
JOURNAL OF MATHEMATICAL ANALYSIS AND APPLICATIONS 168, 13-27 (1992) 

Stability Result for the 
Inverse Transmissivity Problem 

HAMID BELLOUT 

Department of Mathematical Sciences, Northern Illinois University, 
DeKalb, Illinois 60115 

Submitted by Avner Friedman 

Received February 19, 1991 

0. INTRODUCTION 

Let 12 be a bounded subdomain of R”, r its boundary, Q,= 0 x (0, T), 
Tr= TX (0, T) and consider the boundary value problem (in all that 
follows we will use the standard summation convention) 

ur = (aj%,).x, in QT, (0.1) 

4x, t) =f'(x, t) on rT, (0.2) 

4x9 0) =ql(x) in Sz, (0.3 1 

with ai = A,+ Kjxo(x); Aj> 0, K,> 0, Vj= 1, . . . . n, where D is an 
unknown subdomain of R. The inverse problem associated with (O.l)-(0.3) 
is the determination of D from measurement of the Neumann data 

uj"v, = gCx, f, on rb, (0.4) 

where rk = r ’ x (0, T) and r’ is an open subset of r. 
The physical origin of this problem will be discussed in Subsection 0.1. 
In this paper we establish a local stability result; more precisely, if D, is 

a family of domains such that D, + D if h -+ 0, and if we denote by g, the 
data on rk corresponding to D,, then 

lim inf 
s 

lg,-gl -dxdt>O 
h-0 6 h 

409:1681-2 

provided lim inf k meas(D, AD) > 0. 
h-0 

(0.5) 
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The author and A. Friedman [3], established (0.5) for the isotropic 
(u, independent of j) elliptic case under the assumption that 

D,ED (or D _c DA) Vh (0.6) 

Here we will not make assumption (0.6). 

0.1. Physical Origin 

The governing equation of an unsteady flow in a nonhomogeneous 
confined aquifer can be represented by 

S(X) u, - (a,(X) ux,).x, = 4(X, t) in Qx(O,co) (0.7) 

4% 0) = g(x) in Q (0.8) 

44 2) =fk f) on LXJx(O, co), (0.9) 

where U, q, S, and a, represent the piezometric head, the source sink term, 
the storage coefficient and the transmissivity coefficients, and $2 is an open 
subset of R” representing the studied region. 

The forward problem (i.e., finding a solution u of problem (0.7)-(0.9) for 
a given set of data) is used by hydrologists to simulate, for management 
purposes, the level of aquifers under different use and replenishment condi- 
tions (i.e., for different functions q). However, in general, the functions aj, S 
are not known and experimental determination can be done (practically) 
only at finitely many points. It is easy to measure u also in the same experi- 
ment. This leads hydrologists to try to determine the functions S and a, 
from their values at certain points and some information on the function 
u for a specific set of dataf, g, and q. The type of information available on 
the function u varies with the situation being considered, and leads to 
different inverse problems. For instance, if the flow through one of the 
walls delimiting the region has been monitored for a certain period of time, 
then the available information is the function h(x, t) defined by 

a,(x) u,,(x, f) =4x, t) on TX (0, T), (0.10) 

where r is a given hypersurface, part of the boundary of Q, and v is the 
outward unitary vector normal to K See [ 13, 121 for more on this subject. 

We will assume SE 1, for simplicity, and consider the following inverse 
problems: given $2, g, f, q, (0.7)-(0.9), and (O.lO), find the function aj 
in (0.7). 

It is well known that for this kind of problem the a priori assumptions 
on the type of functions ai are an essential part of the problem. In the given 
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situation the most natural assumption is that uj is piecewise constant, i.e., 
that 

lzj(X) = a; + i u;~(sz,) j= 1, . ..) n, 
i=l 

(0.11) 

where the a; are positive constants, x(Q,) is the characteristic function of 
the set Qi, and 9 = { sZi : i = 1, . . . . Z} is a family of (mutually disjoint) open 
subsets of 52 such that U Bi c Q. 

We will assume that I and the constants a; are known and that the 
regions Qi are unknown. The inverse problem is thus reduced to finding the 
family of regions 52,. 

The above assumption on the structure of the function a is based on the 
fact that aquifer heterogeneities are due to the presence underground of 
different materials such as sand, rock, and clay. Also, due to geological 
processes, those different materials exist in the form of layers and/or 
lumped bodies. See [4, 111 for more on this subject. The number I of 
different bodies present in a given area can easily be found from available 
geological data. The constant transmissivity a; of each homogeneous body 
needs to be sampled at only one site. On the other hand, the exact shape 
of the given body would be very hard, if not practically impossible, to find 
experimentally. The object of the inverse problem is to try to identify the 
shape of those bodies (i.e., to find Qj) in the situations described above. 

To the author’s best knowledge, the only work that has been done on 
this problem is the work done by hydrologists, who consider the discrete 
version of this problem. Once discretized, this problem becomes a problem 
of identification in a finite dimensional space and different methods have 
been used to solve this finite dimensional identification problem. On the 
other hand, mathematicians have considered inverse problems associated 
with (0.7), but only for continuous functions uj. See [lo, l] and the 
references therein. 

The relevance of the discretized problem (which is solved numerically) to 
the actual problem (0.7) hinges on the stability of the inverse problem, i.e., 
if a small error in h can result in a relatively large error in uj, then the 
numerically computed solution using an approximation h* of h may result 
in a discretized a* bearing no connection with the actual a sought. 

Discontinuous diffusion coefficients have been considered in inverse 
problems in the steady state case. See [3, 5,6] and the references therein. 

The inverse problem described in the introduction corresponds then to 
the case of coefficients aj given by (0.11); more specifically I= 2, with 
52, = D and d(D, &2) > 0. 
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1. NOTATION AND STATEMENT OF THE MAIN RESULTS 

Let Q be a bounded domain in R” (n 2 2) with C’.” boundary f and let 
D be a bounded subdomain of Q, D c Sz, with C’.” boundary. 

Let D, (0 <h 6 h,) be a family of domains in R”, such that dD,, has the 
representation 

dD, : x=x0 + ho,(x,) v(x,), (1.12) 

where x0 varies on i?D, v(xO) is the outward normal unit vector to 
aD, c,JxO) is continuously differentiable in x0, and 

b,,/C~+~<& (1.13) 

where B is a constant independent of h. 
We will assume also that 

fJh(X) + 0) if h-+O,o(x)~O, (1.14) 

and define the sets S, , S2, and 3, as 

S, = {x E 8D such that a(x) < 0}, 

S, = {x E dD such that G(X) > 0}, 

S,={x~aDsuchthatd(x,S,nS~)<~}. 

Let 24, respectively, uh, be the solution of the parabolic diffraction 
problems, 

u, - (qqr, = 4(X> t) in QT (1.15) 

4% 0) = &J(x), 4% r) =f(x, r) on rr, (1.16) 

respectively, 

up - (a;u:,,xi = d-c 1) in QT (1.17) 

d(X, 0) = u;(x), u”(x, t) =f(x, t) in rT., (1.18) 

where u,(x) = Aj + &x(D); A, > 0, K, > 0, Vj = 1, . . . . n, respectively, a:(x) = 
A.j + K,x(D,); Aj > 0, Ki > 0, b’j = 1, . . . . n. 

We will make the following assumptions on the free terms. 

(Al) qEH’((O, 7’)); H”(O)), f~H’((0, T); H3(r)), ui, u. are in 
H’(Q). 

(A2) [Iu$ Hi is bounded independently of h. 
(A3) lim h+oSn (h-‘(uo-U;))2dx=0. 
(A4) Compatibility conditions of order 0 are satisfied. 
(AS) uo(x) is not constant. 
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Under the above assumptions, it is well known (see [8], for instance) 
that problem (1.15), (1.16), respectively problem (1.17), (1.18), has a 
unique solution u, respectively, uh, in H’(QT). Furthermore, from [7, 
Theorem 71, it follows that u, respectively, uh, is in L’(O, T; H’(Q\D) n 
H’(D)), respectively, in L2(0, T; H’(L?\D,) n H’(D,!)). Also, it results from 
(A2) that the norm of uh in the space L’(0, T; H2(Q\D,)nH2(Dh)) is 
bounded independently of h. 

Set 
gh = $uh 

lj’ g = q u ,,, onr: (1.19) 

and 

ue= 4a\fJx(o,T)> Ui=4Dx(0,T). 

We will distinguish and treat separately the cases where the set { 0 = 0) 
has an empty interior or not. 

THEOREM 1.1. Assume that 

(1) (aj(uo)x,),y,E Co%‘, 
(2) S, n S, is a C’ manifold of dimension n - 2 and 

aj(uo),(x) Z 0, Vx E dD. (1.20) 

Then for any nonempty open subset r’ of dQ 

(1.21) 

Remark. Condition 1 is not a real restriction in view of the arbitrariness 
of the choice (by the observer) of the time t = 0 and the fact that Vt > 0, 
(aju,),(x, t) E CO,*(Q) (even for u. only in L2, see [7]). 

THEOREM 1.2. Assume that (T = 0 on an open subset C of 8D. Then (1.21) 
holds for any nonempty open subset f ’ of r. 

2. AUXILIARY RESULTS 

Set 
Uh-U Uh=-. 

h ’ 
Sh = D, AD. (2.22) 

Taking the difference of Eq. (1.15) and (1.17) we find that LIh is a solution 
of the parabolic problem 
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1 
u: - (a,hU~,), = - ((a: - Qj) 

h u.x,L i in QT (2.23) 

4x4 - uo(x) 
Uhf% O)= h > u(x, t) = 0 on rT. (2.24) 

LEMMA 2.1. There exists C > 0 such that Vh 3 0 

(Uh)2dxdt<C. 

Proof Let wh be the unique solution of the parabolic problem 

w;(x, t) - (u;w;,(x, t)), = Uh(x, T- t) in QT (2.25) 

Wh(X, 0) = 0, Wh(X, t) = 0 on rT. (2.26) 

By standard results for parabolic equations the problem (2.25), (2.26) has 
a unique solution wh in H ’ (Q T). Furthermore, it was proved in [ 7, Sect. 23 
that the following estimate holds for wh 

lIWhll L*(o,T;H*(D\Dh)) + lIwhll L*(o,T;H*(D*)) G c II UhllLW (2.27) 

Multiplying Eq. (2.25), respectively (2.23), by Uh(x, t), respectively 
wh(x, T- t), integrating by parts over Q, and taking the difference we find 

j” 
R 

U;(x) wh(x, T) dx + i’s ( Uh(x, t))2 dx dt 
0 R 

Kj(Uh(x, t)), (w”(x, T- t)), dx dt 

lh T =- 
s (, s h o o JD~ 

(Kj( Uh(X, t)), (W’(X, T- t)),) dP dt 4 (2.28) 

where DA is defined by iYDn : x = x0 + Aa, v(xo). 
Let aD, = aDA,, u aDA,,, where aDA,, = aDn n (D,\D), and aD,, = 

aD,n (D\D,). Since UEL~(O, c H’(D) n H2(Q\D)), using (2.27) and the 
traces theorem we have 

(aJ’ - aj)(U(X, t)), (Wh(X, T- t)), dP dt 

T 

<C 
i (s 

112 
IWx, t)l 2 4 

0 JR, 1 > 

112 
X IVwh(x, T- t)12 dp dt 
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Similarly, 

< c ,’ IIu(x, t)ll $:(a\~) Ilwb, T- [Ill !&D,,, dt J 

6C (J J 
T (Uh)‘dxdt 

v 
. 

0 R 

T 

J IJ 0 JDi, * 
(ai” - aj)(U(X, t))x, (Wh(X, T- t)), dP dt 

(2.29) 

(2.30) 

Consequently, 

T 

)I J 1 
0 ‘iDi 

(&(Uh(X, t)), (Wh(X, T- t)),) dP dt 

112 
<c (J J T (Uh)2dxdr . 

0 52 
(2.31) 

From (2.28) and the above estimate it follows that 

T JJ ( Uh(x, t))2 dx dt 
0 n 

<-- J U;(w) wh(x, T) dx 
R 

lh T J (J J 
112 

+C- 
ho OR 

( Uh(x, t))2 dx dt dA 

T 6C (J J 
112 

(Uh(x, t))2 dx dr 
0 R 

+c’ 
h T 

J (C J 
l/2 

ho OR 
( Uh(x, t))’ dx dt d/l, (3.32) 

from which the lemma easily follows. 

LEMMA 2.2. If for a sequence h + 0 we have that Uh + U weakly in 
L2(QT), and limh,oj~jrl Igh-ggJ/hdxdt=O, then U=O in (sZ\D)x (0, T). 
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Proof: Letting h -+ 0 in (2.23) we find that U satisfies in a weak sense 
the equation 

u, - (aj V,,) \, = 0 in (52\0) x (0, T). 

Let x,, E f ‘, and r > 0 be small enough and denote B(x,, r) n 52 by W. 
From (2.23) and (2.24) it follows, by standard regularity results for 
parabolic equations (see [8], for instance), that the sequence Uh is 
bounded in C’,“((to, I); CZfa( W)) f or some positive c( and any positive t,. 
Consequently, U is a classical solution of 

u, - (q U.x,L, = 0 in Wx(0, T) 
(2.33) 

U(x, t) = 0, aj u,., = 0 on (awn TX (0, T)). 

From this we easily deduce that U has a zero of infinite order at the point 
(x,, t), Vt E (0, T); it then follow by [ 19, Theorem 71 that U=O in 
wx (0, T). 

The lemma is then a direct consequence of the equation 

u~-("ju,)~,=o in (sZ\D) x (0, T) 

and the unique continuation theorem (see [9]) for parabolic equations. 

LEMMA 2.3. If for a sequence h + 0 we have that Uh + U weakly in 
;yQG;z;d;emiai,o {ijp lgh - sl/h dx dt = 0, then Vu E H’((O, T); H*(D)), 

> 

S,: jD U(V, + (Qj%,)Xj) dx dt = joT j3, o(X) bj(X, t) 0x,(X, t) dp dt, (2.34) 

where Vj= 1, . . . . n, bjE L’(O, T, H3”(S,) n H3’*(S2)). 

Proof: Let v be a Ccc function with compact support in [IO, T) x Q. 
Multiplying Eq. (2.23) by v and integrating by parts over QT we find 

T 
IJ‘ 0 Dh 

Vh(v, + a,“~+,) dx dt 

+ joT LD, Vh(v, + +r,.v, )dxdt-joTjaDAVh(K,v,;)dpdt 

KjU~,V., dt dx + k jr j KjU’,v, dt dx.. (2.35) 
D\Dh 0 Dn\D 

We first investigate the limit of j: jaD, Vh(K,v,.) dp dt. For this purpose we 
let zh be a sequence of functions bounded in’ C2((sZ\D,) x [0, T]) inde- 
pendently of h and such that zh = 0 in a neighborhood of (80 x [0, r]) u 



INVERSE TRANSMISSIVITY PROBLEM 21 

(Q x T), and that zh = 0 and (A,z$) = (Kju,?) on (do,) x (0, T). Multiply- 
ing Eq. (2.23) by zh and integrating by parts over (52\0,) x (0, T) we find 
that 

- joT ja,, U”(A,z:;) dcc dt = joT jQ,,,D* Uh(z’: + @‘:,Y,) dx dt 
1 T 

--s i‘ h 
(a; - aj)u,,z;, dx dt. (2.36) 

0 a\Dh 

Taking the limit as h + 0 we find, after using Lemma 2.2, 

lim J’S 
h-0 0 FD/, 

uh(AjZtT) dp dt = JOTS,, OKjui,, Z,, dp dt, (2.37) 

where z is the limit of the sequence zh. Taking h + 0 in (2.35) we obtain 
after using (2.37) and Lemma 2.1 

T ss 0 D 
WV, + ai+,) dx dt 

T 
= 

SI 
0 s2 

~Kju~,v.r, dP dt 

+ c I,, 

T 

aKju’, v,, dp dt + 
1s 

oKju;,z,, dp dt. (2.38) 
0 SI 

This last surface integral is a functional of u. Indeed, since S, is a C2 
surface there exist p open subsets V, such that S, c u V, and S, n V, can 
be represented in the form 

S,n Vm:x,=y,(x ,,..., x,-,), 

where yrn is a C2 function. After an elementary but lengthy computation we 
find that 

r 
SI 0 Sin vm 

%u:,z., dp dt 

(2.39) 
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For j= 1, . . . . n we define the functions h;, hi and hi by 

h;(x, t) = Kju;,(x, t) + v;Kj 
l+ IYJ,12 

x: 4lL, + A, 

This proves the lemma. 

3. PRCMIF OF THEOREM 1, I 

We will prove the theorem by exhibiting a function u E H’((0, T); 
H2(D)), v(x, T) =0 for which (2.34) does not hold. For this purpose we 
will need the following lemma. 

LEMMA 3.1. Let tl E (0,l) be a fixed positive number, VE > 0, 3T2 > 0 and 
a function u, E H’((0, T2); H’(D)) such that 

u,,t + (ajOe,x,)X, = Cl in D x (0, T,) (3.40) 

bj(x, t, ue,,x,(x, t)’ ++T2-t) on (aD\S,,) x (0, T,) (3.41) 

T2 - z 
IVu,(x, t)l < c- 

E ’ 
V(x, t) E 8D x (5, T2) (3.42) 

where C is independent of E. 

We will first prove Theorem 1.1 using the above lemma, which will be 
proved later. Setting u = v, in (3.53) and using (3.40) we find 

T2 

s s 0 JD 
a(x) bj(x, t) u~,~,(x, t) dp dt = 0. (3.43) 
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Using (3.41) it follows that 

T2 

E 
-1 

s s 
a(x)’ (T, - t) dp dt 

0 aD\9 

+ j-” J3,. 4x) bib, t) u,,x,(x, t) & dt = 0. (3.44) 

By standard regularity results (see [7], for example) it follows from 
assumption 1 of the theorem that 

24 E c”qo, T; c’+(D) i-l c2qm u @-2\D))). (3.45) 

Consequently the functions bi are bounded and (3.44) yields 

T2 

E 
-1 

s s 
a(x)’ ( T2 - t) dp dt 

0 aD\S2, 

C IT2 {32s WI IVu,(x, t)l dcL dt 
0 T2 

<C I s 0 
S2E lo(x)1 Cy dp dt, 

where (3.42) was used. 
Since lo(x)1 <BE on 52E by (1.13), after integrating in time we find that 

there exists a new constant C independent of E such that 

s 
a(x)’ dp < CE . meas { s,,} 

dD\h 

where we made use of the fact that meas{ s,,} 6 CE for some C independent 
Of E. 

Letting E approach 0 we then find that a(x) E 0, which contradicts (1.14). 

Proof of Lemma 3.1. From assumption 2 of the theorem it follows that 
V’E > 0, ?l$E(x) E C’(aD), I = 1,2, such that 

$Xx) = {:, 
if x E (S,\S,,) 
if x E S, u (aD\s,) 

(3.46) 

where C is independent of E. 
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set 

b,:JX, 1) = $;b;(x, t) + $;bj(x, t) + v)‘( 1 -If?; - $‘) ,j= I, . . . . n (3.47) 

B&x, f)=eb,,(x, T,-t), ,j = 1, . . . . n, 

where T, is a small positive number to be specified later. 
From (1.20) and the continuity (in t) of Vz/‘(x, t), Vu’(x, t) (see (3.45)) 

we deduce that there exists To > 0 such that 

K,u&(x, t) v; # 0, K,u’Jx, t) v; # 0, V(x, t) E dD x (0, To). (3.48) 

We will prove the lemma here, assuming that Kju;,(x, t) v)‘>O and 
K,u;,(x, t)v;>O; the proof for the case K&(x, t) VT GO and/or 
K,uL,(x, t) v; 60 is similar. It then follows from (3.48) that there exists 
r,>O and 6 >O such that 

K,u;,(.x, t)v; 26, K&(x, t)vt'>6, v'(x, c) E dD x (0, To), (3.49) 

and consequently 

b,,,k f) v; 2 6’, V(x, r)~dD x (0, To). (3.50) 

For fixed E > 0 let z be the solution of the parabolic problem 

z, - (qz,,).x, = 0 in D x(0, T,), 

z(x, 0) = 0, in D, 

4.,(x, tb,(x, l)=dx).t on dD x (0, T,). 

(3.51) 

(3.52) 

(3.53) 

The existence, uniqueness, and regularity of a solution I’ to the above 
problem result from (3.50) and [8, p. 322, Theorem 5.43. Furthermore, 2 
satisfies [8, p. 322, estimate (5.14)]. 

(3.54) 

where u E (0, 1) and the norms 1.1 are as defined in [S]. 
A careful examination of the proof of (3.54) (see [S, pp. 3243281, for 

example) reveals that 32, > 0 such that, independently of T,, 

provided r, is small enough. Here C3 depends only D and ai and hence is 
independent of E. 
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From the definition of B,i it follows using the smoothness of u and 
(3.49), that 

where the constants C,, . . . . C, are independent of E and z provided 
T E (0, T,/2), where r, is defined in (3.49). 

This allows for a choice of T, which is independent of T,. 
Choose T2 in (3.47) such that T, 6 z~, and (3.54) yields 

x+2 
~Z~Dx~,,r~<E -I ~cgZ”2-T’2, VT 6 T2m 

where C, is independent of T and E. 
Thus 

Set u,(x, t) = z(x, T, - t). This function satisfies all the requirement of the 
lemma. 

4. PROOF OF THEOREM 1.2 

Let x0 E ,Z, W= B(x,, r), where r is sufficiently small. For any 
=C@‘x(O, T)), 

T si 0 DnW 
u(u, + (aju,~,).x,) dx dt 

G(X) bj(X, t) 0.,(X, t) dti dt=O, (4.60) 

by the previous lemma, since G = 0 on C. 
Setting u,?(x) = Aj + K,, Vx E 52, and using that U(x, t) = 0, Vx E Q\D, it 

follows from the previous equality that 

T 

si U(u, + (u,?u,,),,) dx dt = 0, VUE C;( Wx (0, T)). (4.61) 
0 w 
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Thus, U satisfies 

U,-a/W,,,,=0 in Wx (0, T). (4.62) 

It then follows from Lemma 2.2 and the unique continuation theorem that 
U= 0 in Wx (0, 7’). Similarly, we deduce from (2.34) that U = 0 in 
D x (0, T). 

Using this fact, (2.38) becomes 

T 

li 4x1 b,(x, t) u.& t) dp dt = 0, vu E c$2 x (0, T)). (4.63) 
0 (PD)nW 

We will now prove Theorem 1.2. We consider two cases: 

Case 1. af0 on S,. 

Let &(x)E C’(D) be such that 

L= 1 on c3Dn {o< -6) t,=OonaDn {a>O} (4.64) 

IV& 6 Cl& in D, (4.65) 

Taking v = 11/<,u’ in (4.63) and using (2.39), (4.64), and (4.65) we obtain 

x(~,Suj:)(~,Kju~~)d~dt 
T -I s 0 S,“{O> -&) 

oKju;,u;, dp dt 

<Cmeas{O> -g> -6) -0 if E -+ 0. 

Hence, Vu’= 0 on ({ 0 < 0} n S,) x (0, T) and by the unique continua- 
tion theorem (see [9]) ui = ue = const. in Q, which contradicts the 
assumption (A5 ). 

Case 2. Assume now that a30 then a-0 on S, and (4.63) becomes 

T 

ss 
aK,uz,v, dp dt = 0, vu E c(@2 x (0, T)). (4.66) 

0 s2 

Let +(t) be a smooth nonnegative function with compact support in (0, T). 
By standard regularity results (see [S], for example) ue is regular on 
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8D x (0, T), then the function I&’ is Ci((O, T); IT). Setting c = t,M in (4.66) 
yields 

T 51 0 s2 
$aK, u$ u:, d,u dt = 0. 

Hence, Vu’ = 0 on ({a > 0) n S,) x (0, T) and by the unique continua- 
tion theorem (see [9]) u’= ue = const. in QT, which contradicts the 
assumption (A5). 

REFERENCES 

1. G. ALESSANDRINI AND S. VESSELA, Error estimates in an identification problem for a 
parabolic equation, Boll. l/n. Mat. Ital. C (6) 4 (1985), 87-111. 

2. M. S. AGRANOVICH AND M. I. VISHIK, Elliptic problems with a parameter and parabolic 
problems of general type, Russian Math. Surveys 19, No 3 (1964), 53-158. 

3. H. BELLOUT AND A. FRIEDMAN, Identification problems in potential theory, Arch. Rational 
Mech. Anal. 101 (1988), 143-160. 

4. G. E. FOGG, Ground water flow and sand bdy interconnectedness in a thick, multiple- 
aquifer system, Waler Resour. Res. 22 (1986), 679-694. 

5. A. FRIEDMAN AND M. VOGELILJS, Identification of small inhomogeneities of extreme 
conductivity by boundary measurements: A continuous dependence results, preprint. 

6. V. ISAKOV, On uniqueness of recovery of a discontinuous conductivity coefficient, Comm. 
Pure Appl. Math. 41 (1988), 841-853. 

7. 0. A. LADYZHENSKAYA, V. JA. RIVKIND, AND N. N. URALCEVA, The classical solvability 
of diffraction problems, Proc. Steklou Inst. Math. 92 (1966), 132-166. 

8. 0. A. LADYZHENSKAYA, V. A. SOLONIKOV, AND N. N. URALCEVA, Linear and quasilinear 
equations of parabolic type, in “Translations of Mathematical Monographs,” Vol. 2.3, 
Amer. Math. Sot., Providence, RI, 1968. 

9. E. M. LANDIS AND A. 0. OLEINIK, Generalized analyticity and some related properties of 
solutions of elliptic and parabolic equations, Russian Math. Surveys 29, No. 2 (1974), 
195-212. 

10. C. D. PAGANI, Determining a coefficient of a parabolic equation, preprint. 
11. N. Z. SUN AND W. W.-G. YEH, Identification of parameter structure in ground water 

inverse problem, Water Resour. Res. 21 (1985), 869-883. 
12. S. YAKOWITZ AND L. DUCKSTEIN, Instability in aquifer identification: Theory and case 

studies, Water Resow. Res. 16 (1980), 1045-1064. 
13. W. W.-G. YEH, Review of parameter identification procedures in ground water hydrology: 

The inverse problem, Water Resour. Res. 22 (1986), 95-108. 


