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Abstract

We use the lowest possible approximation order, piecewise linear, continuous velocities and piecewise constant pressures to
compute solutions to Stokes equation and Darcy’s equation, applying an edge stabilization term to avoid locking. We prove that the
formulation satisfies the discrete inf-sup condition, we prove an optimal a priori error estimate for both problems. The formulation
is then extended to the coupled case using a Nitsche-type weak formulation allowing for different meshes in the two subdomains.
Finally, we present some numerical examples verifying the theoretical predictions and showing the flexibility of the coupled approach.
© 2005 Elsevier B.V. All rights reserved.
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1. Introduction

Our aim in this paper is to present a unified treatment of Stokes’ equation and Darcy’s equation. In infiltration
problems, like the ones encountered in groundwater flow or bioflows, one is interested in solving a problem where the
flow in one part of the domain is governed by Stokes’ equation and in the other by Darcy’s. It is then convenient to work
with a method that may treat both equations in the same manner and also yield the same convergence orders in both
cases. Since the flow field in such cases often is used as data for a system of transport equations from an engineering
point of view one wishes to have continuous velocities for which one has control of the error in the incompressibility.
In the Darcy case the mixed form is often advocated since it is more robust with respect to variations in the material
data. It was pointed out in [13] that the construction of a finite element method which is uniformly well behaved with
respect to both the Darcy case and the Stokes case is not trivial, in fact some popular LBB-satisfying velocity pressure
pairs such as the non-conforming Crouzeix-Raviart element or the piecewise quadratics for the velocities together with
piecewise constants for the pressure fail to converge at all in the Darcy limit. Other methods such as the standard
Taylor—Hood element of the minielement converges but with a loss of convergence order and without convergence
of the divergence of the velocities. The authors then propose an LBB-stable, H(div) conforming element that gives
optimal order estimates in both regimes. However, the construction of this element is rather complicated and moreover
geometry dependent and therefore less attractive for engineering purposes. We will propose a very simple and efficient
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method that allows for optimal error estimates in the energy norm in both regimes. Assuring the convergence of the
divergence of the velocity field. We will consider equations of the following form:
Aw)+Vp=f inQ,
V.u=0 inQ, ey

where Q is an open subset of R?, A is some selfadjoint positive definite operator, u denotes the velocity vector, p the
pressure and f € [LZ(Q)]d . For the choice of A we focus on two cases of importance in fluid dynamics

e A(u) := lu corresponding to Darcy’s equation.
e A(u) := —2uV - &(u), where &(u) is the symmetric part of the velocity gradient, corresponding to Stokes equation.

For simplicity we assume Dirichlet conditions on the boundary, that is, # = 0 on 0Q for Stokes and u - n = 0 on 0Q2
for Darcy. Moreover, our results immediately carry over to the Brinkman model, where A (u) := (u/x)u — 2uV - &(u).
It is well known that the computation of solutions to such systems require that some care is taken in the choice of
approximating spaces in order to make the discrete problem well posed. In particular, the naive choice of piecewise
linear finite elements for both the velocities and the pressure or piecewise linear finite elements for the velocities and
piecewise constants for the pressure results in ill posed discretizations. The solution is either to enrich the velocity space,
using higher order interpolation or local so called, bubble functions, or to stabilize the method using a Galerkin/least-
squares formulation. A vast number of discretizations and stabilizations for the Stokes equation are proposed in the
literature, see, e.g., [3,10,11,6,1,4,12]. For stabilized finite element methods treating the case of Darcy flow we refer to
[14] and references therein. To remain competitive with the approach where Darcy’s equation is treated as an elliptic
Poisson’s equation we wish to keep down the number of degrees of freedom as much as possible. The method for the
Stokes system which is in some sense minimal would be to use piecewise constant (discontinuous) approximation for
the pressures and piecewise linear (continuous) approximation for the velocities. This however results in a much too
rich pressure space and the only velocity that can satisfy the incompressibility constraint is # = 0. Indeed the discrete
divergence operator becomes injective instead of surjective, a phenomenon known as “locking”. The key to “unlock”
the problem is to add a consistent stabilizing term to the formulation. We propose to add a symmetric stabilization term
penalizing the jumps over the element edges of the piecewise constant pressures. This stabilization was first introduced
in the context of Stokes equation in [11] in a global form and then considered in a local form in [12]. Comparisons
with other stabilized methods for the Stokes equations were carried out in [16].

The main difference between Stokes and Darcy’s equations, from the point of view of analysis, is that in Stokes
the velocities are [H'(Q)]? whereas in the case of Darcy they are only in Hgiy(Q). This loss of regularity must be
accounted for in the analysis, and this is the main reason why the stabilized mixed P/ Py is an ideal candidate for the
problem: since the incompressibility condition is tested with constants we obtain Hgiy (£2) stability without additional
least-squares stabilization.

In this paper we apply this mixed stabilized method to Stokes’ equations and Darcy’s equations in a unified manner
and prove optimal a priori estimates in the energy norm applying to both systems. We also propose a Nitsche type
weak coupling for Stokes and Darcy which can handle non-matching meshes on the separating interface. This can be
convenient since the two media can have different material properties and therefore need different meshes. Finally, we
show some numerical examples of showing the performance of the method on the separate problems and on a coupled
example. Only the case of global stabilization is accounted for, but our results generalize to the local form analyzed in
[12] and extend it to include Darcy flow. It is interesting to note that if the local version of the stabilization is applied
the method enjoys local mass conservation on the macro element scale. For some recent results on the theoretical and
numerical aspects on the coupling of the Stokes and the Darcy equation we refer to [5].

2. Finite element formulation

In order to formulate our finite element method we first introduce the weak formulation of problem (1). We introduce
the Hilbert spaces

WP ={v e Hgv(Q) : v-n=0 on 0Q},
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W = {v e [Hy (1),
and
12— 2.0 - —
0_{qeL (Q)./qu_O},
Q
with Q some open subset of R?. We denote the product space WX x L% by #X where X is chosen to D or § depending
on the choice of equation and define the following norm on #"%:

2 2 2 2
1Ges I, x = llully o + IV - ullg o + 1215 0

with / = 0 for Darcy and [ = 1 for Stokes. Let a(u, v) be the bilinear form corresponding to the weak formulation of
A(u) and consider the bilinear form

B[(l/l, p)a (U, 51)] = a(uv U) - (pv V. U)O,Q + (Qa V. u)O,Q‘ (2)
The weak formulation of (1) now takes the form, find (u, p) € # "X such that
Bl(u, p), (v, )1 = (f,v)o.0 V(v.q) € W™, 3)

Let 77, be a conforming, shape regular triangulation of 2. We introduce the two classical finite element spaces of
piecewise linears and piecewise constants

VY ={v:vlg € PI(K); v e COQ): vloo =0,

Vi={v:v|g € PI(K);v e COQ)},
Qh:{‘ZIQIK € Po(K);/!;qu=0}.

The velocity field will be sought in WhS = [Vho]d for Stokes and in WhD ={v e [Vh]d :v-n =0 on 0Q} for Darcy’s

equation and the pressure field in Q. In analogy with the notation above we denote the discrete counterpart of %X,
W}f( X Qn, by W ,}f . We introduce the following bilinear form on which we will base our finite element method:

Byl (u, p), (v,@)]=au,v) — (p, V- U)O,.Q +(@q, V- M)O,Q +J(p.q), 4

where

J(p,qg) =190 h ds,
.9 ;/@K\m ox[pllglds

with [-] denoting the jump over the element edge (taken on interior edges only). We propose the following finite element
formulation: find (up, pn) € W ff such that

Bul(un, pn), hs gi)1 = (f.vndoo  V(h. qn) € W'y )
This finite element formulation is simply the standard Galerkin formulation with the penalizing term J(p, g) added.
In the following we will assume that the pressure is in H'(Q): then the penalizing term is consistent and we have the
following
Lemma 1. If (u, p) is a weak solution to (1) with (u, p) € wX x H\(@)n L% then

Byl —wn. p = p). (0n.ai)] =0 Y(vn, qn) € W5

Proof. Immediate by noting that if p € H 1(Q) then the trace of p is well defined and hence J(p, ;) = 0 for all
qn € Op. U
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3. Stability

Since it is a well known fact that the above choice of finite element spaces results in an ill posed discrete problem
if used in a standard Galerkin method, the crucial point is to show that our stabilization operator J(p, ¢) introduces
sufficient coupling between the degrees of freedom in the pressure field such that an inf-sup condition is satisfied. In
the analysis, we will use the following norm:

1. PP : =M, I, + I (P, p)-

Note that the triple norm contains the L?-norm of V - u; this term is superfluous for Stokes since we already control
the H'-norm of the velocities, but of vital importance for Darcy. In fact, the control of the divergence is what allows
us to prove optimal error estimates in the energy norm for sufficiently regular solutions. The main result of this section
is the following theorem, assuring the wellposedness of our discretization.

Theorem 2. The finite element formulation (5) satisfies the following inf-sup condition

Bp[(un, pn), (v, qn)]
Y n, pIII< sup -

Y(un, pr) € Wi\
(Uthh)enﬂ/‘}}f |||(Uh, Qh)|||

Proof. Taking first (vy,, qn) = (up, pn) we obtain

Bul(un. pn)s (un. p)1=Callunll} o + J (ph. pi)- 6)
where, using Korn’s inequality,

2ulle) |7, = Cxllvlg VYo elHy1,

we have set

1 for [ =0,
C“_{CK for [ =1.

As a consequence of the surjectivity of the divergence operator there exists a function v, € [Hé (1% such that
Vv, = pj and

lvplie<cllprloo- N

Let njv), denote the Clément projection of v, onto [V,?]d. By the stability of the projection we have ||m,v, (1,0 <
cllpnllo,@- We now take (vi, q) = (v, 0) and add 0 = ||ph||2 — (pn, V - vp)p,q to obtain

Bn[(un, pn). (mpvp, 0)] = alup, mpvp) + Il pull*> + (pn, V - (Thvp — vp))o.Q-

We integrate the third term by parts on each triangle K
2 1
B[ (un, pn), (mavp, 0)] = a(up, mpp) + llpnlly o + E 2 ), [prl(mhvp — vp) - nds.
K
K

Applying now Cauchy-Schwarz inequality followed by the arithmetic—geometric inequality in the first and last term
and using the stability estimate on 7, v, we obtain

Cp - 1
Ballun, i), (nvp, 012 = —lunllf g = (1 = &0l pull§ o = ~J (pn, pa)

—ocZ/ hill(nhvp—vp)-mzds,
= Jok

1 for [ =0,
Cb_{zu for [ = 1.
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To conclude we need the following trace inequality, cf. [17]:
2 -1 1 d
lu - nllgox <Cllullo,x (™ llullo,x + llulli,x) Yu € [H (K)] ®)
from which we deduce
- 2k <Chlv,|?
|(mhvp — vp) 'n||0,a1<\ ”Up”],[(-

Taking into account (7) we may write

—1 2 2
Zf h= vy — vp P ds <allplig o
% JOK

which leads to

Cp .
Bul(wn, pn), (mnvp, 01> = —Zllunlly o + (1 = @+ conllpallg o

1
- ;J(Ph, Ph)- )
The control of |V - uy, ||(2) o is obtained by choosing (vp, gn) = (0, V - up).

Byl (un. pr). 0.V -ui)l = |V - unli§ o + J (i, V - up)

1
> = C)|IV - upllg o — ~J(pns 1), (10)

where we used that ||21/2V - uy, ||%K <C|V -uy ||%( by a scaling argument if V - i, is elementwise constant. Finally, we
take (vi, qn) = (Pup + mpvp, fpn + V- up), with

B> (1 — G +com) +a (% +2>,

which yields by (6), (9), (10)

Bul(un, pn). (W gn)1= (1 = @ + conll|un, pw)l|I*.

The claim now follows by taking o sufficiently small and noting that 3C such that |||(up, p)ll| = Cll| (v, gn)ll]- O

4. Error analysis
4.1. A priori estimates

First of all we note that applying the trace inequality (8) we easily derive the following approximation property for
couples of functions (u, p) € [H2(Q)]¢ x H'(Q):

1 = mpu, p— mpp)lll<ch(lullz,o + lIplh,0)- (1)

Proposition 3. Assume that the solution (u, p) to problem (1) resides in [H2Q)]? x HY (@) N L%(Q); then the finite
element solution (5) satisfies the error estimate

11 —un, p = plll<ch(ul2,0 + lIplh,Q)-
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Proof. In view of (11) we only need to show the inequality for |||(u;, — myu, pn — 7, p)ll|. By Theorem 2 and using
Galerkin orthogonality we obtain, with the notation ), = uy — myu and {, = pp — T, p,

B[ (14> Sn). (i, qn)]

1
G COII< - sup

7 onaen 1 (vas gl
L Bl mip = mip), (v gn)]
Y onaneny [11Cn, gl

It remains to use interpolation estimates to bound the terms on the right-hand side. The result follows from standard
interpolation theory and (8). We have

a(u — mpu, vp) <chllullz,olll(wr, gn)lll,
—(p—mnp,V-un)ox =0,
(qn, V - (u — mpu))o, g <chllullz, g 1(vn, gl
J(p —mnp, qn) <chllplli,ellln, gn)lll-

Using the Aubin-Nitsche duality argument we prove the following L, (€2)-estimate for the velocities for the case of
Stokes problem when the mesh parameter is smaller than the viscosity. [

Proposition 4. For Stokes problem we have, if the problem is regularizing,

lu = unllo.o <ch*(lulz.0 + Pl
Proof. Let (¢, r) € # X be the solution of the dual equation

Bl(v,q). (9. N = (. v)oq Y(.q) W™, (12)
and we assume that this dual solution enjoys the additional regularity

lell2,e + lIrle<clyloe- (13)
Choosing v =u — up, q =0 and Yy = u — up, we may write

lu = unllg.o=a@ —un. @)+ (V- (@ —up), r)o.0
and proceed using Galerkin orthogonality to obtain

lu = unli§ o = at —wn, @ — wh@) + (V- (0 — up), (r = mr))o,0
+ V-1, p = pn)oo+ J(p = ph. Thr)
<llu —uplhelle — el + IV - (u —up)llo.@llr — marllo,Q
+mhe — @liellp — prllo.o
1/2 1/2
+J(p—pn.p—pn) "I —mpr,r —mpr)
As a consequence of proposition 3 and the regularity hypothesis (13) we may conclude, keeping in mind that
IV —un) o<l —un, O)]
and using the interpolation result
J(r = mur, r —mur) 2 <hllrlh g,

that

2 2 2 2 2
lu —unllg g <chlolla.o + chlirllig + chlirlio<ch’llu —uploe. O
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5. The coupled problem

The aim of this paper is to propose a unified approach to Stokes’ and Darcy’s equation in order to solve problems
where the flow in one part of the domain ;| := Qg is approximated by the former system of equations and in another
part 2, := Qp by the latter. To be able to handle completely independent triangulations of the different domains,
we apply a Nitsche-type method of weak coupling between the domains. We will also split the viscous stress vector
2u e - n into a scalar normal stress , =2un - (¢ - n) and a tangential stress vector g; =2u ¢ - n — g, n on the interface
I = 51 N 52, where n := n is the outer unit normal to ;. We note in particular that

Que-n)-v=_(0; +0oun)-v=0,v-n+0; 0. (14)
Denoting by (u|g,. plo,) = (u;, pi), i =1,2, we consider the following conditions on I'":

—o,(uy) + py = p2, o:(u;) =0 (force balance),
n-u;=n-uy (continuity of normal velocity). (15)

We remark that the “full slip” condition in the tangential direction is not physically realistic. Beavers—Joseph (Robin-
like) conditions like

o -ty =—k(uy —up) - tj,

withkastiffness parameterand?;, j=1, ..., d denoting the tangential vectors on the interface, can easily be incorporated
into the bilinear form in the standard way, but for ease of presentation we choose the simpler form in (15). An alternative
implementation of this condition along the lines of [9] is described in Section 5.2.

In the following we will write it = (uy, up) € Vi x V, with the continuous spaces:

Vi ={v e [H' Q)] vlaanog, =0},
Vo ={v € Haiv(2;) : v - nlagnog; = 0}.

To formulate our method, we suppose that we have regular finite element partitionings .7 }; of the subdomains €2;
into shape regular simplexes. We shall consider one-sided mortaring using the trace mesh

Y,={E:E=KNI, KeJ;} (16)
We seek the approximation iy, = (u1 p, U2.p) € vh = Vlh X Vzh and pp = (p1.h, P2.1) € Qh = Qﬁ‘ X Qg, where

Vl-h ={v; € V; : vi|g is linear for all K € 72},

Qﬁ’ =1{qi € Q; : gi|k is constant for all K € 92}.

On the interface we will use the notation [v] = v| — v and we denote the diameter of E € ¥4, by hg. A variant of the
method of Nitsche [15,2] can now be formulated as follows: find i, € V" such that

ap(p, V) + by (pr, ) + bp(q, up) + J (P, q) = fr(v) (17)

forall o € V" and g € Qh, with

ap(w, v) :=a(wy, v1) +a(wz, v2) + g Z hglf[ﬁ)n] [V-n]ds, (18)
Ee%,, E
b5, 9) = — 3 (pin V- v, +/Fp2[ﬁ~n]ds, (19)

JFp=)_ 4 ) faK\rhaK[pi][ql-]ds,

i gl
Ke7T,
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and
2
M@ = (g, (20)
i=1
with y, sufficiently large (see below). The method is clearly consistent in the sense that it holds for the exact solution,

and we also have stability as sketched in the following section.

5.1. Stability of the coupled formulation

To prove stability for the coupled problem we follow [7], we consider the simple case of two subdomains only. The
main difficulty compared with the uncoupled analysis is the fact that the global pressure p has mean zero, but the
pressures in the two subdomains taken separately do not. We decompose the pressure in each subdomain into a constant
part p and a part with mean value zero p°, p = p + p°. It follows that ||[3||(2) = ||p0||(2) + IIﬁII% and that

P11 + p2|€2| = 0. (2D

Hence we may write the L, norm as

2
-2 — -2 -2 1€
IPllg = P1I€t] + p31€22| = p3 ( 0] + IQzl) :
For the velocities and p° we may use the same argument as in the previous section with some slight modifications to
take into account the Nitsche-type coupling. We outline this first part in the following proposition.

Proposition 5. The coupled formulation (17) satisfies the inf-sup condition of theorem 2 for with the triple norm given
by

2
G pOIE =D s p)llG + Y hg‘/E[ﬁ~n12ds.
i=1

Ec%),
Proof. We will only point out how to modify theorem 2 to account for the coupled case.

(1) Note that when testing with (ii;,, py) we obtain the additional stabilizing term y) <9, hEl f gliy - n]2 ds.

(2) To control the pressure we choose v; , € HOl (£;) such that V - v; , = pg ; in the two domains separately. This way
the coupling terms do not interfere, since [7;,0, - n] = (vi,, — v2,,) - n = 0. Furthermore, b, (p, mpv, — vp) =0
since p is piecewise constant on each subdomain and v, € [H (21 U )]~

(3) When choosing (v, gn) = (0, V - iiy,) the one-sided mortaring produces a term

/ V. Uz n [ﬂh . n] ds
r

to control this term we use Cauchy-Schwarz inequality, the arithmetic—geometric inequality followed by a scaling
argument to obtain

N Cc
(V -uzp, [up -Vl])réT

1
Vouraldy +— ) h—lf jip - n)*ds,
l M2,h||92r+zc E E[uh nl“ds

Ec9),

where er denotes the union of the triangles in €, neighbouring to the boundary I'. The second term on the right-
hand side is controlled by the additional stabilizing term from (1), choosing 7 sufficiently large, and the proof is
complete. [l
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To conclude we need a similar result for the constant part p. To this end we will construct functions vy € vh,
i =1, 2, such that

/vﬁf,l-nlds=—/v,a,-,z~nzds=13i|9i|, (22)
r r

where n1 and n, denotes the normal taken from domain £2; and €2;, respectively. Moreover let v, satisfy

/[vﬁ[]-nds=0, 23)
r

vy laovr =0, (24)
g Ol <Cllpillo,e;- (25)

We first assume that this function exists and prove the inf-sup condition for p, then we show how to construct v;.
Lemma 6. We have that

_ b(p, vp)
2|Ipllo,e<C sup TV
(vh.qn)eV x Q" [ (vr, gl

Proof. We choose (v, gn) = (v, — vj,, 0) and note that by the definition of v, we have

/[vh~n]ds:0
r

and hence

fﬁz[vh-n]dS=ﬁz/[vh~n]ds=0
r r

leading to
b5, v, — v3) = — 3 (B, V- ui)g, + /Fﬁz[vh nlds == (50, V - v)g,.
i i

We now integrate by parts in the remaining term and use (21) to obtain
= (B V- (vp, — V), = /Fm(v,sl —vp,) -y ds + /Fﬁz(vm —vp,) - npds
i

= Q1| — p1p2(1Q1] + 1Qa]) + P31
[€22]

=23 (@ + 1) =2[5 ¢

We may now conclude using (21) and (25)

b(p.vw)__ b(p.vn) _ 2P312] (12/121] + 1)
@, O™ pllo.e I5ll0.0

=2lplo,e. U

To include the control of || p|| given by the result of Lemma 6 in the inf-sup condition we show stability of the form
b(qp, vp) for the complete pressure.

Lemma 7. There holds

- b(p,v
IFloo<C  sip a2t
(vn.qn)eVhx Qh vr, gl

J(p. p).
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Proof. We choose (vy, gn)=(m,0,+ AV, —vp,), 0) where v, is the function from point two in the proof of proposition
5 and v, — vp, is the function from Lemma 6. Following Theorem 2 and Lemma 6 we may write

b(p. mndp + Ap, — v5y) = 1P°15.0 + (" + b Ty — Tp + AW, — vj,))
=1P°15.0 + b(P°. 1Dy — Bp) + b(P° + . Awp, — vjy))
>1°15.0 — cT (B, DI N2 +b(P°. A, + v5,)) + 241515 o

Recalling the stabilizing term of point 1 in the proof of Proposition 5 we have that

b(p°, Avp, 4+ v5,)) = — el pPllo.elll s, + v, O — Zclp®lo.all Allo.o

and we may conclude using Young’s inequality and choosing A = 1/(c)

-~ 1 . , A
b(p, By + 2p; +vp)) = S1P°15 0 = ¢/ (B, DD llo. + 2201 = 1P

N — N

1 _
>51P°M5.0 = 70, PP o2 + 1515 0

The claim now follows since |[[(v5, — vj5,, Ol <cllpllo,o- O

It remains to prove that we can construct the function v, + vj,. We will for simplicity assume that the interface
is plane. We denote the leftmost node in the domain Q; by xiL and the rightmost node by xl.R, the nodes closest to
the interface midpoint we denote by xl.M , we assume that there exists some constant ¢, such that |x1W — x2W | <cpeh,
W = L, R, M and that the distance between the endpoints and the midpoint is of order O(|I']). Let wi denote the
continuous function which is affine on the intervals [le, x{” ] and [x{” , le ] and is zero for x gle, for x >le and for
x € 02\I" and for which f rwp ds=1.We define w; in the same way. We now use the harmonic extension R; w; to
define w in the whole domain as

w = Ri wj in .Q,'.
By the properties of the harmonic extension we have

2

C
lwiheue, <c ) lwill.r <5
i=1

and by the bound on the distance |xYV — x;‘/ |, W =L, R, M one readily computes that

Y0 2 Cne
—lw]*ds <C—
/F h [Tl

and it follows that the function defined by
vj, = (0, w) p; |€;]
enjoys the required properties.

We thus have stability and consistency, and optimal convergence follows using the same techniques of proof as
previously noting that

2
w3 " [ 1= mi P ds < Y il
i=1

EcY),

by the trace inequality (8).
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5.2. Implementation of a Beavers—Joseph law
We finally consider a non-standard implementation of a Beavers—Joseph law governing the tangential stress vector
onl,
[ul=—kP;o-n, P:=1—nQ®n, (26)

where k is a material parameter (usually assumed to be proportional to the square root of the porosity, cf. [8]) and ®
denotes the exterior product. In [9] it was noted that for vanishing values of &, using non-matching meshes, there may
be stability problems if the standard method of implementation (e.g., [8]) is used. Thus, we follow [9] and propose the
following consistent penalty method: find iZ;, € V" such that

ajy (iip, 0) + bp (P, 0) + bp(q. in) + J (P, @) = frn (D) (27
forall € V" and § € Q", with b, (-, ), J(-, -), and f;,(-) as above, and

ap(w, 0) == ap(w, ) — (W] + kP,o(W1) - n, Pa(01) -n)p — (Pro(Wy) - n, [0] + kP;o(D1) - n)p
+ (kPio(wy) - n, Pro(v1) - n)p + (Sp((w] + kPso(w) - n), [0] +kPo(01) -n)r. (28)

Here S;, is a matrix which depends on the interface conditions of the problem, the local mesh size, and a penalty
parameter y ¢ which has to be large enough for the method to be stable. More precisely, on an element K with diameter
hk,

hy -1
Snlx=—1+kP,) .
7s

Here y¢ can be chosen freely, but for stability it must be related to the constant C; in the following trace inequality:

1/2
2o 0k <Crllo@DI3 ) Vo1 € VY.

For details, see [9].
The rationale behind the method (27) is as follows: the term

—(Pio(wi) - n, [0Dr (29)
is a consistency term emanating from integration by parts,

—([w] + kPia(wy) - n, Pia(v1) -n)r,
which is consistent by (26), is artificially added to symmetrize the problem, and

(Sn([w] + kPro(wy) - n), [0] + kPio(0r) - n)r,

also consistent by (26), is added to make the discrete problem coercive. We now note that (29) is in fact not consistent
because there is no tangential force emanating from the Darcy side. From this point of view, the Beavers—Joseph-Saffman
law

uy=—kP;o-n 30)

is more natural. This law is implemented in the formulation (27) simply by replacing [w] by w; and [0] by 01 ina*(-, -).
For the discrete problem to be well posed this point does not matter, but as will be shown numerically the relation (26)
seems less stable in the case of Darcy-Stokes couplings.

6. Numerical results
6.1. Convergence study for Darcy flow

The first numerical example, taken from [14], is a study of convergence rates for Darcy flow. The domain under
consideration is the unit square with a given exact pressure solution p = sin2nx sin 2ry. The exact velocity field is
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Fig. 1. Approximate velocity field and elevation of the pressure on the final mesh in a sequence.

—oe— Velocity ; ; ; : :
LS o ~* Pressure | e e

251

log (L,-error)

351

log (h)

Fig. 2. Ly-norm convergence of the velocity and of the pressure for Darcy.

then computed from Darcy’s law to give boundary conditions and a source term for the divergence. In order to create
a unique pressure field we also impose zero mean pressure. We set 6 = 10.

In Fig. 1, we show the approximate velocities and pressures on the final mesh in a sequence. In Fig. 2, we show the
convergence of the method in the L;-norm, which yields second order accuracy for the velocities and first order for
the pressure.

6.2. Convergence study for Stokes flow
Again, we consider the unit square with exact flow solution (from [16]) given by u = (20xy3, 5x* — 5y*) and

p = 60x%y — 20y3 + C. Choosing 6 = 1/10 and imposing zero mean pressure (C = —5), we obtain the optimal
convergence shown in Fig. 3.
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Fig. 3. Ly-norm convergence of the velocity and of the pressure for Stokes.

Fig. 4. Velocity and pressure solutions for the coupled problem.

47



48 E. Burman, P. Hansbo / Journal of Computational and Applied Mathematics 198 (2007) 35-51

Fig. 5. Velocity and pressure solutions for the coupled problem.

6.3. Coupling of Stokes and Darcy in the normal direction

We consider an artificial example: in a domain (0, 3) x (0, 1) the flow is governed by Darcy on (0, 1) x (0, 1) and
by Stokes on (1, 3) x (0, 1). The velocity solution for Darcy is given by the exact pressure solution

p=1=x)y(l =y —x+x>=x/3+C,
i.e.,
u:(l—2x+x2+y—y2,—1+x+2y—2xy),

which is divergence free and has a parabolic profile at x = 1. We prescribe u - n at y = £1 and x = 0. For Stokes,
we prescribe u =0 at y ==+1 and u = (y(1 — y), 0) at x = 2, corresponding to Poiseuille flow. Here we have used
A = —pudu instead of A= —2uV - g(u) in the Stokes domain to obtain the usual Poiseuille linear pressure increase also
at in- and outflow. Note that this does not affect the coupling terms at x = 1.

In Fig. 4, we show the effect of a coarse triangulation on one side; note that the solution on the interface is not
parabolic due to the poor resolution on the Stokes domain. In Fig. 5, we give the corresponding solution using a finer
resolution for the Stokes part. Note that the meshes still do not match across the interface.

For the convergence check we use the same example and note that the pressure from the Darcy problem is constant at
x = 1. Thus, we have p = —2x 4 C» in the Poiseuille flow and continuity of the pressure across the interface. Imposing
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Fig. 6. Lo-norm convergence of the velocity and of the pressure for the coupled problem.
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Fig. 7. Mesh used for the tangential coupling example.
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mean pressure zero, these conditions yield C; =29/18, C; =59/18. The convergence of the pressure and the velocity
in L», on a sequence of unfitted meshes (one of which is shown in Fig. 5) is given in Fig. 6, showing first order and

second order convergence, respectively.
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Fig. 8. Velocity profile using the interface law (26).
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Fig. 9. Velocity profile using the interface law (30).

6.4. Tangential coupling of Stokes and Darcy

We give an example close to the one presented by Gartling et al. [8]. Here we solve a Darcy problem of the type
CM—Vp:f, VMIO,

with ¢ a constant. Data for this problem are as follows: on the domain Q = (0, 2) x (0, 2) with Q2; = (1, 2) x (0, 2) and
Qy = Q\Qq, weset f=(0,100), u=10,and c = 104, Boundary conditions are u -n =0atx =0andu =0 at x = 2.
The computational mesh used is shown in Fig. 7. In Fig. 8, we give the velocity profile at y = 1 for a Beavers—Joseph
condition (26) with kK = 0 which corresponds to continuity in tangential velocity. Note the oscillations at the interface
which are consistent with the results of [8]. In contrast, if we use condition (30), with non-zero k, we used k =2/(3./¢),
we obtain the profile shown in Fig. 9. This solution is completely stable, and it might be argued that it is unreasonable
to enforce tangential velocities for Darcy in any case (unlike the coupling between a Brinkman model and Stokes).

7. Conclusion

We have applied the mixed P;/ Py stabilized finite element method allowing the use of piecewise linear approxi-
mation for the velocities and piecewise constant approximation for the pressures to Stokes and Darcy’s equation. This
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formulation is a natural generalization of the Brezzi—Pitkéranta penalization [3], but remains consistent for sufficiently
smooth exact solutions. We have proved optimal a priori estimates for both problems indicating that this method might
be a suitable candidate for problems where one wishes to compute flows where (Navier-) Stokes and Darcy’s equations
are coupled. Moreover we discussed the coupling of the two systems using a Nitsche-type method. Some numerical
results were reported showing good agreement with the theoretical predictions.
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