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a typical four-point amplitude is determined by a single BFKL pomeron. The conformal structure of the
four-point amplitude is fixed in terms of two functions: pomeron intercept and the coefficient function
in front of the pomeron (the product of two residues). The pomeron intercept is universal while the
coefficient function depends on the correlator in question. The intercept is known in the first two orders

Keywords: in coupling constant: BFKL intercept and NLO BFKL intercept calculated in Kotikov and Lipatov (2000,
Pomeron 2003, 2004) [1]. As an example of using the Wilson-line OPE, we calculate the coefficient function in
Conformal invariance front of the pomeron for the correlator of four Z? currents in the first two orders in perturbation theory.

© 2010 Elsevier B.V. Open access under CC BY license.

1. Introduction

The high-energy scattering in a gauge theory can be described in terms of Wilson lines - infinite gauge factors ordered along the
straight lines (see e.g. the review [2]). Indeed, the fast particle moves along its straight-line classical trajectory and the only quantum
effect is the eikonal phase factor acquired along this propagation path. For a fast particle scattering off some target, this eikonal phase
factor is a Wilson line - an infinite gauge link ordered along the straight line collinear to particle’s velocity n#:

o0

UY (x1) = Pexp —ig/dunMA“(un—i—xl) . (1

—00

Here A" is the gluon field of the target, x; is the transverse position of the particle which remains unchanged throughout the collision,
and the index Y labels the rapidity of the particle.

The high-energy behavior of the amplitudes can be studied in the framework of the rapidity evolution of Wilson-line operators forming
color dipoles [3,4]. The main idea is factorization in rapidity [5,6]: we separate a typical functional integral describing scattering of two
particles into (i) the integral over the gluon (and gluino) fields with rapidity close to the rapidity of the spectator Y,, (ii) the integral over
the gluons with rapidity close to the rapidity of the target Y, and (iii) the integral over the intermediate region of rapidities Y4 > Y > Yp,
see Fig. 1. The result of the first integration is a certain coefficient function (“impact factor”) times color dipole (ordered in the direction
of spectator’s velocity) with rapidities up to Y4. Similarly, the result of second integration is again the impact factor times color dipole
ordered in the direction of target’s velocity with rapidities greater than Y. The result of last integration is the correlation function of two
dipoles which can be calculated using the evolution equation for color dipoles which is known in the leading and next-to-leading order.
As an example of practical use of this factorization scheme in the NLO approximation, in the present Letter we calculate the high-energy
behavior of the “scattering amplitude of scalar particles” (the four-point correlation function of scalar currents).
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Fig. 1. High-energy factorization.

The high-energy (Regge) limit of a four-point amplitude A(x, y; X', ¥') in the coordinate space can be achieved as

2 2
x=px*§p1+XL, Y=py*;p1+yl,

2 2
X=prep2+X YV =pYop2 YL (2)
with p, o’ = o0 and x, > 0> y,, X, > 0> y,. (Strictly speaking, p — oo or p’ — oo would be sufficient to reach the Regge limit.)
Hereafter we use the notations x, = —pﬁ‘xﬂ, Xy = —p’z‘xu where p; and p; are light-like vectors normalized by —2(p1, p2) = s. These
“Sudakov variables” are related to the usual light-cone coordinates x* = \ifz(x0 +x3) by x4 = xT4/5/2, Xe =X A/S/2 SO X = %x*pl +

%x.pz +x,. We use the (—1,1,1,1) metric so x* = —%x.x* + ?ci In the Regge limit (2) the full conformal group reduces to Md&bius

subgroup SL(2, C) leaving the transverse plane (0,0, z, ) invariant.
For simplicity, let us consider correlation function of four scalar currents

4
x=y*X —y) (00 (Mo K)o'(y) 3)
_ 4n®V/2 2 _ 1 ; ; i ; ; ;
where O = \/N%__1Tr{Z 1 (Z= ﬁ(¢1 +i¢y)) is a renorm-invariant chiral primary operator.
In a conformal theory this four-point amplitude A(x, y; X', y’) depends on two conformal ratios which can be chosen as
R X=Xy -y
X =y —yH?’
x=yPy-x? 17
r=R[1—-————=+—|.
(x=x)2(y—y)? R

In the Regge limit (2) the conformal ratio R scales as p2p’2 while r does not depend on p or p’.
As demonstrated in Ref. [7], the pomeron contribution in a conformal theory can be represented as an integral over one real variable v

(4)

tanhmv

x— 'K - ) (owono)o!(y)) = % / dv . (0) == F)2(r. R, (5)

Here w(v) = w(0, v) is the pomeron intercept, j~‘+(v) = ]‘+(a)(v)) where f+(w) = (elT® — 1)/sinmw is the signature factor in the co-
ordinate space, and F(v) is the “pomeron residue” (strictly speaking, the product of two pomeron residues). The conformal function
£2(r,v) is given by a hypergeometric function (see Ref. [8]) but for our purposes it is convenient to use the representation in terms of the
two-dimensional integral

B 1)2 ) —K2 %Hv _K/z —iv
@, ”)_F/d Z[(—zx-cﬂ] [(—2:«-:)2} (©)

where ¢ = pT]—Fzzlpz +z, and

S 1 N 1
K=i<p? +Xp; +XJ_> - z“y[ (p—+y2pz+yl),
*

=

2Xy S
Vs [ p1 Vs (1
;d:W ?+X/2p2+xl ~ 2y ?+y’2pz+yl (7)

2 / /N2
are two SL(2, O)-invariant vectors [8] (see also [17]) such that k2 = Sgﬁ;;’) L K'?= S(ZXT;',) and therefore
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K’ = 1 4(k -K’)2 =—. (8)

In our limit (2) x% = xf_, x'2 _xl and similarly for y. Note that all the dependence on large energy (= large p, p’) is contained in R3O,

The dynamical information about the conformal theory is encoded in two functions: pomeron intercept and pomeron residue. The
pomeron intercept is known both in the small and large «; limit. At small o [9]
s
o) =—Nc| x(v)
T

2 ]

8(v) =6¢(3) — %X(U)er”(v)—24’(\))—2‘1’(—1)) (9)

where x (v) =2y/(1) — ¥/(3 +iv) — ¥(3 —iv) and [1]

[t NI .
W) == [ Tt T 2RO | (10)

Our main goal is the description of the amplitude in the next-to-leading order in perturbation theory, but it is worth noting that the
pomeron intercept is known also in the limit of large 't Hooft coupling A = 4w asN,

2
ve 41
oW)+1=jv)=2-2 (11)
Ny
where 2 is the graviton spin and the first correction was calculated in Refs. [10,11].
The pomeron residue F(v) is known in the leading order both at small [8,12,13] and large [7] 't Hooft coupling
3,,2 2
T sinmTy —oo T2V(1 4V
Fuy =932 TSNV i TVIA F V)T (12)

4ycos3mv’ sinh? v

To find the NLO amplitude, we must also calculate the “pomeron residue” F(v) in the next-to-leading order. In the rest of the Letter we
will do this using the high-energy operator product expansion in Wilson lines [5].

2. Operator expansion in conformal dipoles

As we discussed above, the main idea behind the high-energy operator expansion is the rapidity factorization. At the first step, we
integrate over gluons with rapidities Y > n and leave the integration over Y < n for later time, see Fig. 2. The result of the integration is
the coefficient function (“impact factor”) in front of the Wilson-line operators with rapidities up to n =Ino:

oo

ug = Pexp|:—ig f du p“A"(um +xL):|
—0o0
A% () :/d“ke(o — lotel)e** A, (k) (13)

where the Sudakov variable ¢, is defined as usual, k = axp1 + Bkp2 + k1. For the T-product of scalar currents O this coefficient function
has the form [14]:

A~ ~ d?z; d? -
x— yAT{OWO ()} = 2(N2 5 / ak ZZR <Tr{uvu12}

2
% [dz Z12 [m oz3——+C}[Tr{T”U”UTUT U"Ulf}—NcTr{U“Ulf}]) (14)
732551 4 2

Hereafter we use the notations ¢; = Bt + z2p; + zi+, Zj = ——(/c &) = 7(";5‘)2 - L;i")z, and
Cx=yPz,  EGn)
XY 2122 2("';1)(’( ;2)

Note that the Lh.s. of Eq. (14) is conformally invariant while the coefficient function in the r.h.s. is not. The reason for that is the cutoff
in the longitudinal direction (13). Indeed, we consider the light-like dipoles (in the p; direction) and impose the cutoff on the maximal
o emitted by any gluon from the Wilson lines. Formally, the light-like Wilson lines are Mobius invariant. Unfortunately, the light-like
Wilson lines are divergent in the longitudinal direction and moreover, it is exactly the evolution equation with respect to this longitudinal
cutoff which governs the high-energy behavior of amplitudes. At present, it is not known how to find the conformally invariant cutoff in
the longitudinal direction. When we use the non-invariant cutoff we expect, as usual, the invariance to hold in the leading order but to
be violated in higher orders in perturbation theory. In our calculation we restrict the longitudinal momentum of the gluons composing
Wilson lines, and with this non-invariant cutoff the NLO evolution equation in QCD has extra non-conformal parts not related to the

(15)
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Y>n

Y<n

Fig. 2. High-energy operator expansion in Wilson lines.

running of coupling constant. Similarly, there will be non-conformal parts coming from the longitudinal cutoff of Wilson lines in the
N =4 SYM equation. We will demonstrate below that it is possible to construct the “composite conformal dipole operator” (order by
order in perturbation theory) which mimics the conformal cutoff in the longitudinal direction so the corresponding evolution equation
has no extra non-conformal parts. This is similar to the construction of the composite renormalized local operator in the case when the
UV cutoff does not respect the symmetries of the bare operator - in this case the symmetry of the UV-regularized operator is preserved
order by order in perturbation theory by subtraction of the symmetry-restoring counterterms. Following Ref. [14] we choose the conformal
composite operator in the form

.. A 2 R PR N 4az>
(102, 0L 55 = 102,017} + 22 [ dPas 2 [refrn05, 0177705 017 ) - Nt 05,07 ) ]in 972 1 0(@) 16
' T 213233 5213233

where a is an arbitrary constant. It is convenient to choose the rapidity-dependent constant a — ae 2" so that the [Tr{lAjg’1 0;[3}]2‘”“ does
not depend on 17 =Ino and all the rapidity dependence is encoded into a-dependence:

NS conf NO T
[1e{0, 05, )15 = {02, 05
2 2
os 2, 12 ngjo (yto rnpyo fyio o [yto dazq, 2
+5.3 /d z3 %[Tr{T Ug Uy T"UZ, Uy } — N Te{Ug U }]m@ + 0 (af). (17)
Using the leading-order evolution equation [5]
d o fyfo d o fyfo s 2 2%2 nfyo fyio rnfyo fyfo o fyfo
%Tr{Uzl U} :aETr{UZl Uy )= g Kl 2 [Tr{T"UZ, U, T"UZ, Uz, } — N Te{UZ Uz }] (18)
13423

it is easy to see that %[Tr{lflz1 UIZ}]go"f =0 (with our O(a?) accuracy).
Rewritten in terms of conformal dipoles (17), the operator expansion (14) takes the form:

d221 dZZZ

2
213

a

N A 1 ~  ~F yqconf
0= T{OWO' W) = 55— / Rz{[Tr{UZ] 8

s
272

2 2 2

2 2

z asz A A A A A A

/d223 12 <1n 12 Z3z—i7r+2C>[Tr{T”UZ] 0l 10,01} - NeTr {0, UIZ}]G}. (19)
Zi3Zy3 \ 4713253

We need to choose the new “rapidity cutoff” a in such a way that all the energy dependence is included in the matrix element(s) of
Wilson-line operators so the impact factor should not depend on energy ( = should not scale with p as p — o). A suitable choice of a is
given by ag = k2 + i€ = XY= 4 je 50 we obtain

s(x—y)?
(x— y)4T{(’5(X)(’jT(y)} _ 1 / d?z1d%z, RZ{[TF{UO UTU}]conf_ o /d223 i
T2(N2 - 1) 2, avs o ol 713733
‘ [m _ XS T 26] [Te{T"02 01 709,017} — N Te{ 02, 017 }]} (20)
(x = yy213233 nmn e ane
where the conformal dipole [Tr{lAJ;’1 Olf}]c"“f is given by Eq. (17) with ap = %.

Now it is evident that the impact factor in the r.h.s. of this equation is Mobius invariant and does not scale with p so Eq. (17)
gives conformally invariant operator up to a? order. In higher orders, one should expect the correction terms with more Wilson lines.
This procedure of finding the dipole with conformally regularized rapidity divergence is analogous to the construction of the composite
renormalized local operator by adding the appropriate counterterms order by order in perturbation theory.
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To find the amplitude (3) in the next-to-leading order it is sufficient to take into account only the linear evolution of Wilson-line
operators which corresponds to taking into account only two gluons in the t-channel. The non-linear effects in the evolution (and the
production) of t-channel gluons enter the four-current amplitude (3) in the form of so-called “pomeron loops” which start from the NNLO
BFKL order. It is convenient to define the “color dipole in the adjoint representation”

0y =1— "
: v

c—

-Tr{0F o). (21)
With this two-gluon accuracy

1 NS NN A A 1
[N—TF{THUZ UI?T”UZUZI}—TT{UZ U;;T}] 2=—5(Ng )[ conf(z1 z3) + conf(zz’z3) conf(Zl ZZ)]'

c

The conformal dipole operator (17) in the BFKL approximation has the form:

o asNc 2 Z%Z 4az%2 o o o
(z1,22) =U° (21, 22)+ a2 d°z In (U (21, 23) + U (22, 23) —U° (21, 22)]. (22)

conf 2 2 2c2
213233 075273233

With the two-gluon accuracy one more integration in the r.h.s. of Eq. (20) can be performed:

2 2 2 2 22 2 2 22
1 2 %33 2232 1 2 213 ) 1 2 12 71,23

— | d°z3 In{a + — | d°z3 In{a - d°z3 Ina

Z2 72 72,22 72,72 z2 72 72,72 7272 Z2z2 72,72 72,72
2 1221343 12413 1292343 12923 142 13423 13423

2 az122< 1 1 ) ) 2 }
= ——|In—=(ln—+ - —2)+2Li,(1-R)— — —2InR 23
312222[ 2, R R 2 V-3 (23)

so the resulting operator expansion takes the form
x=y*T{OWO (n)}

1 dzy dz asN InR 1 . 2
:_;/ 214 205 (z1,22)R { —%[1 2R—7—2c<1n7z—ﬁ+2)+2L12(1—73)—?“. (24)
12

We need the projection of the T-product in the Lh.s. of this equation onto the conformal eigenfunctions of the BFKL equation [15]

:|;+l'\)+g|: 2]2 :|;+l‘\)g (25)

210220

Z
Ev n(z10, 220) = [
Z10Z20

(here z = zy +izy, Z=zx — izy, zZ10 = Z1 — 2o, etc.). Since O’s are scalar operators, the only non-vanishing contribution comes from
projection on the eigenfunctions with spin 0:

1,
1 [dzid N InR 1 2 z2, 72t
— [ pe)y  Sleli2n MR sc(nR - = +2) 42l —R) - = 12

2 R R

e 2, 3 2025
2 7t p2el qyy ol g2 N
_ K (2 IU) (4 +vi)mw 1 A5 C(D W) (26)
(—2k - £9)? I'(1—2iv) coshmv 27
where

ST . 22 x(v)—2
D1(v) =2y = +iv | -2y’ f—ll) + —+——F+2Cx () (27)

2 3 V2 +4

and go =B + 23, ps + 201
Now, using the decomposition of the product of the transverse §-functions in conformal 3-point functions E, n(z10, z20)

pv24l
8@ (z1 —w1)8P (22 — wa) = Z f ;‘ / d?p E} (w1 — p, wa — p)Eyn(z1 — p. 22 — p) (28)
n=—00 * z4,wi,
we obtain
2 2 2.1 . 2 v
(1 +4v°) I'“(5 —iv) —K 2 asN¢
x— YAT{Ox)OT dv [ d?z 2 1 v,z 29
x=y) { *) (y) / / % 477 cosh v I'(1—2iv) \ (=2« - &g)? 2T O“f( 0) (29)
where
1
. 1 [d2zd%zy ( 22, \27".
a _ 12 a
Ueoni(V, 20) = ;/T<Zﬁozﬁo> Uoni(21, 22) (30)

is a conformal dipole in the zg, v representation.
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Similarly, one can write down the expansion of the bottom part of the diagram in color dipoles:
4 ~ ~
(= y) T{OW)O'(y)}

o [ VA T2G =) e NET e o 31)
__/ U/ 0 27 cosh v’ (1 =2iv") \ (=2« - ¢))? TS 107) Veont(V', 20)- (

Here ¢}, =p1 + % +27,, ,bo=k""2+ie= xJe + i€, and
o=p1+p2+2y,,bo= = way)? ,
b 1 [dzdz( 23, A b
N .y N
Vconf(v ’ZO) = P[ A <22 72 ) Veont(215 22), (32)
12 10420

where the conformal operator

2 2.2
asNC/dZZ z{, 1n4bo 71,

472 2 2

V5b o
Veont(21:22) = V" (21, 22) + 3 3
213233 SZ13%33

[V (z1.23) +V° (22.23) =V (21, 22) (33)

1

N1 Tr{\A/f(r ‘7;(,} (cf. Eq. (21)) ordered along the straight line || p, with the rapidity restriction

is made from the dipoles Vo (x, y=1-

o0
Ve = Pexp|:—ig / du pY' A7, (up> +XJ_):|,
—00

A% (x) = / d*k6 (o — |Bel)e™* AL (k). (34)
If we substitute both operator expansions (29) and (31) into the correlation function (3), it takes the form
4 ~ A ~ ~
x=»* = y)(T{O®O'1O(K)O'(y)})

. 14
:/dudv’/dzzodzz’ v2(1+4v2) I'2(3 —iv) —K2 2t 14 asNC(D1(v)
0 47 coshmv I'(1 = 2iv) \ (=2« - £o)? 2

V21 + 422G —iv) -2 TV N ~a b
x 477 COSh]T\)/ 1"(1 _ 21'1)/) <(_2K/ . ;-6)2) |:l + 27T ®1 (v/):l<uct())nf(v’ ZO)chnf(U/’ 26)> (35)

3. NLO scattering of conformal dipoles and the NLO amplitude

The last step is to find the NLO amplitude of the scattering of conformal dipoles L?gonf(zo, v) and f)fonf(zé), V). First we need to write

down the NLO BFKL evolution (as we discussed above the rapidity dependence is now encoded in the a-evolution):

d ~ N
20 Ugoni(21,22) = / 2324 K (21, 22 23, 24) U423, 24) (36)
where the kernel K(z1, z2; z3, z4) in the first two orders has the form [16,17] (see also Ref. [18])
asN: [22,8%(z 22.8%(z z2
Kio(z1,22: 23, 24) = — 26[ L (213) 12 (224) —52(213)52(224)/d22 %} (37)
2 274254 Zi3255 (71 —2)%(z2 — 2)
asNe 2
Knwo(21, 22; 23, 24) = ——— —K10(21, 22; 23, 24)
4T 3
2IN2 T2 2 2 2 2 2 2 2
aiN? [z4,z 74,z 7%,z 7%,z
= [ 12 §4=(1+ e — )m 13724 +2ln%}+12n2;(3)z‘3‘45(z13)5(zz4)]. (38)
81%23, L 213254 213224 — Z14%33 214233 214233

The eigenfunctions of the kernel K are given by Eq. (25) and the eigenvalues by the pomeron intercept (9).

/d2Z3 d*24 K (21, 22; 73, 24) Ev (230, Z40) = @(n, V)Ey (210, Z20). (39)
For the composite operators with definite conformal spin (30) the evolution equation (36) takes the simple form
d ~a ~a
2a Euconf("’ 20) = W(V)Ugone (v, 20). (40)

(Since Eq. (3) is a correlation functions of scalar currents, we need only the n =0 projection of this evolution.)
The result of the evolution is

A -1 N
ugonf(v’ z0) = (a/a)? w(V)ugc?nf(V’ 20) (41)
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where the endpoint of the evolution a should be taken from the requirement that the amplitude of scattering of conformal dipoles with
“normalization points” @ and b should not contain large logarithms of energy so it will serve as the initial point of the evolution. (This is
similar to taking p? around 1 GeV for the initial point of the DGLAP evolution.) The amplitude of scattering of two conformal dipoles is
calculated in Appendix A and the result has the form (see Eq. (57)):
a?N? 1672 5(
20
N2 —102(1 +412)2

1—4iv _ L —1i 2
LA MG +ivra 'U)][l 4 ol (X(v)[lnﬁb —im —4C — i] - ”—)}

(Z/A{gonf(v7 ZO){;?onf(V/’ 26)) 26)5(1) + V/)

Tlzo — zp|>~4 (V) (§ —iv) 27 V241 3
(42)
Using Eq. (42) as an initial condition for the evolution (41) we get the following amplitude of scattering of two conformal dipoles:
(Z;{gonf(v’ ZO)ﬁ?onf(V/’ 26))
2812 N NI) . W) N 2
aiNZ (a+ie) 2 (b+ie) 2 —(—a—i€e) 2 (—b—ie)2 osN¢ 8 T
N —1 sinTw(v) 21 1+ 412 3
1672 21-4vs(p — ) (3 +iv)r(1 —iv
Xﬁ[S(ZO—ZE])(S(V—l—v/)—i— (/ 3 4.) (2 - )1( . )] (43)
v2(1+44v%) Tlzo — zp|*™™Y  I'(iv)I'(5 —iv)
Finally, substituting this amplitude in Eq. (35) we obtain
/ 41t A AT A ()
@ = =y (T{O0 T OX)OT(y)})
282 NI . o) . oW . ew) 2
aiN ap +i€) 2z (bo+i€e) 2 —(—ag—i€) 2 (—bg—i€) 2 osN, 8 b4
=l.zsc/dv<o+) (bo +i€)™F — (~ag — i)™ (o —i€) 1_SC<X(W4c+ 2+_>
N —1 sinTw(v) 2 1+4v 3
1, 1
tanh 7 v —K2 2 —K'? 7 N
L R (= Ly PRSP | ] )
cosh* v (—2kK - %o) (—2k"- &) 2w
where we used the integral
12 2+1V 2 3—iv
K T K
=—|— . (45)
[(20 —20)2]1 2| (2K £g)? 2iv | (=2« - §p)?

Now it is easy to see that Eq. (44) coincides with Eq. (5) with
N2 Axia? asN, 2 N, 8 2
F(v)= < 511 D1 (v 1-— v4C+ —— — 0(a?
W) Ng—lcoshzm{+2n 1( )H o [x()( +1+4v2)+3]+ ()

2 ) 2w (30 T - o)
= 1+ 2 +iv) -2 - -+ ——-——=|+0(x 46
NZ —1 cosh? rv T v 4 2 1+412 (e5) (46)
which gives the pomeron residue in the next-to-leading order (recall that ay = x ~2 + i€ and bg = K72+ i€). The lowest-order term in
this formula agrees with the leading-order impact factor (12) calculated in Refs. [8,12].

4. Conclusions

The main result of the Letter is that the rapidity factorization and high-energy operator expansion in color dipoles works at the NLO
level. There are many examples of the factorization which are fine at the leading order but fail at the NLO level. We believe that the
high-energy OPE has the same status as usual light-cone expansion in light-ray operators so one can calculate the high-energy amplitudes
level by level in perturbation theory. As an outlook we intend to apply the NLO high-energy operator expansion for the description of
QCD amplitudes. There are many papers devoted to analysis of the high-energy amplitudes in QCD at the NLO level (see e.g. Refs. [19-21])
but all of them use traditional calculation of Feynman diagrams in momentum space. In our opinion, the high-energy OPE in color dipoles
is technically more simple and gives us an opportunity to use an approximate tree-level conformal invariance in QCD. Although our
composite dipole (17) is no longer conformal in QCD, we believe that the effects due to the running coupling calculated in Refs. [22,23]
can be incorporated in some sort of structure resembling the formula (5) for A'=4 SYM. As an application of the machinery developed
here we intend to calculate the photon impact factor for the structure function F,(x) of deep inelastic scattering which will compete the
calculation of small-x structure functions at the NLO level. The study is in progress.
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Appendix A. Dipole-dipole scattering in the NLO

The amplitude of scattering of two conformal dipoles in the first two orders of perturbation theory can be easily calculated in the
momentum representation. In the leading order it has the form of the two-dimensional integral over transverse momenta

2 2 z q—k,z
) . 2N2 d kd q . . . .
Uz , Z \ Z/ ’Z/ = — ; 2 / 2 el(k,zl) el(k’ 2) el(q k.z1) - el( 22)

« [e—i(k,z’ln _ e—i(k,z’z)][e—i(q—k,z’l) _ e—i(q—k,z’z)]

2 2
aZN? 2 @1 7)%(22 — 25)

- . (47)
2(N2—-1) (21 —2)*(z2—2)?
The dipole-dipole amplitude in the next-to-leading order can be taken from Ref. [24]:
a3N3 21, 421! 42
<Z/I(Z1 Zz)V(Z 7 )) N /d kd“kK’ d 1(k,21) _ei(k,zz)][ei(qfk,zl) _ei(qfk,zz)]f dadﬂ
12 47r5(N2 1) kig- k)2 apfs — (k—k')?2 +ie

¢ — gl @ —K)? +K*@q—k)?]
X
k'2(q — k)2
2 2
n 1 k I (q—k [e—i(k,z’l) _ e—i(k,z’z)][e—i(q—k,z’l) _ e—i(q—l<,z’2)] (48)
2Bs| afs —k'2 +ie  afs—(q—Kk)?+ie
where the singularities 1/a and 1/8 are understood in a principal value sense. Here the four-dimensional momentum is parametrized

by Sudakov variables k*~4Mm — ¢ p; + Bp, +k (we denote the transverse 2-dimensional momentum k, by k to save space). Imposing the
“rigid cutoffs” |@| < o, |B| <o’ (in contrast to “slope” cutoffs used in Ref. [24]) and using the integrals

[efi(k’.z/l) _ efi(k’,z’z)][efi(qfk’,z’l) _ efi(qfk/,z’z)]

o 1 77 k? 1 1 oo's im k2
S/dot/dﬂmz/da/dﬂm(Pa><PE>=—2in< 2 —7>+O<?> (49)
e g A
we obtain
A ~ N3 /
U (21, 22V7 (7). 7)) = —W{_DF”"’ (21, 22; 2. 25), (50)

where
0,0’ A
F?%(z1,22; 2}, 25)

:/dzkdzk/ dzq (ei(k,zl) _ ei(k,zz))(ei(qfk,zl) _ ei(qfk,zz)) 1

k2(q —k)?
01028 ﬂ
o k? n (q—k)? _ q In (k=k)?> 2 (efi(k’,zq) _ e—i(k’,z’z))(e—i(q—k’,z;) _ efi(qfk’,z’z))
K2k —kH2  (q—Kk)2(k—k)2 Kk2(q—k)? (k — k)2
01028 i i 01028 i 01028 i
(R e oS WgR -5 a@-kr2 [Mar oS nghh -7
k2 — (k—k')? (k —k')? k'2 (q—Fk)?% — (k—k)? (k —k')? (q—k)?
x (emikF) _ gmitkzy)) (pmita—kzy) _ e—i(q—k,z’p)). (51)
Adding the “correction terms” (22) and (33) which make the dipoles conformal, we get
2 N2 —1 conf Zz/zz ’ OlSNC ’
U1,z V(. 2, =In? 2522 | TS Cp0.0 (70 70 7)., 2
0652 N2 <[ (21, 2)] [ ( 1 2)]13 > Z%Z’Z%V 74 ( 1,42, 49 2)
asNc / 2. %12 4azy, 2 I 2 ro 2 r
+ d°z3 In [In“{z1,23; 21, 25} + In*{22. 23; 2, 2} — In*{z1, 22: 24, 25 }]
2 2 2 2 2 142 1:22
4 ZisZyy 0757325
osN, z22,, 4bz%,,
+ 4;; /dzz’3 5 122 > 2122 [lnz{z’l,z;;a,zz}+ln2{z’2,z’3;z1,zz} —lnz{z’],z’z;z1,zz}] (52)

2yyZyy O 7SZ3 2y
% Unfortunately, we were not able to perform the Fourier transformation in Eq. (51) explicitly.

However, as discussed above, we need only the projection of this amplitude on the eigenfunctions with conformal spin 0 which can be
easily calculated. Taking zg = 0 and performing inversion we get

o —
where In{z1, z3; 2z}, 2,} = In
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¢z, d’z) 23y 7Y 2, 2 \—3+iv

;o ;o -3

/ 74 < conf(‘z]’ZZ)Vconf(zl’ZZ))<z/2Z > /d conf(zl’ZZ) conf(zl’ZZ»(Zl’Z’) : (53)
12 10720

The rh.s. of this equation corresponds to forward scattering and can be easily calculated. Using (z2)Y 2 = nF(Z y) fdzp(p Y=y
I'(y — 1)el®® one obtains

/ 22, d*2y FO (21,22, 2, 25) (22)) 2
5(,2

_ 2w (29,

)/2(1 — )/)2

where x(y) = x(i(% —y))=2C—vy(y) — ¥ (1 —y). The integration of the “correction terms” can be performed in the coordinate space
and the result is

2 )
osNe d*z! d*Z, (22 )V_2 d?z; 2, dazy, [lnz{z 23; 7, z’}~|—ln2{z z3; 7 z’}—lnz{z 22: 21, 24 }]
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4 213233 075213233
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:W( )" [2)(()/)[ WH(V—D—X(—V)]—ZX (y)—2x ()/)]- (55)

Adding Eqgs. (54) and (55), making another inversion and restoring zop we get

2 2 2 5 +iv
d°z; d°z, < (21, 2V (.2)) Ziy |2
e conf\¥15 42) Veonf\41: 42 7272

12 10420
L
N2 16 z2, 7t N N 2 2
= —27‘[2(13 5 ¢ V) [ > 122 i| { 5 ¢ <X (V) |:lnab — UT — 4C — ﬁ] _— ﬂ-)} (56)
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so the lowest-order amplitude of scattering of two conformal dipoles is

272 2 1—4iv / 1 ;
aiN 167 2 Sw—V)I'(s+iv)[FA—iv)
T 2)2 [S(ZO —2)3(v V) + 7 2—4iv » T
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where we used the orthogonality condition [15] for the eigenfunctions (25)
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