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Transformers are regarded as crucial components in power systems. Due to market globaliza-

tion, power transformer manufacturers are facing an increasingly competitive environment that

mandates the adoption of design strategies yielding better performance at lower costs. In this

paper, a power transformer design methodology using multi-objective evolutionary optimiza-

tion is proposed. Using this methodology, which is tailored to be target performance design-ori-

ented, quick rough estimation of transformer design specifics may be inferred. Testing of the

suggested approach revealed significant qualitative and quantitative match with measured

design and performance values. Details of the proposed methodology as well as sample design

results are reported in the paper.

ª 2014 Production and hosting by Elsevier B.V. on behalf of Cairo University.
Introduction

It is well known that transformers are regarded as indispens-

able and crucial components in power systems. Due to market
globalization, and in some cases to accommodate particular
specification requests, transformer manufacturers are facing

an increasingly competitive environment to maintain their
sales figures. This competitive environment mandates the
adoption of design strategies yielding better performance at
lower costs.

In the past, several power transformer design methodolo-
gies have been proposed [1–8]. Adly and Abd-El-Hafiz [1] dem-
onstrated that feed-forward neural networks may be utilized to

predict design details of power transformers after being trained
using dimensional and winding details of a set of actual trans-
formers. Alternatively, finite element analysis (FEA) coupled

to an educated trial and error approach was introduced [2,3].
Furthermore, a computer-aided trial search looping algorithm
aiming at minimizing transformer design cost has been demon-

strated [4]. Other approaches coupling FEA to a knowledge-
based design optimization strategy and genetic algorithms
were presented [5–7]. Hernández and Arjona [8] proposed
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mailto:adlyamr@gmail.com
http://dx.doi.org/10.1016/j.jare.2014.08.003
http://dx.doi.org/10.1016/j.jare.2014.08.003


418 A.A. Adly and S.K. Abd-El-Hafiz
another approach that couples classical design equations to an
intelligent design search algorithm.

A quick review of these methodologies reveals that a wide

span of design strategies could be utilized to achieve an opti-
mum power transformer design. For instance, analytical formu-
lations may be utilized for the quick estimation of transformer

dimensions and design details. Methodologies based uponmore
accurate FEA computations offer precise estimation of trans-
former performance measures, provided that design specifics

are suggested a priori. Other methodologies, on the other hand,
may utilize a hybrid strategy or even non-traditional heuristic
and/or evolutionary computation approaches.

Several techniques have addressed transformer design prob-

lems using single-objective Particle Swarm Optimization
(PSO). Hengsi et al. [9] demonstrated that the two objectives
of minimizing power loss and leakage inductance were com-

bined into one objective function using weighted aggregation.
Single-objective evolutionary optimization was, then applied
using a hybrid algorithm of PSO and differential evolution.

Rashtchi et al. [10] and Jalilvand and Bagheri [11] also utilized
single-objective PSO in the optimal design of protective cur-
rent transformers. The objectives of making current measure-

ments more accurate and designing more efficient current
transformers in terms of both size and cost were formulated
as an optimization problem to be solved by PSO. On the other
hand, Du et al. [12,13] focused on improving the standard sin-

gle-objective PSO algorithm and utilizing the improved version
in the optimal design of rectifier transformers. The purpose of
the improvement was to avoid being trapped in local optima.

The reduction of a multi-objective optimization problem to
a single-objective problem is usually performed by construct-
ing a weighted sum of the original objective functions. While

such methods are easy to implement and use, it is difficult to
determine the appropriate weight coefficients when enough
information about the problem is not available. Another draw-

back of such approaches is that several runs of the algorithm
are needed in order to obtain a set of optimal compromise
solutions to choose from. Furthermore, some optimal solu-
tions cannot be obtained, in some cases, regardless of the

weight combinations used [14]. Hence, multi-objective PSO
becomes useful as it enables finding several optimal compro-
mise solutions in a single run of the algorithm instead of hav-

ing to perform a series of separate runs as in the case of
classical optimization methods.

The purpose of this paper is to present a power transformer

design methodology using multi-objective evolutionary optimi-
zation. Using this methodology, which is tailored to be target
performance design-oriented, quick rough estimation of trans-
former design specifics may be inferred. Estimated design

parameters and details using the proposed methodology may
also be considered for further refinement by other FEA
approaches. It should be stated that while the proposed meth-

odology is analytical in nature, some parameter range settings
have utilized previously reported power transformer field com-
putation results. Details of the proposed methodology as well

as sample design results are reported in the following sections.
Performance-oriented power transformer design approach

In addition to the mandated primary line voltage Vl1, second-
ary line voltage Vl2 and supply frequency f, a three-phase
power transformer design is usually optimized to meet volt-
ampere rating S, total copper losses Pcu, no-load losses PNL

and equivalent reactance X requirements. In other words, a

performance-oriented design problem reduces to the proper
selection of windings and dimensional details that would lead
to a set of targeted performance figures. Expressions linking

the above-mentioned performance figures to the windings
and dimensional details of a three-phase power transformer
may be deduced in a systematic way as given below (please

refer, for instance, to [15–17]).

Vl1ffiffiffi
3
p ¼ 4:44fBKfKc

p
4
D2N1; ð1Þ

where B is the core maximum flux density (magnetic loading),
Kf is the laminations stack factor, Kc is the gross area to max-
imum circular area ratio, D is the core bounding diameter and

N1 is the primary winding number of turns.
It is also known that the window space factor of a three-

phase transformer SW may be expressed as:

SW ¼
2N1ac1 þ 2N2ac2

HwWW

; ð2Þ

where N2 is the secondary winding number of turns, HW is the
window height,WW is the window width, while ac1 and ac2 rep-
resent the primary and secondary winding cross sectional

areas, respectively.
Denoting the window height to width ratio by KW and

assuming a common current density (electric loading) J in both

windings while N1Iph1 = N2Iph2 (where Iph1 and Iph2 are the pri-
mary and secondary phase currents), expression (2) may be
rewritten in the form:

SW ¼
4N1ac1KW

H2
W

: ð3Þ

It should be pointed out here that, usually, current densities

in low and high voltage windings are not identical due to stan-
dard wire size availability and/or other design factor con-
straints. Nevertheless, the assumed current density J may be

regarded as an average figure for both windings.
From expressions (1) and (3), the volt-ampere rating of a

three-phase transformer may thus be expressed as:

S ¼ 3 4:44fBKfKc

p
4
D2N1

n o
J
SWH

2
W

4KWN1

� �

¼ 3:33pKfKcSWf

4KW

� �
JBD2H2

W: ð4Þ

Total copper losses Pcu may actually be regarded as a super-
position of three components. Namely, these three compo-
nents are the ohmic winding losses Pcu-ohmic, the eddy current

losses in the windings Pcu-eddy and the copper terminals connec-
tion losses Pcu-con. While designing a transformer to meet pre-
mandated specification, maintaining the total copper losses
below the threshold values becomes a must. In order to achieve

this goal, accurate time consuming computations have to be
carried out. Alternatively, appropriate computational safety
factors may be applied to fast analytical design methodologies.

While Pcu-con 6 0.05Pcu-ohmic, eddy current losses in trans-
former windings are dependent on the window height to width
ratio KW. As previously reported by Saleh et al. [18], electro-

magnetic field computation results suggest that, taking
2 6 KW 6 2.5, winding eddy current losses may be estimated
as Pcu-eddy 6 0.15Pcu-ohmic.
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From the previous common electric loading assumptions
and for the aforementioned KW range, total copper losses
may thus be given by the expression:

Pcu � 1:2
3I2ph1qcuN1lmt1

ac1
þ
3I2ph2qcuN2lmt2

ac2

 !

¼ 7:2J2qcuN1ac1lmt ¼ 1:2J2qcuVolcu; ð5Þ

where qcu is the specific resistivity of copper, Volcu is the overall
copper volume, while lmt1, lmt2 and lmt represent the average
turn length of the primary, secondary and both windings,
respectively.

No-load losses PNL, on the other hand, may also be
regarded as a superposition of two components. More specifi-
cally, these two components are the core losses PFe and stray
losses Pstray. Once more, it should be stated that accurate esti-

mation of the stray losses requires massive computational
resources that involve complex models of coupled magnetic,
thermal and mechanical variables (please refer, for instance,

to [19–21]). By adopting standard fabrication methodologies
[15–17], stray losses may be estimated in accordance with the
inequality Pstray 6 0.3PFe. Consequently, an upper limit for

the no-load losses may be expressed in the form:

PNL � 1:3PFe ¼ 1:3WFeðB; fÞdFeVolFe

� 1:3WFeðB; f ÞdFe KfKc

p
4
D2

� �
ð3HW þ 4WW þ 6DÞ

� 1:3WFeðB; f ÞdFeKfKc

p
4
D2 3KW þ 4

KW

� �
HW þ 6D

	 

; ð6Þ

where dFe is the steel lamination density and WFe(B, f) is the
specific core losses as a function of flux density and frequency

that may be deduced by referring to the core lamination spec-
ifications data sheet. Please note that explicit function formu-
lation for WFe(B, f) is either given in manufacturers’

specification sheets or simply inferred by fitting reported
curves.

Referring to [15], the equivalent transformer reactance may

be computed from:

X ¼ 2pfloN
2
1

lmt

lWH

aþ b1 þ b2
3

� �
; ð7Þ

where lo is the permeability of free space, lWH is the windings

height, a is the spacing between the low and high voltage wind-
ings, while b1 and b2 represent the gross primary and secondary
winding thicknesses, respectively. Following the assumption of
Fig. 1 Assumed winding configuration within the transformer

window dimensions.
identical current densities for both windings and assuming sim-

ilar winding heights, winding thicknesses may be assumed equal
such that b1 = b2 = b (please refer to Fig. 1).

Usually, the spacing between high voltage (outer) windings

is double the distance between a low voltage (inner) winding
and its corresponding high voltage winding. In other words,
the total window width WW may be approximated by
WW � 4(a+ b). From practical industrial considerations

a � b/4. In this case, the winding thickness may be correlated
to the window dimensions according to:

b �WW

5
� HW

5KW

: ð8Þ

Denoting the winding height lWH to the window height HW

ratio by KH and following the previously stated practical
assumptions as well as (8), expression (7) may be rewritten in
the form:

X ¼ 2pfloN
2
1

pðDþ 2bþ aÞ
KHHW

aþ 2b

3

� �

¼ 11p2floN
2
1

30KHKW

Dþ 9HW

20KW

� �
: ð9Þ

From (3), N1 may be expressed in the form:

N1 ¼
SWH

2
W

4KWac1
¼ SWH

2
WJ

4KWIph1
: ð10Þ

Substituting (10) into (9), we obtain:

X ¼ 11p2floS
2
W

480KHK
3
WI

2
ph1

J2H4
W Dþ 9HW

20KW

� �
: ð11Þ

Following the same window configuration assumptions,
expression (5) may be rewritten in the form:

Pcu � 7:2J2qcu

SWH
2
W

4KW

p Dþ 9HW

20KW

� �

¼ 7:2pqcuSW

4KW

J2H2
W Dþ 9HW

20KW

� �
: ð12Þ

By referring to Eqs. (4), (6), (11) and (12), it is clear that the
target performance oriented three-phase transformer design
problem may be reduced to the proper selection of four

unknowns. Namely, those unknowns are the current density
J, the maximum core magnetic flux density B, the transformer
core diameter D, and the window height HW.

Dividing (11) by (12), we get:

X

Pcu

¼ 11pfloSW

864qcuKHK
2
WI

2
ph1

H2
W: ð13Þ

Consequently, HW may be deduced from the expression:

HW ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
864qcuKHK

2
WI

2
ph1

11pfloSW

X

Pcu

s
: ð14Þ

After obtaining HW value, remaining unknowns may be
deduced by solving (4), (6) and (12). Given the highly nonlin-
ear nature of the equations under consideration, multi-

objective optimization is needed to achieve a minimum cost
design subject to the range restrictions for unknowns J, B
and D. Details of the multi-objective problem formulation

are given in the following section.
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Formulation as a multi-objective optimization problem

In engineering design problems, computational models are
often used to describe the complex behaviors of physical sys-

tems and optimal solutions are sought with respect to some per-
formance criteria. Hence, multi-objective optimization becomes
useful in obtaining a set of optimal compromise solutions (Par-

eto-optimal front) so that the designer can select the best choice.
The basic concepts of multi-objective optimization are

introduced using a d-dimensional search space, S��Rd, and k
objective functions defined over S� as given by Bui and Alam

[22]:

fðxÞ ¼ ½f1ðxÞ; f2ðxÞ; . . . ; fkðxÞ�; ð15Þ

subject to m inequality constraints:

giðxÞ 6 0; i ¼ 1; . . . ;m: ð16Þ

The aim was to find a solution, x� ¼ ðx�1; x�2; . . . ; x�dÞ, that
minimizes f(x). The objective functions fi(x) may be conflicting
with each other, thereby preventing the detection of a single
global minimum at the same point in S�. Consequently, opti-
mality of a solution in multi-objective problems is defined
differently.

A vector v = (v1,v2, . . .,vk) is said to dominate a vector

u= (u1,u2, . . .,uk) for a multi-objective minimization problem
if and only if vi 6 ui for all i = 1,2, ...,k and vi < ui for at least
one component, where k is the dimension of the objective

space. A solution u e U, where U is the universe, is said to be
Pareto optimal if and only if there exists no other solution
v e U, such that u is dominated by v. Such solutions, u, are
called non-dominated solutions. The set of all such non-dom-

inated solutions constitutes the Pareto-optimal front.
For the transformer design approach under consideration,

S, Pcu, PNL and X are given as target performance require-

ments. The window height HW is first calculated from expres-
sion (14). Multi-objective optimization is then utilized to
determine the other leading design parameters; J, B and D.

Hence, x* = (J,B,D). Within the current implementation,
expressions (15) and (16) are formulated as:

fðxÞ¼ Scmpðx�Þ�S

2

� �4

;ðPcmp
cu ðx�Þ�PcuÞ4;

Pcmp
NL ðx�Þ�PNL

4

� �4
" #

;

ð17Þ

subject to the following x* inequality constraints:

Jl

Bl

Dl

2
64

3
75 6

J

B

D

2
64

3
75 6

Ju

Bu

Du

2
64

3
75; ð18Þ

where Scmp, Pcmp
cu and Pcmp

NL are the computed volt-ampere rat-
ing, the computed total copper losses and the computed no-
load losses, respectively. It should be pointed out that the

inequality ranges given in (18) should be in accordance with
the typical lower and upper limits of J, B and D for power
transformers in the range under consideration.
Fig. 2 Time variant multi-objective particle swarm optimization

algorithm [22].
Multi-objective particle swarm optimization

Inspired by the behavior of bird flocks or insect swarms, Ken-

nedy and Eberhart first proposed PSO in 1995 [23]. PSO is a
population based heuristic, where the population of the
potential solutions is called a swarm and each individual
solution within the swarm is called a particle. Considering a

d-dimensional search space, an ith particle is associated with
a position in the search space xi = (xi,1, . . .,xi,d), a velocity
vi = (vi,1, . . .,vi,d) and an individual experience vector Pbi =

(Pbi,1, . . .,Pbi,d) storing the position corresponding to the par-
ticle’s personal best performance. Experience of the whole
swarm is captured in the vector Gb= (Gb1, . . .,Gbd), which

corresponds to the position of the global best performance in
the swarm.

The movement of a particle toward the optimum solution is
governed by updating its velocity and position according to

Eqs. (i) and (ii) shown in Fig. 2, respectively. While the param-
eter w is the inertia weight, parameters c1 and c2 are accelera-
tion coefficients. Parameters r1 and r2 are random numbers,

generated uniformly in the interval [0,1] and are responsible
for providing randomness to the flight of the swarm. The sec-
ond term in Eq. (i) of Fig. 2 is the cognition term, which takes

into account only the particle’s individual experience. The
third term in Eq. (i) of Fig. 2 is the social term, which signifies
the interaction between the particles. The values of c1 and c2
allow the particle to tune the cognition and social terms,
respectively. A larger value of c1 allows exploration, while a
larger value of c2 encourages exploitation. Single objective
PSO has been successfully utilized in many engineering appli-

cations such as the optimization of devices and systems
[24,25] and field computation in nonlinear magnetic media
[20,26,27].

In order to handle multi-objective optimization, several
approaches adapt single objective PSO using the Pareto dom-
inance concept to determine the best positions that will guide

the swarm during search [22]. Additional criteria are also
imposed to take into consideration further issues such as
swarm diversity and Pareto front spread. In this paper, the

Time Variant Multi-Objective Particle Swarm Optimization
(TV-MOPSO) algorithm is utilized [28]. To achieve good bal-
ance between exploration and exploitation of the search space,
TV-MOPSO is adaptive in nature with respect to its inertia

weight and acceleration coefficients. A mutation operator is
incorporated to resolve the problem of premature convergence
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to the local Pareto-optimal front that is often observed in
multi-objective PSO. An archive is also maintained to store
the non-dominated solutions found during execution. The glo-

bal best solution is selected from this archive using a diversity
consideration.

Fig. 2 shows the TV-MOPSO algorithm, which consists of

three main steps. The first step generates an initial swarm
Swrmo of size Ms with zero velocities and random values for
the coordinates from the respective domains of each dimen-

sion. An archive of maximum size Ma is initialized to contain
the non-dominated solutions from Swrmo. The second step
represents the main iteration cycle in which the swarm is
updated, the archive is updated and the swarm is mutated at

each iteration t.
The swarm Swrmt is updated, in step (2.1) of the algorithm,

by updating the velocity and coordinates of each particle using

Eqs. (i) and (ii) of Fig. 2, respectively. To update the velocity,
the global best solution is obtained from the archive using a
diversity consideration. The method for computing diversity

of the solutions is based on a nearest neighbor concept [28].
The present solution is compared with the personal best solu-
tion, and replaces the latter only if it dominates that solution.

Moreover, time variant parameters are adjusted [28]. These
parameters include an inertia coefficient, w, a local accelera-
tion coefficient, c1, and a global acceleration coefficient, c2.

The inertia coefficient w is decreased linearly with each iter-

ation from an initial value wi to a final value wf. The value of w
at iteration number t is calculated as:

w ¼ ðwi � wfÞ �
ðM� tÞ

M
þ wf; ð19Þ

where M is the maximum number of iterations.
To compromise between exploration and exploitation of

the search space, the cognitive acceleration coefficient c1 and

the social acceleration coefficient c2 are varied linearly with
each iteration as given by (20) and (21), respectively. While
c1 decreases from the initial value c1i to the final value c1f, c2
increases from c2i to c2f.

c1 ¼ ðc1f � c1iÞ �
t

M
þ c1i; ð20Þ

c2 ¼ ðc2f � c2iÞ �
t

M
þ c2i: ð21Þ

The archive At is updated, in step (2.2) of the algorithm, by
including the non-dominated solutions from the combined
population of the swarm and the archive. If the size of the

archive exceeds the maximum limit (Ma), it is truncated using
the diversity consideration [28].

To explore the search space to a greater extent, while

obtaining better diversity, a mutation operator is used in step
(2.3) of the algorithm shown in Fig. 2. Mutation is performed
with probability inversely proportional to the chromosome
length d. Given a particle p, a randomly chosen coordinate

(i.e., variable) of the particle, pk, is mutated as follows:

p0k ¼
pk þ Dðt; pku � pkÞ if flip ¼ 0

pk � Dðt; pk � pklÞ if flip ¼ 1

�
; ð22Þ

where flip, pkl and pku denote the random event of returning 0

or 1, the lower and the upper limits of pk. The function D is
defined by:

Dðt; xÞ ¼ x� 1� rð1�
t
MÞ

q
� �

; ð23Þ
where r is a random number in the range [0,1], M is the max-

imum number of iterations and t is the iteration number. The
parameter q determines the mutation’s dependence level on the
iteration number.

After executing the specified number of iterations, the third
and final step of the algorithm returns the final archive. This
archive contains the final non-dominated front (i.e., Pareto
optimal front).

Implementation and design examples

To serve the testing and estimation purposes, the proposed

design approach has been implemented in digital form. The
methodology has been particularly utilized to design
25–50 MVA, 66 kV/11 kV, DYn11, 50 Hz power transformers

subject to a variety of design performance constraints. As per
practical transformer stacking and assembly measures for the
MVA range under consideration, it was decided to set through-

out the computations SW = 0.2,KH = 0.9,Kf = 0.95, and con-
sider 11-step cores (leading to Kc = 0.958) [15–17]. Common
values for lo, qcu and dFe were taken as 4p · 10�7 H/m,

2.1 · 10�8 X m and 7.65 · 103 kg/m3, respectively. Using Arm-
co Steel TRAN-COR-H0 CARLITE-3 core laminations, an
expression for WFe(B, 50 Hz) was inferred from data offered
by the manufacturer (please refer to [29]). The typical values

of Jl, Ju, Bl, Bu, Dl and Du for power transformers in the range
under consideration are set as 1.1 · 106, 3.2 · 106, 1.0, 1.8, 0.1,
0.7, respectively.

In order to test the proposed performance-oriented design
methodology, two transformers (rated 25 MVA and
40 MVA) of known manufacturer design details and measured

performances are considered. It should be stated here that a
considerable number of units of these particular transformer
designs, which obviously passed all standard routine tests,
has been acquired and installed in several national and regio-

nal grid sub-stations. As previously discussed, measured per-
formance figures of actual transformers are taken as the
target design requirements for the design methodology.

The TV-MOPSO algorithm is executed using a swarm of
Ms = 50 particles, a maximum archive size of Ma = 200 and
for M = 1000 iterations. The parameters used in the reported

results are wi = 0.7, wf = 0.4, c1i = 2.5, c1f = 0.5, c2i = 0.5,
c2f = 2.5 and q = 5. The Pareto front obtained for the
40 MVA transformer is shown in Fig. 3.

Out of a set of design parameters inferred by the TV-
MOPSO implementation, the design corresponding to a mini-
mum iron core volume is taken as the optimum choice. Com-
parisons between design parameters of the actual transformers

and those proposed by the design methodology under consid-
eration are given in Tables 1 and 2. Variations between actual
and computed performance (as well as cost) figures are also

given in the same tables. With the exception of the suggested
current density J, it is clear that the proposed approach leads
to good qualitative and quantitative performance-oriented

design results. Moreover, the proposed higher J value by the
suggested methodology may be regarded as a possible cost
minimization option as indicated in Tables 1 and 2 by the pos-
sible reduction in the transformers copper volume.

Using the proposed approach, computations are also carried
out to investigate the design parameters deviation from those of
the 40 MVA test transformer as a result of changing



Fig. 3 Obtained Pareto front for the 40 MVA transformer.
Fig. 4 Variation of the design parameters for different trans-

former ratings having the same specifics, per-unit reactances and

total copper and no-load loss percentages.

Fig. 5 Variation of the design parameters for 40 MVA trans-

formers having the same specifics, per-unit reactances for different

total copper and no-load loss percentages (i.e., efficiencies).

Table 2 Comparison between actual and computed design

parameters and performance indicators for a 40 MVA trans-

former having KW = 2.05.

40 MVA, KW = 2.05 Actual

values

Computed

values

Main design parameters HW (m) 1.37 1.37

J (kA/m2) 2.17 2.58

B (T) 1.75 1.74

D (m) 0.61 0.64

Performance indicators S (MVA) 40.00 40.24

Pcu (kW) 135.90 135.98

PNL (kW) 24.70 24.17

X% 11.00 11.01

Cost indicators Core volume (m3) 2.67 2.98

Copper volume (m3) 1.02 0.81

Table 1 Comparison between actual and computed design

parameters and performance indicators for a 25 MVA trans-

former having KW = 2.28.

25 MVA, KW = 2.28 Actual

values

Computed

values

Main design parameters HW (m) 1.37 1.50

J (kA/m2) 1.70 2.05

B (T) 1.61 1.63

D (m) 0.54 0.56

Performance indicators S (MVA) 25 25.11

Pcu (kW) 85.20 85.00

PNL (kW) 15.50 15.22

X% 10.48 10.45

Cost indicators Core volume (m3) 2.10 2.30

Copper volume (m3) 1.14 0.80
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volt–ampere rating and power loss requirements. In the first
computation set, design parameters corresponding to

30 MVA and 50 MVA transformer ratings having the same spe-
cifics, per-unit reactances and percentage total copper and no-
load losses (i.e., efficiencies) were computed. Expectedly, as

shown in Fig. 4, almost all design parameter values increase
as the transformer rating is increased while maintaining the
same percentage total copper and no-load losses. It should be

mentioned here thatHW variation is minimal in these cases since
transformer voltages are assumed unchanged. This suggests
that any rating variation will similarly affect the phase currents

squared and total copper loss values, thus minimally affecting
HW as indicated by expression (14). In the second computation
set, design parameters corresponding to 40 MVA transformer

ratings having the same specifics, per-unit reactances but while
varying the percentage total copper and no-load losses (i.e., effi-
ciencies) are computed. As shown in Fig. 5, a smaller loss
restriction is achieved by a larger size transformer with reduced

current and flux density values. This is a particularly encoun-
tered design trade-off between capital and running costs for a
power transformer.

Conclusions

In this paper, a performance-oriented power transformer

design methodology using multi-objective evolutionary optimi-
zation has been introduced in detail. Experimental testing as
well as other presented computational results clearly demon-

strates the qualitative and quantitative accuracy of the
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methodology. One advantage of using multi-objective evolu-
tionary optimization is that it deals simultaneously with a set
of possible solutions (i.e., a population). This enables finding

several members of the Pareto front in a single run of the algo-
rithm instead of having to perform a series of separate runs as
in the case of classical optimization methods. These options

can be extremely useful to minimize overall production costs
in view of the changing global prices of different transformer
components, especially copper and steel laminations.

The proposed methodology may be easily utilized to obtain
a quick first guess design details for more sophisticated design
approaches such as those utilizing FEA packages. Moreover,
in the presence of detailed design strategies, the proposed

methodology may be easily improved to relax some assump-
tions by including those strategies. Future work is planned
to enhance the accuracy of the proposed methodology as well

as to extend its applicability to cover more detailed trans-
former design aspects.
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