0 & \text { in } \quad D \times\left(0, T_{2}\right) \\
b_{j}(x, t) v_{\varepsilon, x_{j}}(x, t) & =\frac{\sigma(x)}{\varepsilon}\left(T_{2}-t\right) & & \text { on } \quad\left(\partial D \backslash \tilde{S}_{4 \varepsilon}\right) \times\left(0, T_{2}\right) \\
\left|\nabla v_{\varepsilon}(x, t)\right| & \leqslant C \frac{T_{2}-\tau}{\varepsilon}, & & \forall(x, t) \in \partial D \times\left(\tau, T_{2}\right) \tag{3.42}\\
v\left(x, T_{2}\right) & =0, &
\end{array}
$$

where C is independent of ε.
We will first prove Theorem 1.1 using the above lemma, which will be proved later. Setting $v=v_{\varepsilon}$ in (3.53) and using (3.40) we find

$$
\begin{equation*}
\int_{0}^{T_{2}} \int_{\partial D} \sigma(x) b_{j}(x, t) v_{\varepsilon, x_{j}}(x, t) d \mu d t=0 \tag{3.43}
\end{equation*}
$$

Using (3.41) it follows that

$$
\begin{align*}
& \varepsilon^{-1} \int_{0}^{T_{2}} \int_{\partial D \backslash \tilde{S}_{2 \varepsilon}} \sigma(x)^{2}\left(T_{2}-t\right) d \mu d t \\
& \quad+\int_{0}^{T_{2}} \int_{\tilde{S}_{2 \varepsilon}} \sigma(x) b_{j}(x, t) v_{\varepsilon, x_{j}}(x, t) d \mu d t=0 \tag{3.44}
\end{align*}
$$

By standard regularity results (see [7], for example) it follows from assumption 1 of the theorem that

$$
\begin{equation*}
u \in C^{0, \alpha}\left(0, T ; C^{2, x}(\bar{D}) \cap C^{2, \alpha}(\partial D \cup(\Omega \backslash D))\right) . \tag{3.45}
\end{equation*}
$$

Consequently the functions b_{j} are bounded and (3.44) yields

$$
\begin{aligned}
& \varepsilon^{-1} \int_{0}^{T_{2}} \int_{\partial D \backslash \tilde{S}_{2 t}} \sigma(x)^{2}\left(T_{2}-t\right) d \mu d t \\
& \quad C \int_{0}^{T_{2}} \int_{\tilde{S}_{2 z}}|\sigma(x)|\left|\nabla v_{\varepsilon}(x, t)\right| d \mu d t \\
& \quad \leqslant C \int_{0}^{T_{2}} \int_{\tilde{S}_{2 \varepsilon}}|\sigma(x)| C \frac{\left(T_{2}-t\right)}{\varepsilon} d \mu d t,
\end{aligned}
$$

where (3.42) was used.
Since $|\sigma(x)| \leqslant B \varepsilon$ on $\tilde{S}_{2 \varepsilon}$ by (1.13), after integrating in time we find that there exists a new constant C independent of ε such that

$$
\begin{gathered}
\int_{\partial D \backslash \tilde{S}_{2 \varepsilon}} \sigma(x)^{2} d \mu \leqslant C \varepsilon \cdot \operatorname{meas}\left\{\tilde{S}_{2 \varepsilon}\right\} \\
\leqslant C \varepsilon^{2},
\end{gathered}
$$

where we made use of the fact that meas $\left\{\tilde{S}_{2 \varepsilon}\right\} \leqslant C \varepsilon$ for some C independent of ε.
Letting ε approach 0 we then find that $\sigma(x) \equiv 0$, which contradicts (1.14).
Proof of Lemma 3.1. From assumption 2 of the theorem it follows that $\forall \varepsilon>0, \exists \psi_{\varepsilon}^{l}(x) \in C^{1}(\partial D), l=1,2$, such that

$$
\begin{align*}
& \psi_{\varepsilon}^{l}(x)= \begin{cases}1 & \text { if } \quad x \in\left(S_{\backslash} \backslash \tilde{S}_{2 \varepsilon}\right) \\
0 & \text { if } \quad x \in \widetilde{S}_{\varepsilon} \cup\left(\partial D \backslash S_{l}\right)\end{cases} \\
& 0 \leqslant \psi_{\varepsilon}^{l} \leqslant 1, \quad\left|\nabla \psi_{\varepsilon}^{\prime}\right|_{C_{(\partial D)}} \leqslant C \varepsilon^{-s} \tag{3.46}
\end{align*}
$$

where C is independent of ε.

Set
$b_{\varepsilon, j}(x, t)=\psi_{\varepsilon}^{1} b_{j}^{c}(x, t)+\psi_{\varepsilon}^{2} b_{j}^{i}(x, t)+v_{j}^{c}\left(1-\psi_{r}^{1}-\psi_{n}^{2}\right) \quad j=1, \ldots, n$
$B_{\varepsilon, j}(x, t)=\varepsilon b_{\varepsilon, j}\left(x, T_{2}-t\right), \quad j=1, \ldots, n$,
where T_{2} is a small positive number to be specified later.
From (1.20) and the continuity (in t) of $\nabla u^{e}(x, t), \nabla u^{i}(x, t)$ (see (3.45)) we deduce that there exists $T_{0}>0$ such that
$K_{j} u_{x_{j}}^{e}(x, t) v_{j}^{e} \neq 0, \quad K_{j} u_{x_{j}}^{i}(x, t) v_{j}^{e} \neq 0, \quad \forall(x, t) \in \partial D \times\left(0, T_{0}\right)$.
We will prove the lemma here, assuming that $K_{j} u_{x_{j}}^{e}(x, t) v_{j}^{e} \geqslant 0$ and $K_{j} u_{x_{j}}^{i}(x, t) v_{j}^{e} \geqslant 0$; the proof for the case $K_{j} u_{x_{j}}^{e}(x, t) v_{j}^{e} \leqslant 0$ and/or $K_{j} u_{x_{j}}^{i}(x, t) v_{j}^{e} \leqslant 0$ is similar. It then follows from (3.48) that there exists $T_{0}>0$ and $\delta>0$ such that
$K_{j} u_{x_{j}}^{e}(x, t) v_{j}^{e} \geqslant \delta, \quad K_{j} u_{x_{j}}^{\prime}(x, t) v_{j}^{e} \geqslant \delta, \quad \forall(x, t) \in \partial D \times\left(0, T_{0}\right)$,
and consequently

$$
\begin{equation*}
b_{\varepsilon, j}(x, t) v_{j}^{e} \geqslant \delta^{\prime}, \quad \forall(x, t) \in \partial D \times\left(0, T_{0}\right) \tag{3.50}
\end{equation*}
$$

For fixed $\varepsilon>0$ let z be the solution of the parabolic problem

$$
\begin{align*}
z_{t}-\left(a_{j} z_{x_{j}}\right)_{x_{j}} & =0 & & \text { in } D \times\left(0, T_{1}\right), \tag{3.51}\\
z(x, 0) & =0, & & \text { in } D, \tag{3.52}\\
B_{s, j}(x, t) z_{x_{j}}(x, t) & =\sigma(x) \cdot t & & \text { on } \quad \partial D \times\left(0, T_{1}\right) . \tag{3.53}
\end{align*}
$$

The existence, uniqueness, and regularity of a solution z to the above problem result from (3.50) and [8, p. 322, Theorem 5.4]. Furthermore, z satisfies [8, p. 322, estimate (5.14)].

$$
\begin{equation*}
|z|_{D \times(0, \tau)}^{\alpha+2} \leqslant C_{1}|\sigma(x) t|_{D D \times(0, \tau)}^{\alpha+1}, \tag{3.54}
\end{equation*}
$$

where $\alpha \in(0,1)$ and the norms $|\cdot|$ are as defined in [8].
A careful examination of the proof of (3.54) (see [8, pp. 324-328], for example) reveals that $\exists \tau_{\varepsilon}>0$ such that, independently of T_{2},

$$
\begin{equation*}
C_{1} \leqslant C_{2} \frac{C_{3}}{\sum_{j=1}^{n}\left|B_{\varepsilon, j}\right|_{\partial D \times(0, \tau)}^{0}} \leqslant 2 \frac{C_{3}}{\sum_{j=1}^{n}\left|B_{\varepsilon, j}\right|_{\partial D \times(0, \tau)}^{0}}, \quad \forall \tau \leqslant \tau_{\varepsilon} \tag{3.55}
\end{equation*}
$$

provided τ_{ε} is small enough. Here C_{3} depends only D and a_{j} and hence is independent of ε.

From the definition of $B_{\varepsilon . j}$ it follows using the smoothness of u and (3.49), that

$$
\begin{align*}
\sum_{j=1}^{n}\left|B_{\varepsilon, j}\right|_{\dot{\partial D} \times(0, \tau)}^{\alpha+1} & \leqslant \varepsilon^{-x} \cdot C_{4} \tag{3.56}\\
C_{5} & \leqslant \sum_{j=1}^{n}\left|B_{\varepsilon, j}\right|_{\partial D \times(0, \tau)}^{0} \leqslant \varepsilon \cdot C_{6} \tag{3.57}\\
C_{7} & \leqslant \frac{\left|\sum_{j=1}^{n} B_{\varepsilon, j} v_{j}^{e}\right|_{\partial D \times(0, \tau)}^{0}}{\sum_{j=1}^{n}\left|B_{\varepsilon, j}\right|_{\partial D \times(0, \tau)}^{0}} \leqslant C_{8} \tag{3.58}
\end{align*}
$$

where the constants C_{4}, \ldots, C_{8} are independent of ε and τ provided $\tau \in\left(0, T_{0} / 2\right)$, where T_{0} is defined in (3.49).

This allows for a choice of τ_{ε} which is independent of T_{2}.
Choose T_{2} in (3.47) such that $T_{2} \leqslant \tau_{\varepsilon}$, and (3.54) yields

$$
|z|_{D \times(0, \tau)}^{\alpha+2} \leqslant \varepsilon^{-1} \cdot C_{9} \tau^{1 / 2-x / 2}, \quad \forall \tau \leqslant T_{2} m
$$

where C_{9} is independent of τ and ε.
Thus

$$
\begin{equation*}
|\nabla z|_{D \times(0, \tau)}^{0} \leqslant \varepsilon^{-1} \cdot C_{10} \tau, \quad \forall \tau \leqslant T_{2} . \tag{3.59}
\end{equation*}
$$

Set $v_{\varepsilon}(x, t)=z\left(x, T_{2}-t\right)$. This function satisfies all the requirement of the lemma.

4. Proof of Theorem 1.2

Let $x_{0} \in \Sigma, W=B\left(x_{0}, r\right)$, where r is sufficiently small. For any $v \in C_{0}^{2}(W \times(0, T))$,

$$
\begin{align*}
& \int_{0}^{T} \int_{D \cap W} U\left(v_{t}+\left(a_{j} v_{x_{j}}\right)_{x_{j}}\right) d x d t \\
& \quad=\int_{0}^{T} \int_{(\partial D) \cap W} \sigma(x) b_{j}(x, t) v_{x_{j}}(x, t) d \mu d t=0 \tag{4.60}
\end{align*}
$$

by the previous lemma, since $\sigma=0$ on Σ.
Setting $a_{j}^{*}(x)=A_{j}+K_{j}, \forall x \in \Omega$, and using that $U(x, t)=0, \forall x \in \Omega \backslash D$, it follows from the previous equality that

$$
\begin{equation*}
\int_{0}^{T} \int_{W} U\left(v_{t}+\left(a_{j}^{*} v_{x_{j}}\right)_{x_{j}}\right) d x d t=0, \quad \forall v \in C_{0}^{2}(W \times(0, T)) \tag{4.61}
\end{equation*}
$$

Thus, U satisfies

$$
\begin{equation*}
U_{r}-a_{j}^{*} U_{x_{j, t}, t}=0 \quad \text { in } \quad W \times(0, T) \tag{4.62}
\end{equation*}
$$

It then follows from Lemma 2.2 and the unique continuation theorem that $U=0$ in $W \times(0, T)$. Similarly, we deduce from (2.34) that $U=0$ in $D \times(0, T)$.

Using this fact, (2.38) becomes

$$
\begin{equation*}
\int_{0}^{T} \int_{(\partial D) \cap W} \sigma(x) b_{j}(x, t) v_{x_{j}}(x, t) d \mu d t=0, \quad \forall v \in C_{0}^{2}(\Omega \times(0, T)) \tag{4.63}
\end{equation*}
$$

We will now prove Theorem 1.2 We consider two cases:
Case 1. $\sigma \neq 0$ on S_{1}.
Let $\xi_{\varepsilon}(x) \in C^{1}(\bar{D})$ be such that

$$
\begin{gather*}
\xi_{\varepsilon}=1 \quad \text { on } \quad \partial D \cap\{\sigma<-\varepsilon\} \quad \xi_{\varepsilon}=0 \text { on } \partial D \cap\{\sigma \geqslant 0\} \tag{4.64}\\
\left|\nabla \xi_{\varepsilon}\right| \leqslant C / \varepsilon \quad \text { in } \bar{D}, \tag{4.65}
\end{gather*}
$$

and $\psi(t) \in C_{0}^{1}((0, T))$.
Taking $v=\psi \xi_{s} u^{i}$ in (4.63) and using (2.39), (4.64), and (4.65) we obtain

$$
\begin{aligned}
-\int_{0}^{T} \int_{S_{1} \cap V_{m \cap\{ }^{\prime}} & \psi \sigma \frac{1+\left|\nabla \gamma_{m}\right|^{2}}{\sum_{j=1}^{n-1} A_{j} \gamma_{m, x_{j}}^{2}+A_{n}} \\
& \times\left(\sum_{j-1}^{n} K_{j} u_{v_{j}^{\prime}}^{i}\right)\left(\sum_{j=1}^{n} K_{j} u_{v_{j}^{\prime}}^{i}\right) d \mu d t \\
& \quad-\int_{0}^{T} \int_{S_{1} \cap\{\sigma>-\varepsilon\}} \sigma K_{j} u_{x_{j}}^{i} u_{x_{j}}^{i} d \mu d t \\
\leqslant & C \operatorname{meas}\{0>-\sigma>-\varepsilon\} \rightarrow 0 \quad \text { if } \quad \varepsilon \rightarrow 0 .
\end{aligned}
$$

Hence, $\nabla u^{i}=0$ on $\left(\{\sigma<0\} \cap S_{1}\right) \times(0, T)$ and by the unique continuation theorem (see [9]) $u^{i}=u^{e}=$ const. in Q_{T}, which contradicts the assumption (A5).

Case 2. Assume now that $\sigma \geqslant 0$ then $\sigma \equiv 0$ on S_{1} and (4.63) becomes

$$
\begin{equation*}
\int_{0}^{T} \int_{S_{2}} \sigma K_{j} u_{x_{j}}^{e} v_{x_{j}} d \mu d t=0, \quad \forall v \in C_{0}^{2}(\Omega \times(0, T)) \tag{4.66}
\end{equation*}
$$

Let $\psi(t)$ be a smooth nonnegative function with compact support in $(0, T)$. By standard regularity results (see [8], for example) u^{e} is regular on
$\partial D \times(0, T)$, then the function ψu^{e} is $C_{0}^{1}((0, T) ; \bar{D})$. Setting $v=\psi u^{e}$ in (4.66) yields

$$
\int_{0}^{T} \int_{S_{2}} \psi \sigma K_{j} u_{x_{j}}^{e} u_{x_{j}}^{r} d \mu d t=0 .
$$

Hence, $\nabla u^{e}=0$ on $\left(\{\sigma>0\} \cap S_{1}\right) \times(0, T)$ and by the unique continuation theorem (see [9]) $u^{i}=u^{e}=$ const. in Q_{T}, which contradicts the assumption (A5).

References

1. G. Alessandrini and S. Vessela, Error estimates in an identification problem for a parabolic equation, Boll. Un. Mat. Ital. C (6) 4 (1985), 87-111.
2. M. S. Agranovich and M. I. Vishik, Elliptic problems with a parameter and parabolic problems of general type, Russian Math. Surveys 19, No 3 (1964), 53-158.
3. H. Bellout and A. Friedman, Identification problems in potential theory, Arch. Rational Mech. Anal. 101 (1988), 143-160.
4. G. E. FogG, Ground water flow and sand bdy interconnectedness in a thick, multipleaquifer system, Water Resour. Res. 22 (1986), 679-694.
5. A. Friedman and M. Vogelius, Identification of small inhomogeneities of extreme conductivity by boundary measurements: A continuous dependence results, preprint.
6. V. Isakov, On uniqueness of recovery of a discontinuous conductivity coefficient, Comm. Pure Appl. Math. 41 (1988), 841-853.
7. O. A. Ladyzhenskaya, V. Ja. Rivkind, and N. N. Uralceva, The classical solvability of diffraction problems, Proc. Steklov Inst. Math. 92 (1966), 132-166.
8. O. A. Ladyzhenskaya, V. A. Solonikov, and N. N. Uralceva, Linear and quasilinear equations of parabolic type, in "Translations of Mathematical Monographs," Vol. 2.3, Amer. Math. Soc., Providence, RI, 1968.
9. E. M. Landis and A. O. Oleinik, Generalized analyticity and some related properties of solutions of elliptic and parabolic equations, Russian Math. Surveys 29, No. 2 (1974), 195-212.
10. C. D. Pagani, Determining a coefficient of a parabolic equation, preprint.
11. N. Z. Sun and W. W.-G. Yeh, Identification of parameter structure in ground water inverse problem, Water Resour. Res. 21 (1985), 869-883.
12. S. Yakowitz and L. Duckstein, Instability in aquifer identification: Theory and case studies, Water Resour. Res. 16 (1980), 1045-1064.
13. W. W.-G. Yeh, Review of parameter identification procedures in ground water hydrology: The inverse problem, Water Resour. Res. 22 (1986), 95-108.
