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a b s t r a c t

We present two of the three major steps in the construction of motivic integration, that
is, a homomorphism between Grothendieck semigroups that are associated with a first-
order theory of algebraically closed valued fields, in the fundamental work of Hrushovski
and Kazhdan (2006) [8]. We limit our attention to a simple major subclass of V -minimal
theories of the form ACVFS(0, 0), that is, the theory of algebraically closed valued fields
of pure characteristic 0 expanded by a (VF,Γ )-generated substructure S in the language
LRV. Themain advantage of this subclass is the presence of syntax. It enables us to simplify
the arguments withmany different technical details while following themajor steps of the
Hrushovski–Kazhdan theory.

© 2010 Elsevier B.V. All rights reserved.

1. Introduction

The theory of motivic integration in valued fields has been progressing rapidly since its first introduction by Kontsevich.
Early developments byDenef and Loeser et al. have yieldedmany important results inmany directions. The reader is referred
to [7] for an excellent introduction to the construction of motivic measure.
There have been different approaches to motivic integration. The comprehensive study in Cluckers–Loeser [4] has

successfully united some major ones on a general foundation. Their construction may be applied in general to the field
of formal Laurent series over a field of characteristic 0 but heavily relies on the Cell Decomposition Theorem of Denef–
Pas [6,12]. We note that cell decomposition is also achieved in other cases, for example, in certain finite extensions of
p-adic fields [13] and in henselian fields with respect to a first-order language that is equipped with, instead of an angular
component, a collection of residue multiplicative structures [3]. On the other hand, the Hrushovski–Kazhdan integration
theory [8] is a major development that does not require the presence of an angular component map and hence is of great
foundational importance. Its basic objects of study aremodels of the so-called V -minimal theories, for example, the theory of
algebraically closed valued fields of pure characteristic 0 and the theories of its rigid analytic expansions [10,11]. Themethod
of the Hrushovski–Kazhdan integration theory is based on a fine analysis of definable subsets up to definable bijections in
a first-order language LRV for valued fields. Of course the method of the Cluckers–Loeser approach [4] is similar, but the
‘‘up to definable bijections’’ point of view is not so much stressed. In fact both approaches are rooted in the Cohen–Denef
analysis of definable sets that leads to cell decomposition [5,6].
The languageLRV has two sorts: the VF-sort and the RV-sort. One of themain features ofLRV is that the residue field and

the value group are wrapped together in one sort RV. Let (K , val) be a valued field andO,M, K the corresponding valuation
ring, its maximal ideal, and the residue field. Let RV(K) = K×/(1 +M) and rv : K× −→ RV(K) the quotient map. Note
that, for each a ∈ K , val is constant on the subset a+ aM and hence there is a naturally induced map vrv from RV(K) onto
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the value group Γ . The situation is illustrated in the following commutative diagram

K
×

RV(K)
� �

//

O r M

K
×

quotient
����

O r M K×
� �

// K×

RV(K)

rv
����

RV(K) Γ
vrv // //

K×

Γ

val

$$ $$JJJJJJJJJ

where the bottom sequence is exact.
Let VF∗[·] andRV[∗, ·]be two categories of definable sets that are respectively associatedwith theVF-sort and theRV-sort.

In VF∗[·], the objects are definable subsets of products of the form VFn× RVm and the morphisms are definable functions.
On the other hand, for technical reasons (particularly for keeping track of dimensions), RV[∗, ·] is formulated in a somewhat
complicated way (see Section 4). The main construction of the Hrushovski–Kazhdan theory is a canonical homomorphism
from the Grothendieck semigroup K+ VF∗[·] to the Grothendieck semigroup K+ RV[∗, ·] modulo a semigroup congruence
relation Isp on the latter. In fact, it turns out to be an isomorphism. This construction has three main steps.

• Step 1. First we define a lifting map L from the set of the objects in RV[∗, ·] into the set of the objects in VF∗[·]; see
Definition 4.18. Next we single out a subclass of the isomorphisms in VF∗[·], which are called special bijections; see
Definition 5.1. Then we show that for any object A in VF∗[·] there is a special bijection T on A and an object U in RV[∗, ·]
such that T (A) is isomorphic to L(U). This implies that L hits every isomorphism class of VF∗[·]. Of course, for this result
alone we do not have to limit our means to special bijections. However, in Step 3 below, special bijections become an
essential ingredient in computing the congruence relation Isp.
• Step 2. For any two isomorphic objects U1,U2 in RV[∗, ·], their lifts L(U1),L(U2) in VF∗[·] are isomorphic as well. This
shows that L induces a semigroup homomorphism from K+ RV[∗, ·] into K+ VF∗[·], which is also denoted by L.
• Step 3. A number of classical properties of integration can already be (perhaps only partially) verified for the inversion of
the homomorphismL and hence,morally, this third step is not necessary. To facilitate computation in future applications,
however, it seems much more satisfying to have a precise description of the semigroup congruence relation induced by
it. The basic notion used in the description is that of a blowup of an object in RV[∗, ·]. We then show that, for any objects
U1,U2 in RV[∗, ·], there are isomorphic iterated blowups U

]

1,U
]

2 of U1,U2 if and only if L(U1),L(U2) are isomorphic. The
‘‘if’’ direction essentially contains a formof Fubini’s Theoremand is themost technically involved part of the construction.

The inverse of L thus obtained is a Grothencieck homomorphism. If the Jacobian transformation preserves integrals, that is,
the change of variables formula holds, then it may be called a motivic integration. When the Grothendieck semigroups are
formally groupified this integration is recast as a ring homomorphism.
In this paper we give a presentation of the first two steps. The sections are organized as follows. Throughout we shall

follow the terminology and notation of [16]. For the reader’s convenience some key definitions and notational conventions
are recalled in Section 2, where new ones are introduced as well. To delineate the basic geography of definable subsets,
many structural properties concerning the three sorts VF, RV, and Γ are needed. These are discussed in Sections 3 and 8.
In Section 4 we first discuss various notions of dimension, mainly VF-dimension and RV-dimension, and then describe the
relevant categories of definable subsets and the formulation of their Grothendieck semigroups. The fundamental liftingmap
L between VF-categories and RV-categories is also introduced here. The central topic of Section 5 is RV-pullbacks and special
bijections on them. Corollary 5.6 corresponds to Step 1 above. In Section 6 we describe the ‘‘descent’’ technique and use it
to obtain a general quantifier elimination result for henselian fields.
Section 7 is devoted to showing Step 2 above. The notion of a Eγ -polynomial is introduced here, which generalizes the

relation between a polynomial with coefficients in the valuation ring and its projection into the residue field. This leads
to Lemma 7.2, a generalized form of the multivariate version of Hensel’s lemma. Note that in order to apply Lemma 7.2
to a given definable subset we need to find suitable polynomials with a simple common residue root. This is investigated
in Lemma 7.4, which does not hold when the substructure in question contains an excessive amount of parameters in the
RV-sort. This is the reasonwhymotivic integration is constructed onlywhen parameters are taken from a (VF,Γ )-generated
substructure.
For finer categories of definable subsets that can handle the Jacobian transformation, a notion of the Jacobian is needed.

This is provided in Section 9. Then in Section 10 we define these finer categories and explain how to carry out Step 1 and
Step 2 for them.
While we do follow the broad outline of [8], there are significant technical differences. To begin with, our construction

is specialized for ACVFS(0, 0), that is the theory of algebraically closed valued fields of pure characteristic 0, formulated in
the languageLRV and expanded by a substructure S, where S is generated by elements in the field sort and the (imaginary)
value group sort. For this simple major subclass of V -minimal theories we are able to work with syntax. Very often, in
order to grasp the geometrical content of a definable subset A, it is a very fruitful exercise to analyze the logical structure
of a typical formula that defines A, especially when quantifier elimination is available. Consequently, in the context of this
paper, syntactical analysis affords tremendous simplifications of many lemmas in [8]. It also gives rise to technical tools that
are especially powerful for ACVFS(0, 0), the most important of which is Theorem 5.5.
Step 3 of the construction of motivic integration will be presented in a sequel.
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2. Preliminaries

Throughout this paper we shall use the terminology and notation introduced in [16]. For the reader’s convenience, we
recall a few key definitions here.

Definition 2.1. The languageLRV has the following sorts and symbols:

(1) a VF-sort, which uses the language of ringsLR = {0, 1,+,−,×};
(2) an RV-sort, which uses
(a) the group language {1,×},
(b) two constant symbols 0 and∞,
(c) a unary predicate K

×
,

(d) a binary function+ : K
2
−→ K and a unary function− : K −→ K, where K = K

×
∪ {0},

(e) a binary relation≤;
(3) a function symbol rv from the VF-sort into the RV-sort.

The two sortswithout the zero elements are respectively denoted by VF× and RV; RVr {∞} is denoted by RV×; and RV∪ {0}
is denoted by RV0.

Definition 2.2. The theory ACVF of algebraically closed valued fields inLRV states the following:

(1) (VF, 0, 1,+,−,×) is an algebraically close field;
(2) (RV×, 1,×) is a divisible abelian group, wheremultiplication× is augmented by t×0 = 0 for all t ∈ K and t×∞ =∞
for all t ∈ RV0;

(3) (K, 0, 1,+,−,×) is an algebraically closed field;
(4) the relation≤ is a preordering on RV with∞ the top element and K

×
the equivalence class of 1;

(5) the quotient RV /K
×
, denoted as Γ ∪ {∞}, is a divisible ordered abelian group with a top element, where the ordering

and the group operation are induced by ≤ and ×, respectively, and the quotient map RV −→ Γ ∪ {∞} is denoted as
vrv;

(6) the function rv : VF× −→ RV× is a surjective group homomorphism augmented by rv(0) = ∞ such that the composite
function

val = vrv ◦ rv : VF −→ Γ ∪ {∞}

is a valuation with the valuation ring O = rv−1(RV≥1) and its maximal idealM = rv−1(RV>1), where

RV≥1 = {x ∈ RV : 1 ≤ x} , RV>1 = {x ∈ RV : 1 < x} .

Semantically we shall treat Γ as an imaginary sort and write RVΓ for RV∪Γ . However, syntactically any reference to Γ
may be eliminated in the usual way and we shall still work withLRV-formulas.

Theorem 2.3 ([16, Theorem 3.10]). The theory ACVF admits quantifier elimination.

Since a VF-sort literal can be equivalently expressed as an RV-sort literal, we may assume that anLRV-formula contains
no VF-sort literals at all. In particular, we may assume that every VF-sort polynomial F(EX) in a formula φ occurs in the
form rv(F(EX)). This understanding sometimes makes the discussion more streamlined. We say that F(EX) is an occurring
polynomial of φ.

Definition 2.4. Let EX be VF-sort variables and EY be RV-sort variables.
A K-term is an LRV-term of the form

∑k
i=1(rv(Fi(EX)) · ri · EY

Eni) with k > 1, where Fi(EX) is a polynomial with coefficients
in VF and ri ∈ RV. An RV-literal is anLRV-formula of the form

rv(F(EX)) · EY Em · T (EX, EY )� rv(G(EX)) · r · EYEl · S(EX, EY ),

where F(EX), G(EX) are polynomials with coefficients in VF, T (EX, EY ), S(EX, EY ) are K-terms, r ∈ RV, and � is one of the symbols
=, 6=,≤, and>.

Note that if T (EX, EY ) is a K-term, Ea ∈ VF, and Et ∈ RV then T (Ea,Et) is defined if and only if each summand in T (Ea,Et) is
either of value 1 or is equal to 0. Also, since the value of K-terms are 0, we may assume that they do not occur in RV-sort
inequalities.
AnyLRV-formulawith parameters is provably equivalent to a disjunction of conjunctions of RV-literals. This follows from

QE of ACVF and routine syntactical inductions.
Let ACVF(0, 0) denote ACVF with pure characteristic 0. From now on we shall work in a sufficiently saturated model C

of ACVF(0, 0). Let S ⊆ C be a small substructure such that Γ (S) is nontrivial. Let ACVFS(0, 0) be the theory that extends
ACVF(0, 0) with the atomic diagram of S. For notational simplicity we shall still refer to the language of ACVFS(0, 0) as
LRV. Although we do not include the multiplicative inverse function in the VF-sort and the RV-sort, we always assume that,
without loss of generality, VF(S) is a field and RV×(S) is a group.
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Convention 2.5. By a definable subset of Cwemean a ∅-definable subset in the theory ACVFS(0, 0). If additional parameters
are used in defining a subset then we shall spell them out explicitly if necessary.

The substructure generated by a subsetA is denoted by 〈A〉 or dcl(A). Themodel-theoretic algebraic closure ofA is denoted
by acl(A). A substructure S is VF-generated if there is a subset A ⊆ VF(S) such that S = 〈A〉; similarly for (VF, RV)-generated
substructures, (VF,Γ )-generated substructures, etc.

Definition 2.6. A subset b of VF is an open ball if there is a γ ∈ Γ and a b ∈ b such that a ∈ b if and only if val(a− b) > γ .
It is a closed ball if a ∈ b if and only if val(a− b) ≥ γ . It is an rv-ball if b = rv−1(t) for some t ∈ RV. The value γ is the radius
of b, which is denoted as rad(b). Each point in VF is a closed ball of radius∞ and VF is a clopen ball of radius−∞.
If val is constant on b — that is, b is contained in an rv-ball — then val(b) is the valuative center of b; if val is not constant

on b, that is, 0 ∈ b, then the valuative center of b is∞. The valuative center of b is denoted by vcr(b).
A subset p ⊆ VFn× RVm is an (open, closed, rv-) polydisc if it is of the form (

∏
i≤n bi) ×

{
Et
}
, where each bi is an (open,

closed, rv-) ball and Et ∈ RVm. If p is a polydisc then the radius of p, denoted as rad(p), is min {rad(bi) : i ≤ n}. The open
and closed polydiscs centered at a sequence of elements Ea = (a1, . . . , an) ∈ VFn with radii Eγ = (γ1, . . . , γn) ∈ Γ

n are
respectively denoted as o(Ea, Eγ ) and c(Ea, Eγ ).
An rv-polydisc rv−1(t1, . . . , tn)× {Es} is degenerate if ti = ∞ for some i.

Definition 2.7. LetL be a language expandingLRV. LetM be a structure ofL that satisfies the axioms for valued fields. We
say thatM is C-minimal if every parametrically definable subset of VF(M) is a boolean combination of balls. AnL-theory T
is C-minimal if every model of T is C-minimal.

Theorem 2.8 ([16, Theorem 4.2]). The theory ACVF is C-minimal.

Notation 2.9. We sometimes write Ea ∈ VF to mean that every element in the tuple Ea is in VF; similarly for RV, Γ ,
etc. We often write (Ea,Et) for a tuple of elements with the understanding that Ea ∈ VF and Et ∈ RV. For such a tuple
(Ea,Et) = (a1, . . . , an, t1, . . . tm), let

rv(Ea,Et) = (rv(a1), . . . , rv(an),Et), rv−1(Ea,Et) =
{
Ea
}
× rv−1(t1)× · · · × rv−1(tm),

similarly for other functions.
Let Ea = (a1, . . . , an), Ea′ = (a′1, . . . , a

′
n) be tuples in VF. We write val(Ea− Ea

′) for the element

min
{
val(ai − a′i) : 1 ≤ i ≤ n

}
∈ Γ .

For any Eγ = (γ1, . . . , γn) ∈ Γ , the open polydisc {(b1, . . . , bn) : val(bi − ai) > γi} is denoted by o(Ea, Eγ ) and the closed
polydisc {(b1, . . . , bn) : val(bi − ai) ≥ γi} is denoted by c(Ea, Eγ ). We set o(Ea,∞) = c(Ea,∞) =

{
Ea
}
.

Notation 2.10. Coordinate projection maps are ubiquitous in this paper. To facilitate the discussion, certain notational
conventions about them are adopted.
Let A ⊆ VFn× RVm. For any n ∈ N, let In = {1, . . . , n}. First of all, the VF-coordinates and the RV-coordinates of A

are indexed separately. It is cumbersome to actually distinguish them notationally, so we just assume that the set of the
VF-indices is In and the set of the RV-indices is Im. This should never cause confusion in context.
Let I = In ] Im, E ⊆ I , and Ẽ = I r E. If E is a singleton {i} then we always write E as i and Ẽ as ĩ. We write prE(A) for

the projection of A to the coordinates in E. For any Ea ∈ prẼ(A), the fiber {Eb : (Eb, Ea) ∈ A} is denoted by fib(A, Ea). Note that
we shall often tacitly identify the two subsets fib(A, Ea) and fib(A, Ea) ×

{
Ea
}
. Also, it is often more convenient to use simple

descriptions as subscripts. For example, if E = {1, . . . , k} etc. thenwemaywrite pr≤k etc. If E contains exactly the VF-indices
(respectively RV-indices) then prE is written as pvf (respectively prv). If E ′ is a subset of the coordinates of prE(A) then the
composition prE′ ◦ prE is written as prE,E′ . Naturally prE′ ◦ pvf and prE′ ◦ prv are written as pvfE′ and prvE′ , respectively.

3. Some structural properties

In this section we shall list a number of structural properties concerning the relation among the three sorts VF, RV, and
Γ . Some simple ones are just consequences of variations of compactness, for example:

Lemma 3.1. Let A be a definable subset and s an element such that s ∈ acl(a) for every a ∈ A, then s ∈ acl(∅).

Proof. By compactness, there are a definable partitionA1, . . . , Am ofA, integers k1, . . . , km, formulasφ1(X, Y ), . . . , φm(X, Y ),
such that if a ∈ Ai then the subset Ua defined by the formula φi(a, Y ) contains s and its size is at most ki. Then

⋂
a∈A Ua is a

definable finite subset that contains s. �

Corollary 3.2. For any Et ∈ RV, any Et-definable subset A ⊆ rv−1(Et), and any element x, if x ∈ acl(Ea) for every Ea ∈ A then
x ∈ acl(Et). Similarly, for any Eγ ∈ Γ , any Eγ -definable subset B ⊆ vrv−1(Eγ ), and any element x, if x ∈ acl(Et) for every Et ∈ B then
x ∈ acl(Eγ ).

For any A ⊆ VF let Aac be the field-theoretic algebraic closure of A. The field generated by Ea ∈ VF is written as VF(S)(Ea).

Lemma 3.3. For any Ea, b ∈ VF and Et ∈ RV, if b ∈ acl(Ea,Et) then b ∈ VF(S)(Ea)ac.
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Proof. Suppose for contradiction b /∈ VF(S)(Ea)ac. Let φ(X, Ea,Et) be a formula that defines a finite subset containing b. Then,
for any occurring polynomial F(X, Ea) of φ(X, Ea,Et), we have F(b, Ea) 6= 0. We see that, for any d ∈ VF, if val(d − b) is
sufficiently large then rv(F(d, Ea)) = rv(F(b, Ea)) for all occurring polynomials F(X, Ea) and hence φ(d, Ea,Et) holds, which is a
contradiction. �

Corollary 3.4. For any Ea ∈ VF and B ⊆ RV, the transcendental degrees of VF(S)(Ea), VF(〈Ea, B〉), and VF(acl(Ea, B)) over VF(S) are
all equal.

Corollary 3.5 ([16, Lemma 4.12]). Let A ⊆ RVm and f : A −→ VFn a definable function. Then f (A) is finite.

Proof. We may assume n = 1. Since for any Et ∈ A we have f (Et) ∈ 〈Et〉, by Lemma 3.3, f (Et) ∈ VF(S)ac. By compactness f (A)
must be finite. �

Lemma 3.6 ([16, Lemma 4.3]). The exchange principle holds in both sorts:

(1) For any a, b ∈ VF, if a ∈ acl(b) r acl(∅) then b ∈ acl(a).
(2) For any t, s ∈ RV, if t ∈ acl(s) r acl(∅) then s ∈ acl(t).

Corollary 3.7. If a ∈ VF is such that a /∈ acl(∅), then for any t ∈ RV we have a /∈ acl(t). Similarly, if t ∈ RV is such that
t /∈ acl(∅), then for any γ ∈ Γ we have t /∈ acl(γ ).

Proof. For the first claim, suppose for contradiction that a ∈ acl(t). Then a ∈ acl(b) for every b ∈ rv−1(t). So by the exchange
principle we have b ∈ acl(a) for every b ∈ rv−1(t), which is impossible. The other claim is proved in the same way. �

Lemma 3.8 ([16, Lemma 4.9]). Let c1, . . . , ck ∈ VF be distinct elements of the same value α such that their average is 0. Then
for some ci 6= cj we have val(ci − cj) = α and hence rv is not constant on the set {c1, . . . , ck}.

Lemma 3.9 ([16, Lemma 4.10]). Let A be a definable finite subset of VFn. Then there is a definable injection f : A −→ RVm for
some m.

Lemma 3.10 ([16, Lemma 4.15]). LetB be an algebraic set of closed balls. ThenB has centers.

Lemma 3.11. If a ball contains a definable proper subset then it contains a definable point.

Proof. The proof of [16, Lemma 4.16] works almost verbatim here. �

Corollary 3.12. Let B ⊆ RV and f : rv−1(B) −→ RVm a definable function. Then, for all but finitely many t ∈ B, f � rv−1(t) is
constant.

Proof. For any t ∈ B, if f � rv−1(t) is not constant then, by Lemma 3.11, for each Es ∈ ran(f � rv−1(t)), rv−1(t) contains a
(Et,Es)-definable point aEt,Es. By Corollary 3.5, the image of the function given by (Et,Es) 7−→ aEt,Es is finite. �

Lemma 3.13 ([16, Lemma 4.17]). Suppose that S is (VF,Γ )-generated. LetB be an algebraic set of balls. ThenB has centers.

Corollary 3.14 ([16, Corollary 4.18]). Suppose that S is VF-generated. If the value group Γ (acl(S)) is nontrivial then acl(S) is a
model of ACVFS(0, 0).

Lemma 3.15. Let A be a definable subset of RV. Let V ⊆ Γ be the subset such that γ ∈ V if and only if vrv−1(γ )∩A is nonempty
and finite. Then V is finite and definable.

Proof. By C-minimality each vrv−1(γ ) ∩ A is either finite or cofinite. By compactness there is a number k such that if
vrv−1(γ ) ∩ A is finite then it has at most k elements. So V is definable. By C-minimality again V must be finite. �

Let A be a subset and B ⊆ A× VFn× RVm. We say that B is a subset over A if the projection of B to A is surjective.

Notation 3.16. Let A1, A2 be subsets and R1, R2 equivalence relations on them, respectively. A subset B ⊆ A1 × A2 over A1
may be considered as a function from A1/R1 into the powerset P (A2/R2) if, for each equivalence class C ∈ A1/R1 and every
c1, c2 ∈ C , there is a U ∈ P (A2/R2) such that fib(B, c1) = fib(B, c2) =

⋃
U . In this case, we sometime do write B as a

function A1/R1 −→ P (A2/R2). We are of course only interested in definable objects. For example, we will discuss functions
of the forms

VF /M −→ P (RVm), VFn×Γ l −→ P (RVm).

More elaborate syntactical analysis using the normal forms in Definition 2.4 can sometimes reveal finer details.

Lemma 3.17. Let f : VF× −→ P (RVm) be a definable function such that the subset vrv(
⋃
f (VF×)) is bounded from both above

and below. Then for any sufficiently large δ ∈ Γ the restriction f � o(0, δ) r {0} is constant.
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Proof. Let φ(X, EY ) be a disjunction of conjunctions of RV-literals that defines f . For any δ ∈ Γ let φδ(X, EY ) be the formula
φ(X, EY ) ∧ val(X) > δ. Any term of the form rv(F(X)) in φ(X, EY ) may be written as rv(XmF∗(X)), where F∗(0) 6= 0. So if
val(a) is sufficiently large then

rv(amF∗(a)) = rv(am) rv(F∗(0)).

Since vrv(
⋃
f (VF×)) is bounded frombelow, if δ is sufficiently large thenwemay assume that noK-term inφδ(X, EY ) contains

X . Since vrv(
⋃
f (VF×)) is also bounded from above, it is not hard to see that φδ(X, EY ) is actually equivalent to a formula of

the form ψ(EY ) ∧ val(X) > δ, where ψ(EY ) does not contain X . �

It is not hard to see that the same argument shows that the above lemma also holds for functions f : VF× −→ P (RVm)
that satisfy the obvious condition.

Lemma 3.18. Let G be a definable additive subgroup of VF (hence G is either an open ball around 0 or a closed ball around 0). Let
f : VF −→ P (RVm) be a definable function. Then

(1) There are G-cosets D1, . . . ,Dn such that f � (VFr
⋃
i Di) is a function from (VFr

⋃
i Di)/G into P (RVm).

(2) If either G is a closed ball or S is (VF,Γ )-generated then there is a definable function f↓ : VF /G −→ P (RVm) such that for
any G-coset D there is a d ∈ D such that f (d) = f↓(D).

Proof. For any D ∈ VF /G and any Et ∈ RVm let UEt(D) =
{
d ∈ D : Et ∈ f (d)

}
. Let

EEt = {D ∈ VF /G : UEt(D) 6= ∅ and UEt(D) 6= D} .

Note that EEt is Et-definable. Let A = {Et ∈ RV
m
: EEt 6= ∅}, which is definable. If D /∈ EEt for any Et then f � D is constant. So,

without loss of generality, A 6= ∅. For any Et ∈ A, by C-minimality and compactness, there is a Et-definable function hEt on EEt
such that, for each D ∈ EEt ,

(1) hEt(D) is either the union of the positive boolean components of UEt(D) or the union of the negative boolean components
of UEt(D),

(2) there is a D-definable closed ball bD ⊆ D that properly contains hEt(D).

Since hEt(EEt) is Et-definable, by C-minimality again, EEt must be finite. By Lemma 3.10, there is a Et-definable subset AEt such
that |AEt ∩ bD| = 1. Let gD : A −→ VF be the D-definable function given by Et 7−→ AEt ∩ bD if D ∈ EEt and Et 7−→ 0
otherwise. By Corollary 3.5, gD(A) is finite. Since gD(A) ⊆ D ∪ {0}, by C-minimality, the definable subset

⋃
D∈VF /G gD(A)

must be finite and hence
⋃
Et∈A EEt is finite. This establishes (1). By Lemma 3.10 or Lemma 3.13,

⋃
Et∈A EEt has definable centers.

This establishes (2). �

Remark 3.19. Let G be a definable multiplicative subgroup of VF×. Then G is an open ball around 1 or a closed ball around 1
or O r M. It is easy to see that if G is not O r M then the proof of Lemma 3.18 also works with respect to G. If G is O r M
then we can modify the proof as follows: in the construction of hEt , bD ⊆ D is a finite union of rv-balls and contains hEt(D).

4. Categories of definable subsets

4.1. Dimensions

For the categories of definable sets associatedwith ACVFS(0, 0) and their Grothendieck groups, two notions of dimension
with respect to the two sorts are needed. Some basic properties of them are stated below.
Let A ⊆ VFn× RVm be a definable subset.

Definition 4.1. The VF-dimension of A, denoted by dimVF(A), is the smallest number k such that there is a definable finite-
to-one function f : A −→ VFk× RVlΓ .

Lemma 4.2. For any natural number k, dimVF(A) ≤ k if and only if there is a definable injection f : A −→ VFk× RVlΓ for
some l.

Proof. Suppose that dimVF(A) ≤ k. Let g : A −→ VFk× RVlΓ be a definable finite-to-one function. For every (Ea,Et) ∈ g(A),
since g−1(Ea,Et) is finite, by Lemma 3.9, there is an (Ea,Et)-definable injection hEa,Et : g−1(Ea,Et) −→ RVjΓ for some j. By
compactness, there is a definable function h : A −→ RVjΓ for some j such that h � g−1(Ea,Et) is injective for every (Ea,Et) ∈ g(A).
Then the function f on A given by

(Eb,Es) 7−→ (g(Eb,Es), h(Eb,Es))

is as desired. The other direction is trivial. �

Lemma 4.3. Let f : A −→ RVlΓ be a definable function. Then

dimVF(A) = max{dimVF(f −1(Et)) : Et ∈ RVlΓ }.
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Proof. Let max{dimVF(f −1(Et)) : Et ∈ RVlΓ } = k. By Lemma 4.2, for every Et ∈ ran(f ), there is a Et-definable injective function
hEt : f −1(Et) −→ VFk× RVjΓ for some j. By compactness, there is a definable function h : A −→ VFk× RVjΓ for some j such
that h � f −1(Et) is injective for every Et ∈ ran(f ). Then the function on A given by (Eb,Es) 7−→ (h(Eb,Es), f (Eb,Es)) is injective and
hence dimVF(A) ≤ k. The other direction is trivial. �

For any (Ea,Et) ∈ A let tr deg(Ea,Et) be the transcendental degree of VF(
〈
Ea
〉
) over VF(S). Let tr deg(A) = max{tr deg(Ea,Et) :

(Ea,Et) ∈ A}.

Lemma 4.4. dimVF(A) = tr deg(A).

Proof. Let dimVF(A) = k and tr deg(A) = k′. By Lemma 4.2, there is a definable injection f : A −→ VFk× RVlΓ for some l.
For any (Ea,Et) ∈ A, if f (Ea,Et) = (Eb,Es) then, by Lemma 3.3, VF(

〈
Ea
〉
) ⊆ VF(S)(Eb)ac and hence tr deg(Ea,Et) ≤ k. So k′ ≤ k.

On the other hand, for any Ea = (a1, . . . , an) ∈ pvf(A), there is a subset E ⊆ {1, . . . , n} of size k′ such that for any j ∈ Ẽ
we have aj ∈ VF(〈prE(Ea)〉)ac. Therefore, by compactness, there are a partition Ai of pvf(A), subsets Ei ⊆ {1, . . . , n} of size k′,
and formulas φi(EX, EY ) such that, for every Ea ∈ Ai, the subset Bi ⊆ VFn−k

′

defined by φi(EX, prEi(Ea)) is finite and prẼi(Ea) ∈ Bi.

By compactness and Lemma 3.9, there is a definable injection A −→ VFk
′

× RVlΓ for some l and hence k ≤ k
′. �

It follows that additional parameters cannot change the VF-dimension of a definable subset and hence there is no need
to specify parameters when we discuss VF-dimension.

Corollary 4.5. If f : A −→ P (VFn
′

× RVm
′

) is a definable function with finite images then dimVF(A) ≥ dimVF(
⋃
f (A)).

Lemma 4.6. dimVF(A) = n if and only if there is a Et ∈ RVm such that fib(A,Et) contains an open polydisc.

Proof. The ‘‘if’’ direction is immediate by Lemma 4.4. For the ‘‘only if’’ direction, by compactness, it is enough to show the
case A ⊆ VFn. We do induction on n. For the base case n = 1, since A is infinite, the lemma simply follows from C-minimality.
We proceed to the inductive step n = m + 1. For each Ea ∈ pr≤m(A) = B, let ∆Ea be the subset of those γ ∈ Γ such that
fib(A, Ea) contains an open ball of radius γ (if fib(A, Ea) is finite then we set∆Ea = {∞}). Since Γ is o-minimal, some element
γEa in ∆Ea is Ea-definable. By compactness and the inductive hypothesis, we may assume that dimVF(B) = m and there is a
quantifier-free formula φ(Z, EX) such that, for every Ea ∈ B, fib(A, Ea) contains an open ball whose radius γEa is defined by the
formula φ(Z, Ea).
Let Gi(EX) be the occurring polynomials of φ(Z, EX). Let f : B −→ RVk be the definable function given by

Ea 7−→ (rv(G1(Ea)), . . . , rv(Gk(Ea))).

By Lemma 4.3, for some Et ∈ RVk, dimVF(f −1(Et)) = m. By the inductive hypothesis, f −1(Et) contains an open polydisc p. Note
that, by the construction of f , for every Ea ∈ p the formula φ(Z, Ea) defines the same element δ ∈ Γ . Let Eb ∈ p. We may
assume that p is Eb-definable. Note that, by Lemma 4.4, the VF-dimension of pwith respect to the substructure dcl(Eb) is still
m. Consider the Eb-definable subset

W =
{
(Ea, c) ∈ A : Ea ∈ p and o(c, δ) ⊆ fib(A, Ea)

}
.

Since there is a Ed ∈ W such that the transcendental degree of VF(dcl(Ed, Eb)) over VF(dcl(Eb)) is m + 1, by Lemma 4.4 again,
dimVF(W ) = m + 1. By compactness, for some c ∈ prm+1(W ), dimVF(fib(W , c)) = m. By the inductive hypothesis (with
respect to the substructure dcl(Eb, c)), fib(W , c) contains an open polydisc q. So o(c, δ)× q ⊆ A, as required. �

Corollary 4.7. Suppose that A contains an rv-polydisc of the form

{(0, . . . , 0)} × rv−1(Et)×
{
Es
}
,

where Et ∈ (RV×)k. Then dimVF(A) ≥ k.

Proposition 4.8. Suppose that A ⊆ VFn. Let A be the Zariski closure of A and k the Zariski dimension of A. Then dimVF(A) = k.

Proof. Let D be an irreducible component of A and Ea ∈ D ∩ A. Let P be the prime ideal of VF(S)ac[X1, . . . , Xn]
such that D = Z(P). Let KP be the corresponding quotient field. By general facts of commutative algebra (see, for
example, [1, Chapter 11]), the dimension of D is equal to the transcendental degree of KP over VF(S). Since the latter is
no less than the transcendental degree of VF(S)ac(Ea) over VF(S), we see that, by Lemma 4.4, k ≥ dimVF(A).
Let dimVF(A) = tr deg(A) = k′. If k′ = n then obviously A = VFn and hence k = n. Suppose dimVF(A) < n. By

compactness, there are Zariski closed subsets Di given by formulas of the form∧
j/∈Ii

Fj(Xi(1), . . . , Xi(k′), Xj) = 0,

where Ii =
{
i(1), . . . , i(k′)

}
and each Fj is a nonzero polynomial with coefficients in VF(S), such that A ⊆

⋃
i Di. Then

A ⊆
⋃
i Di and hence each irreducible component of A is contained in some Di, which implies k ≤ k

′. �
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Definition 4.9. Let B ⊆ RVm be a definable subset. The RV-dimension of B, denoted by dimRV(B), is the smallest number k
such that there is a definable finite-to-one function f : B −→ RVk (RV0 is taken to be the singleton {∞}).
By the exchange principle (Lemma 3.6), if dimRV(B) = k then for everyEt ∈ B there is a subsequenceEt ′ ⊆ Et of length k such

that Et ∈ acl(Et ′). Also, by compactness, there is a Et ∈ B that contains an algebraically independent subsequence of length k (in
themodel-theoretic sense); that is, for some subsequence (ti(1), . . . , ti(k)) ⊆ Et of length k, no ti(j) is in the algebraic closure of
the other k− 1 elements. So additional parameters cannot change the RV-dimension of B as well. Also, if f : B −→ P (RVl)
is a definable function then dimRV(B) ≥ dimRV(

⋃
f (B)).

Lemma 4.10. Let Es = (s1, . . . , sm) ∈ RV, Eγ = vrv(Es), and B ⊆ vrv−1(Eγ ) a definable subset. Let
BEs = {(t1/s1, . . . , tm/sm) : (t1, . . . , tm) ∈ B} .

Then dimRV(B) agrees with the Zariski dimension of BEs.
Proof. The proof of Proposition 4.8 works almost verbatim here. �

Lemma 4.11. Let B ⊆ RVm with dimRV(B) = k. Then there is a definable sequence Eγ ∈ Γ m such that dimRV(B∩vrv−1(Eγ )) = k.
Proof. By compactness, without loss of generality, we may assume that, for every Et ∈ B, Et ∈ acl(t1, . . . , tk). Let

B0 =
{
(pr≤k(Et), val(pr>k(Et))) : Et ∈ B

}
⊆ RVk×Γ m−k.

Clearly there is a natural number q such that
∣∣fib(B0,Et)∣∣ ≤ q for every Et ∈ pr≤k(B). For every (Et, Eγ ) ∈ pr>1(B0) let DEt,Eγ ⊆ Γ

be the subset such that α ∈ DEt,Eγ if and only if vrv−1(α) ∩ fib(B0, (Et, Eγ )) is infinite. Since dimRV(B) = k, by Corollary 3.7, we
see that DEt,Eγ is not empty for some (Et, Eγ ) ∈ pr>1(B0). Also, by Lemma 3.15, DEt,Eγ is (Et, Eγ )-definable. So, by compactness, the
subset

B1 =
⋃

(Et,Eγ )∈pr>1(B0)

DEt,Eγ ×
{
(Et, Eγ )

}
⊆ RVk−1×Γ m−k+1

is nonempty and definable. We may repeat this procedure with respect to B1 and get a definable subset B2 ⊆
RVk−2×Γ m−k+2, and so on. Eventually we obtain a nonempty definable subset Bk ⊆ Γ m with the following property: if
Eγ ∈ Bk then there is a (t1, . . . , tk, . . . , tm) ∈ vrv−1(Eγ ) ∩ B such that t1, . . . , tk are algebraically independent and hence
dimRV(vrv−1(Eγ ) ∩ B) = k. Now, since Γ is o-minimal, some Eγ ∈ Bk is definable. �

Definition 4.12. The RV-fiber dimension of A, denoted by dimfibRV(A), is
max

{
dimRV(fib(A, Ea)) : Ea ∈ pvf(A)

}
.

Lemma 4.13. Suppose that f : A −→ A′ is a definable bijection. Then dimfibRV(A) = dim
fib
RV(A

′).

Proof. Let dimfibRV(A) = k1 and dim
fib
RV(A

′) = k2. Since for every Eb ∈ pvf(A′) there is a Eb-definable finite-to-one function
hEb : fib(A

′, Eb) −→ RVk2 , by compactness, there is a definable function h : A′ −→ RVk2 such that h � fib(A′, Eb) is finite-to-
one for every Eb ∈ pvf(A′). For every Ea ∈ pvf(A), by Corollary 3.5, the subset (pvf ◦f )(fib(A, Ea)) is finite. So the function gEa on
fib(A, Ea) given by

(Ea,Et) 7−→ (h ◦ f )(Ea,Et)
is Ea-definable and finite-to-one. So k1 ≤ k2. Symmetrically we also have k1 ≥ k2 and hence k1 = k2. �

4.2. Categories of definable subsets

The class of objects and the class of morphisms of any category C are denoted by ObC andMorC, respectively. By A ∈ C
we usually mean that A is an object of C.
Definition 4.14 (VF-categories). The objects of the category VF[k, ·] are the definable subsets of VF-dimension ≤ k. The
morphisms in this category are the definable functions between the objects.
The category VF[k] is the full subcategory of VF[k, ·] of the definable subsets that have RV-fiber dimension 0 (that is,

all the RV-fibers are finite). The category VF∗[·] is the union of the categories VF[k, ·]. The category VF∗ is the union of the
categories VF[k].
Note that, for any definable subset A, by Lemmas 3.9 and 4.3, fib(A,Et) is finite for every Et ∈ prv(A) if and only if

A ∈ VF[0, ·]. Also, by Lemma 4.13, A ∈ VF[k] if and only if there is a definable finite-to-one map A −→ VFk.
Definition 4.15. For any tuple Et = (t1, . . . , tn) ∈ RV, the weight of Et is the number |{i ≤ n : ti 6= ∞}|, which is denoted by
wgt(Et).
Definition 4.16 (RV-categories). An object of the category RV[k, ·] is a definable pair (U, f ), where U ⊆ RVm for some m
and f : U −→ RVk is a function (RV0 is taken to be the singleton {∞}). We often denote the projections pri ◦f as fi and write
f as (f1, . . . , fk). The companion Uf of (U, f ) is the subset

{
(f (Eu), Eu) : Eu ∈ U

}
.

For any two objects (U, f ), (U ′, f ′) in RV[k, ·] and any function F : U −→ U ′, if wgt(f (Eu)) ≤ wgt((f ′ ◦ F)(Eu)) for every
Eu ∈ U thenwe say that F is volumetric. If F is definable, volumetric, and, for every Et ∈ RVk the subset (f ′ ◦F)(f −1(Et)) is finite,
then it is a morphism in Mor RV[k, ·].
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The category RV[k] is the full subcategory of RV[k, ·] of the pairs (U, f ) such that f : U −→ RVk is finite-to-one.
Direct sums (coproducts) over these categories are formed naturally:

RV[≤ i, ·] =
∐
0≤k≤i

RV[k, ·], RV[∗, ·] =
∐
0≤k

RV[k, ·],

and similarly for RV[≤ i] and RV[∗].

We usually just write A for the object (A, id) ∈ RV[k, ·]. Also, for any object in RV[k, ·] of the form (U, prE), we may
assume that (U, prE) is (U, pr≤k) if this is more convenient. This should not cause any confusion in context.
One of the main reasons for the peculiar forms of the objects and the morphisms in the RV-categories is that each

isomorphism class in these categories may be ‘‘lifted’’ to an isomorphism class in the corresponding VF-category. See
Proposition 7.6 and Corollary 7.7 for details.
A subobject of an object A of a VF-category is just a definable subset. A subobject of an object (U, f ) of an RV-category is

a definable pair (A, g)with A a subset of U and g = f � A. Note that the inclusion map is a morphism in both cases.
Notice that the cartesian product of two objects A, B ∈ VF[k, ·] may or may not be in VF[k, ·]. On the other hand, the

cartesian product of two objects (U, f ), (U ′, f ′) ∈ RV[k, ·] is the object (U × U ′, f × f ′) ∈ RV[2k, ·], which is definitely not
in RV[k, ·] if k > 0. Hence, in RV[∗, ·] or RV[∗], multiplying with a singleton in general changes isomorphism class.
The categories VF∗[·] and VF∗ are formed through union instead of direct sum or other means that induces more

complicated structure. The reason for this is that the main goal of the Hrushovski–Kazhdan integration theory is to assign
motivic volumes, that is, elements in the Grothendieck groups of the RV-categories, to the definable subsets, or rather,
the isomorphism classes of the definable subsets, in the VF-categories, and the simplest categories that contain all the
definable subsets thatmay be ‘‘measured’’ in thismotivic way are VF∗[·] and VF∗. In contrast, the unions of the RV-categories
are naturally endowed with the structure of direct sum, which gives rise to graded Grothendieck semirings. The ring
homomorphisms are obtained by ‘‘passing to the limit’’. These will be made precise in a sequel.

Definition 4.17. For any (U, f ) ∈ RV[k, ·] and any F ∈ Mor RV[k, ·], letEk(f ) be the function onU given by Eu 7−→ (f (Eu),∞),
Ek(U, f ) = (U,Ek(f )), and Ek(F) = F . Obviously

Ek : RV[k, ·] −→ RV[k+ 1, ·]

is a functor that is faithful, full, and injective on objects. For any i < j let Ei,j = Ej−1 ◦ · · · ◦ Ei and Ei,i = id.

Homomorphisms between Grothendieck groups shall be induced by the following fundamental maps:

Definition 4.18. For any (U, f ) ∈ RV[k, ·], let

Lk(U, f ) =
⋃{

rv−1(f (Eu))×
{
Eu
}
: Eu ∈ U

}
.

The map Lk : Ob RV[k, ·] −→ ObVF[k, ·] is called the kth canonical RV-lift. The map L≤k : Ob RV[≤ k, ·] −→ ObVF[k, ·] is
given by

((U1, f1), . . . , (Uk, fk)) 7−→
⊎
i≤k

(Lk ◦ Ei,k)(Ui, fi).

The map L : Ob RV[∗, ·] −→ ObVF∗[·] is simply the union of the maps L≤k.

For notational convenience, when there is no danger of confusion, we shall drop the subscripts and simply write E and
L for these maps.
Observe that if (U, f ) ∈ RV[k] then L(U, f ) ∈ VF[k] and hence the restriction L : Ob RV[k] −→ ObVF[k] is well-defined.

Similarly we have the maps

L : Ob RV[≤ k] −→ ObVF[k], L : Ob RV[∗] −→ ObVF∗ .

Also note that rv(L(U, f )) = Uf for (U, f ) ∈ RV[k, ·].
For any two objects (U, f ), (U ′, f ′) ∈ RV[k, ·] and any definable function F : U −→ U ′ there is a naturally induced

function Ff ,f ′ : Uf −→ U ′f ′ given by

(f (Eu), Eu) 7−→ ((f ′ ◦ F)(Eu), F(Eu)).

We have:

Lemma 4.19. Suppose that F is volumetric and there is a definable function F↑ : L(U, f ) −→ L(U ′, f ′) such that the diagram

L(U ′, f ′) U ′f ′rv
//

L(U, f )

L(U ′, f ′)

F↑
��

L(U, f ) Uf
rv // Uf

U ′f ′

Ff ,f ′
��

U ′f ′ U ′pr>k
//

Uf

U ′f ′
��

Uf U
pr>k // U

U ′

F
��

commutes. Then F is a morphism in RV[k, ·].
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Proof. It is enough to show that, for every Eu ∈ U and every i ≤ k,
(f ′i ◦ F)(Eu) ∈ acl(f (Eu)),

which is equivalent to (pri ◦Ff ,f ′)(f (Eu), Eu) ∈ acl(f (Eu)). To that end, fix a Eu ∈ U . Let Ea ∈ rv−1(f (Eu)) and F↑(Ea, Eu) =
(b1, . . . , bk, Eu′). By Lemma 3.3, bi ∈ acl(Ea) and hence

(pri ◦Ff ,f ′)(f (Eu), Eu) = rv(bi) ∈ acl(Ea)
for each i ≤ k. By Corollary 3.2, rv(bi) ∈ acl(f (Eu)). �

Remark 4.20. In Lemma 4.19, if both F and F↑ are bijections then we may drop the assumption that F is volumetric, since
it is guaranteed by the commutative diagram and Corollary 4.7.

4.3. Grothendieck groups

We now introduce the Grothendieck groups associated with the categories defined above. The construction is of course
the same for any reasonable category of definable sets of a first-order theory. For concreteness, we shall limit our attention
to the present context.
Let C be a VF-category or an RV-category. For any A ∈ ObC, let [A] denote the isomorphism class of A. The Grothendieck

semigroup of C, denoted by K+ C, is the semigroup generated by the isomorphism classes [A] of C, subject to the relation
[A] + [B] = [A ∪ B] + [A ∩ B].

It is easy to check that K+ C is actually a commutative monoid, the identity element being [∅] or ([∅], . . .). Since C always
has disjoint unions, the elements of K+ C are precisely the isomorphism classes ofC. IfC is one of the categories VF∗[·], VF∗,
RV[∗, ·], and RV[∗] then it is closed under cartesian product. In this case, K+ C has a semiring structure with multiplication
given by

[A][B] = [A× B].
Since the symmetry isomorphisms A × B −→ B × A and the association isomorphisms (A × B) × C −→ A × (B × C) are
always present in these categories, K+ C is always a commutative semiring.
Remark 4.21. If C is either VF∗[·] or VF∗ then the isomorphism class of definable singletons is the multiplicative identity
of K+ C. If C is RV[∗, ·] then we adjust multiplication when RV[0, ·] is involved as follows. For any (U, f ) ∈ RV[0, ·] and
(V , g) ∈ RV[k, ·], let

[(U, f )][(X, g)] = [(X, g)][(U, f )] = [(U × V , g∗)],
where g∗ is the function on U × V given by (Et,Es) 7−→ g(Es). It is easily seen that, with this adjustment, K+ RV[∗, ·] becomes
a filtrated semiring and its multiplicative identity element is the isomorphism class of (∞, id) in RV[0, ·]. Multiplication in
K+ RV[∗] is adjusted in the same way.
Definition 4.22. A semigroup congruence relation on K+ C is a sub-semigroup R of the semigroup K+ C × K+ C such that
R is an equivalence relation on K+ C. Similarly, a semiring congruence relation on K+ C is a sub-semiring R of the semiring
K+ C × K+ C such that R is an equivalence relation on K+ C.
Let R be a semigroup congruence relation on K+ C and (x, y), (v,w) ∈ R. Then (x + v, y + v), (y + v, y + w) ∈ R and

hence (x + v, y + w) ∈ R. Therefore the equivalence classes of R has a semigroup structure induced by that of K+ C. This
semigroup is denoted byK+ C/R and is also referred to as a Grothendieck semigroup. Similarly, if R is a semiring congruence
relation on K+ C then K+ C/R is actually a Grothendieck semiring.
Remark 4.23. Let R be an equivalence relation on the semiring K+ C. If for every (x, y) ∈ R and every z ∈ K+ C we have
(x+ z, y+ z) ∈ R and (xz, yz) ∈ R then R is a semiring congruence relation.
Let (ZK+ C,⊕) be the free abelian group generated by the elements of K+ C and C the subgroup of (ZK+ C,⊕) generated

by all elements of (ZK+ C,⊕) of the types
(1 · x)⊕ ((−1) · x), (1 · x)⊕ (1 · y)⊕ ((−1) · (x+ y)),

where x, y ∈ K+ C. The Grothendieck group of C, denoted by KC, is the formal groupification (Z(K+ C),⊕)/C of K+ C, which
is essentially unique by the universal mapping property. In general the natural homomorphism from K+ C into KC is not
injective. Note that if K+ C is a commutative semiring then KC is naturally a commutative ring.
It is easily checked that Ek induces an injective semigroup homomorphism

K+ RV[k, ·] −→ K+ RV[k+ 1, ·],
which is also denoted by Ek.

5. RV-pullbacks and special bijections

We shall adopt [16, Convention 4.20]: Since definably bijective subsets are to be identified, for a subset A, we shall tacitly
substitute its canonical image c(A) for it in the discussion if it is necessary or is just more convenient.



Y. Yin / Annals of Pure and Applied Logic 161 (2010) 1541–1564 1551

For any subset U , recall from [16, Definition 4.21] that the RV-hull of U is the union of the rv-polydiscs that have a
nonempty intersectionwithU . IfU is equal to its RV-hull thenU is an RV-pullback. An RV-pullback is degenerate if it contains
a degenerate rv-polydisc and is strictly degenerate if it only contains degenerate rv-polydiscs.
Here comes the general version of [16, Definition 4.22]:

Definition 5.1. Let A ⊆ VF×VFn× RVm. Let C ⊆ RVH(A) be an RV-pullback and λ : pr>1(C ∩ A) −→ VF a function such
that every (λ(Ea1,Et), Ea,Et) is in C . Let

C] =
⋃

(Ea1,t1,Et1)∈pr>1 C

((⋃{
rv−1(t) : vrv(t) > vrv(t1)

})
×
{
(Ea1, t1,Et1)

})
,

RVH(A)] = C] ] (RVH(A) r C).

The centripetal transformation η : A −→ RVH(A)] with respect to λ is defined by{
η(a1, Ea1,Et) = (a1 − λ(Ea1,Et), Ea1,Et), on C ∩ A,
η = id, on A r C .

Note that η is injective. The inverse of η is naturally called the centrifugal transformation with respect to λ. The function λ
is called a focus map of X . The RV-pullback C is called the locus of λ. A special bijection T is an alternating composition of
centripetal transformations and the canonical bijection. The length of a special bijection T , denoted by lh T , is the number of
centripetal transformations in T . The image T (A) is sometimes denoted by A].

Note that we should have included the index of the targeted VF-coordinate as a part of the data of a focus map. Since it
should not cause confusion in context, we shall suppress mentioning it for notational ease.
We shall only be concerned with definable special bijections.
Clearly if A is an RV-pullback and T is a special bijection on A then T (A) is an RV-pullback. Recall that a subset A is called

a deformed RV-pullback if there is a special bijection T such that T (A) is an RV-pullback.

Lemma 5.2. Every definable subset A ⊆ VF× RVm is a deformed RV-pullback.

Proof. See [16, Lemma 4.26]. �

Remark 5.3. Let A ⊆ VF× RVm be a deformed RV-pullback and T : A −→ U a special bijection that witnesses this. By a
routine induction, we see that if rv−1(s)×

{
(s,Et)

}
⊆ U with s 6= ∞ then T−1(rv−1(s)×

{
(s,Et)

}
) is an open polydisc that is

contained in an rv-polydisc.

Let f : A −→ B be a function. We say that f is contractible if for every rv-polydisc p ⊆ RVH(A) the subset f (p ∩ A) is
contained in one rv-polydisc. Clearly, if f : A −→ B is a (definable) contractible function then there is a unique (definable)
function f↓ : rv(A) −→ rv(B) such that the diagram commutes:

rv(A) rv(B)
f↓

//

A

rv(A)

rv
��

A B
f

// B

rv(B)

rv
��

In this case we say that f↓ is the contraction of f .
The following technical result is a major tool for the Hrushovski–Kazhdan construction as presented in [15].

Theorem 5.4. Let F(EX) = F(X1, . . . , Xn) be a polynomial with coefficients in VF(S), Eu ∈ RVn a definable tuple, τ : rv−1(Eu) −→
A a special bijection, and f = F ◦ τ−1. Then there is a special bijection T on A such that f ◦ T−1 is contractible.

Proof. First observe that if the assertion holds for one polynomial F(EX) then it holds simultaneously for any finite number
of polynomials. We do induction on n. For the base case n = 1, we simply write X for EX . Let T be a special bijection on A. For
any rv-polydisc p ⊆ T (A), let kT (p) be the size of the set {Ex ∈ p : (f ◦ T−1)(Ex) = 0}.

Claim. There is a special bijection T ∗ on T (A) such that f ◦ (T ∗ ◦ T )−1 is contractible.

Proof. By compactness, we may concentrate on one rv-polydisc p = rv−1(s)×
{
(s, Er)

}
⊆ T (A). We do induction on kT (p).

For the base case kT (p) = 1, consider the focus map λ : {(s, Er)} −→ VF such that f (T−1(λ(s, Er), s, Er)) = 0 and the special
bijection T ∗ on p given by

(b, s, Er) 7−→ (b− λ(s, Er), rv(b− λ(s, Er)), s, Er).

By Remark 5.3, for every rv-polydisc r ⊆ T ∗(p), (T ∗ ◦ T ◦ τ)−1(r) is either the root of F(X) in question or an open ball that
contains no roots of any F(X). So T ∗ is as required.
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For the inductive step kT (p) = m > 1, let (d1, s, Er), . . . , (dm, s, Er) ∈ p be the points in question and d the average of
d1, . . . , dm. Consider the special bijection T ∗ on p given by

(b, s, Er) 7−→ (b− d, rv(b− d), s, Er).

By Lemma 3.8, rv is not constant on {d1 − d, . . . , dm − d} and hence kT∗◦T (r) < m for every rv-polydisc r ⊆ T ∗(p). So we
are done by compactness and the inductive hypothesis. �

This completes the base case of the induction.
We now proceed to the inductive step. As above, we may concentrate on one rv-polydisc p = rv−1(Es) ×

{
(Es, Er)

}
⊆ A.

Let φ(EX, Y ) be a quantifier-free formula that defines the function (rv ◦f ) � p, where Y is the free RV-sort variable. Let
Gi(EX) enumerate the occurring polynomials of φ(EX, Y ). For each a ∈ rv−1(s1) let Gi,a = Gi(a, X2, . . . , Xn). By the inductive
hypothesis, there is a special bijection Ra on rv−1(s2, . . . , sn) such that every function Gi,a ◦ R−1a is contractible. Let Uj,a
enumerate the loci used in Ra and λj,a the corresponding focus maps. By compactness,

(1) for each i there is a quantifier-free formula ψi(X1, EZ ′, Z) such that ψi(a, EZ ′, Z) defines the contraction of Gi,a ◦ R−1a ,
(2) there is a quantifier-free formula θ(X1, EZ ′′) such that θ(a, EZ ′′) determines the sequence rv(Uj,a) and the VF-coordinates
targeted by λj,a.

Let Hk(X1) enumerate the occurring polynomials of the formulasψi(X1, EZ ′, Z), θ(X1, EZ ′′). Applying the inductive hypothesis
again, we obtain a special bijection T1 on rv−1(s1) such that every functionHk◦T−11 is contractible. Thismeans that, for every
rv-polydisc q ⊆ T1(rv−1(s1)) and every a1, a2 ∈ T−11 (q), the formulas ψi(a1, EW , Z), ψi(a2, EW , Z) define the same function
and the special bijections Ra1 , Ra2 may be naturally glued together to form one special bijection on {a1, a2}×rv

−1(s2, . . . , sn).
Consequently, T1 and Ra naturally induce a special bijection T on p such that each functionGi◦T−1 is contractible. This implies
that f ◦ T−1 is contractible. �

We immediately give a slightly more general version of Theorem 5.4, which is easier to use:

Theorem 5.5. Let F(EX) = F(X1, . . . , Xn) be a polynomial with coefficients in VF(S), B ⊆ VFn a definable subset, τ : B −→ A
a special bijection, and f = F ◦ τ−1. Then there is a special bijection T on A such that T (A) is an RV-pullback and f ◦ T−1 is
contractible.

Proof. By compactness, we may concentrate on a subset of the form Ap = p ∩ A, where p is an rv-polydisc. Let φ(EX, Z) be
a quantifier-free formula that defines the function (rv ◦f ) � Ap. Let Fi(EX) enumerate the occurring polynomials of φ(EX, Z).
By Theorem 5.4 there is a special bijection T on p such that each function Fi ◦ T−1 is contractible. This means that, for each
rv-polydisc q ⊆ T (p),
(1) either T−1(q) ⊆ Ap or T−1(q) ∩ Ap = ∅,
(2) if T−1(q) ⊆ Ap then (rv ◦f ◦ T−1)(q) is a singleton.

So T � Ap is as required. �

Now Lemma 5.2 may be easily generalized to all dimensions:

Corollary 5.6. Every definable subset A ⊆ VFn× RVm is a definable deformed RV-pullback.
Proof. By compactness, we may assume that A is contained in an rv-polydisc. Then the assertion simply follows from
Theorem 5.5. �

Applying Lemmas 4.2 and 4.13, we get the following corollary:

Corollary 5.7. The map L : Ob RV[k, ·] −→ ObVF[k, ·] is surjective on the isomorphism classes of VF[k, ·]. The map L :
Ob RV[k] −→ ObVF[k] is surjective on the isomorphism classes of VF[k].

6. Interlude: quantifier elimination for henselian fields

The analysis on special transformations in Section 5 leads to a general quantifier elimination result for henselian fields.
Pas’ quantifier elimination result [12, Theorem 4.1] may be recovered from it.

Definition 6.1. A substructure M is functionally closed if, for any definable subset A and any definable function f on A,
f (A ∩M) ⊆ M .

Lemma 6.2. Let M be a substructure such that (VF(M),O(M)) is a nontrivially valued henselian field and rv(VF(M)) = RV(M).
Then M is functionally closed.

Proof. By Corollary 3.14, acl(M) |= ACVFS(0, 0). Note that VF(acl(M)) = VF(M)ac. Since the valued field (VF(M),O(M)) is
henselian, it is the fixed field under the valued field automorphisms of (VF(M)ac,O(acl(M))) over (VF(M),O(M)). On the
other hand, these valued field automorphisms are in one-to-one correspondence with the LRV-automorphisms of acl(M)
overM . So VF(dcl(M)) = VF(M). SinceM is VF-generated, by Lemma 3.13, every t ∈ RV(dcl(M)) has anM-definable point
in VF. SoM = dcl(M) and the lemma follows. �
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Let HENS(0, 0) be the theory of henselian fields of pure characteristic 0 in a language LH that expands LRV, where the
expansion happens only in the RV-sort. Such a theory may be formulated as in Definition 2.2, with obvious modifications.
Note that HENS(0, 0) includes the statement that the function rv is surjective.
Lemma 6.3. Let φ(EX) be a VF-quantifier-free LH-formula, where EX = (X1, . . . , Xn) are the free VF-sort variables. Then
HENS(0, 0) proves that ∃EX φ(EX) is equivalent to a VF-quantifier-freeLH-formula.

Proof. Without loss of generality, we may assume that φ(EX) contains no VF-sort literals. Let Fi(EX) be the occurring
polynomials of φ(EX, EY ). Let φ∗(EZ) be the formula obtained from φ(EX) by replacing each term rv(Fi(EX))with a new RV-sort
variable Zi. LetM |= HENS(0, 0) such that its reduct toLRV is a substructure of C.
By Theorem 5.5, there is an RV-pullback A and anLRV-definable bijection T : A −→ VFn such that, for every rv-polydisc

p ⊆ A, every subset of the form rv(Fi(T (p))) is a singleton. This induces functions fi : rv(A) −→ RV, defined by quantifier-free
LRV-formulasψi(EY , Zi) (hence no VF-sort quantifiers). By Lemma 6.2, T−1(M∩VFn) ⊆ M and hence T−1(M∩VFn) = A∩M .
Similarly fi(rv(A ∩M)) ⊆ M for every i. Therefore

M |= ∃EX φ(EX)↔ ∃EY , EZ
(∧
i

ψi(EY , Zi) ∧ φ∗(EZ)
)
.

The lemma follows. �

By elementary logic this lemma yields:
Proposition 6.4. The theory HENS(0, 0) admits elimination of VF-quantifiers.

If angular component map exists then RV× may be understood as K
×
⊕Γ . Hence we have the following:

Corollary 6.5 ([12, Theorem 4.1]). The theory of henselian fields of pure characteristic 0 in any Denef–Pas language admits
elimination of field sort quantifiers.
The ‘‘descent’’ technique in this section can also be applied to theories of henselian fields with sections, which are

formulated in a natural way as in [16]. This will be explained elsewhere.

7. Lifting functions from RV to VF

We shall show in this section that the map L actually induces homomorphisms between various Grothendieck
semigroups when S is a (VF,Γ )-generated substructure.
Any polynomial in O[EX] corresponds to a polynomial in K[EX] via the canonical quotient map. The following definition

generalizes this phenomenon.

Definition 7.1. Let Eγ = (γ1, . . . , γn) ∈ Γ . A polynomial F(EX) =
∑
Eij aEijEX

Ei with coefficients aEij ∈ VF is a Eγ -polynomial if
there is an α ∈ Γ such that

α = val(aEij)+ i1γ1 + · · · + inγn

for eachEij = (i1, . . . , in, j). In this case we say that α is a residue value of F(EX) (with respect to Eγ ). For a Eγ -polynomial F(EX)
with residue value α and a Et ∈ RV with vrv(Et) = Eγ , if val(F(Ea)) > α for some (hence all) Ea ∈ rv−1(Et) then Et is a residue root
of F(EX).
If Et ∈ RV is a common residue root of the Eγ -polynomials F1(EX), . . . , Fn(EX) but is not a residue root of the Eγ -polynomial

det ∂(F1, . . . , Fn)/∂ EX,

then we say that F1(EX), . . . , Fn(EX) areminimal for Et and Et is a simple common residue root of F1(EX), . . . , Fn(EX).

Therefore, according to this definition, every polynomial in K[EX] is the projection of a E0-polynomial F(EX) with residue
value 0, where E0 = (0, . . . , 0).
Hensel’s lemma is accordingly generalized as follows.

Lemma 7.2 (Generalized Hensel’s Lemma). Let F1(EX), . . . , Fn(EX) be Eγ -polynomials with residue values α1, . . . , αn, where Eγ =
(γ1, . . . , γn) ∈ Γ . For every simple common residue rootEt = (t1, . . . , tn) ∈ RV of F1(EX), . . . , Fn(EX) there is a unique Ea ∈ rv−1(Et)
such that Fi(Ea) = 0 for every i.
Proof. Without loss of generality we may work in a topologically complete submodel of ACVF of rank 1.
Fix a simple common residue root Et = (t1, . . . , tn) ∈ RV of F1(EX), . . . , Fn(EX). Choose a ci ∈ rv−1(ti). Changing the

coefficients accordingly we may rewrite each Fi(EX) as Fi(X1/c1, . . . , Xn/cn). Write Yi for Xi/ci. Note that, for each i, the
coefficients of the E0-polynomial Fi(EY ) are all of the same value αi. For each i choose an ei ∈ VF with val(ei) = −αi. We have
that each E0-polynomial F∗i (EY ) = eiFi(EY ) has residue value 0 (that is, the coefficients of F

∗

i (
EY ) is of value 0). Clearly (1, . . . , 1)

is a common residue root of F∗1 (EY ), . . . , F
∗
n (
EY ); that is, for every Ea ∈ rv−1(1, . . . , 1) and every iwe have val(F∗i (Ea)) > 0. It is

actually a simple root because for every Ea ∈ rv−1(1, . . . , 1)we have

det ∂(F∗1 , . . . , F
∗

n )/∂
EY (Ea) =

(∏
i

eici

)
· det ∂(F1, . . . , Fn)/∂ EX( Eac),
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where Eac = (a1c1, . . . , ancn), and hence

val(det ∂(F∗1 , . . . , F
∗

n )/∂
EY (Ea)) =

∑
i

(−αi + γi)+
∑
i

αi −
∑
i

γi = 0.

Now the lemma follows from the multivariate version of Hensel’s lemma (for example, see [2, Corollary 2, p. 224]). �

Definition 7.3. Let B, C be two RV-pullbacks, A a subset of B× C , and U a subset of rv(B× C). We say that A is a (B, C)-lift
of U from RV to VF, or just a lift of U for short, if A ∩ (p× q) is a bijection from p onto q for any rv-polydiscs p ⊆ B and q ⊆ C
with rv(p× q) ∈ U . A partial lift of U is a lift of any subset of U .
For any RV[k, ·]-isomorphism F : (U, f ) −→ (V , g), a lift F↑ of F is actually an (L(U, f ),L(V , g))-lift of the induced

function Ff ,g : Uf −→ Vg ; that is, F↑ is a function on L(U, f ) such that each restriction

F↑ : rv−1(f (Eu), Eu) −→ rv−1((g ◦ F)(Eu), F(Eu))

is a bijection.

It would be ideal to lift all definable subsets of RVn× RVn with finite-to-finite correspondence for any substructure S.
However, the following crucial lemma fails when S is not (VF,Γ )-generated.

Lemma 7.4. Suppose that S is (VF,Γ )-generated. Let Et = (t1, . . . , tn) ∈ RV with tn ∈ acl(t1, . . . , tn−1). Let vrv(Et) =
(γ1, . . . , γn) = Eγ ∈ Γ . Then there is a Eγ -polynomial F(X1, . . . , Xn) with coefficients in VF(S) such that Et is a residue root
of F(EX) but is not a residue root of ∂F(EX)/∂Xn.

Proof. Write (t1, . . . , tn−1) asEtn. Letφ(EX) be a quantifier-free formula such thatφ(Etn, Xn)defines a finite subset that contains
tn.Without loss of generalitywemay assume thatφ(EX) is an RV-sort equality such thatφ(Etn, Xn) defines a finite subset. Since
S is (VF,Γ )-generated, we may assume that φ(EX) does not contain parameters from RV(S) r rv(VF(S)). Hence it is of the
form

EXEk ·
∑
Ei

(rv(aEi) · EX
Ei) = rv(a) · EXEl ·

∑
Ej

(rv(aEj) · EX
Ej),

where aEi, a, aEj ∈ VF(S). Fix an s ∈ RV such that vrv(s · Et
Ek) = vrv(s · rv(a) · EtEl) = 0. Let vrv(s) = δ. Note that δ is Etn-definable.

Let

T1(EX, s) =
∑
Ei

(s · rv(aEi) · EX
Ei+Ek), T2(EX, s) =

∑
Ej

(−s · rv(aaEj) · EX
Ej+El).

Consider the RV-sort polynomial H(EX, s) = T1(EX, s)+ T2(EX, s). For any r ∈ RV, H(Etn, r, s) = 0 if and only if

either
∑
Ei

(rv(aEi) · (Etn, r)
Ei) =

∑
Ej

(rv(aEj) · (Etn, r)
Ej) = 0 or rv(T1(Etn, r, s)/s) = rv(−T2(Etn, r, s)/s).

So the equation H(Etn, Xn, s) = 0 defines a finite subset that contains tn and is actually Etn-definable.
Let m be the maximal exponent of Xn in H(EX, s). For each i ≤ m let Hi(EX, s) be the sum of all the monomials M(EX, s) in

H(EX, s) such that the exponent of Xn inM(EX, s) is i. Replacing swith a variable Y and each rv(a)with a in Hi(EX, s), we obtain
a VF-sort polynomial H∗i (EX, Y ) for each i ≤ m. Let

E = {i ≤ m : val(H∗i (Eb, c)) = 0 for all (Eb, c) ∈ rv
−1(Et, s)}.

Since H(Et, s) = 0, clearly |E| 6= 1. Since the equation H(Etn, Xn, s) = 0 defines a finite subset, we actually have |E| > 1. Now
let

H∗(EX, Y ) =
∑
i∈E

H∗i (EX, Y ) =
∑
i∈E

YX inGi(EXn) = YG(EX).

Since (Et, s) is a residue root of H∗(EX, Y ), clearly G(EX) is a Eγ -polynomial with residue value −δ and Et is a residue root of
G(EX). Also, Etn is not a residue root of any Gi(EXn). It follows that, for some k < max E, Et is a residue root of the Eγ -polynomial
∂G(EX)/∂kXn but is not a residue root of the Eγ -polynomial ∂G(EX)/∂k+1Xn. �

Remark 7.5. For definable subsets of the residue field, the situation may be further simplified. Suppose that A ⊆ Kn is
definable. Let φ(EX) be a quantifier-free formula in disjunctive normal form that defines A. It is easily seen by inspection that
each conjunct in each disjunct ofφ(EX) is either an RV-sort equality or an RV-sort disequality, with coefficients in K(S). So the
geometry of definable subsets in the residue field coincideswith its algebraic geometry. In otherwords, each definable subset
in the residue field is a constructible subset (in the sense of algebraic geometry) of a Zariski topological space Spec K(S)[EX].
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Theorem 7.6. Suppose that the substructure S is (VF,Γ )-generated. Let C ⊆ (RV×)n × (RV×)n be a definable subset such that
both pr≤n � C and pr>n � C are finite-to-one. Then there is a definable subset C↑ ⊆ VFn×VFn that lifts C.

Proof. By compactness, the lemma is reduced to showing that for every (Et,Es) ∈ C there is a definable lift of some subset
of C that contains (Et,Es). Fix a (Et,Es) ∈ C and set (Eγ , Eδ) = vrv(Et,Es). Let φ(EX, EY ) be a formula that defines C . By Lemma 7.4,
for each Yi there is a (Eγ , δi)-polynomial Fi(EX, Yi)with coefficients in VF(S) such that (Et, si) is a residue root of Fi(EX, Yi) but is
not a residue root of ∂Fi(EX, Yi)/∂Yi. Similarly we obtain such a (γi, Eδ)-polynomial Gi(Xi, EY ) for each Xi. For each i, let ai(EX EY )

Eki

and bi(EX EY )
Eli be two monomials with ai, bi ∈ VF(S) such that

F∗i (EX, EY )+ G
∗

i (
EX, EY ) = ai(EX EY )

EkiFi(EX, Yi)+ bi(EX EY )
EliGi(Xi, EY )

is a (Eγ , Eδ)-polynomial. Let αi be the residue value of F∗i (EX, EY )+ G
∗

i (
EX, EY ). Note that for any (Ea, Eb) ∈ rv−1(Et,Es)we have

val(∂F∗i /∂Yi(Ea, Eb)) = val(ai( Eab)
Eki)+ val(∂Fi/∂Yi(Ea, Eb)) = αi − δi

and for j 6= iwe have

val(∂F∗i /∂Yj(Ea, Eb)) = val(ai)+ val(∂(EX EY )
Eki/∂Yj(Ea, Eb))+ val(Fi(Ea, bi)) > αi − δj.

Therefore,

val(det ∂(F∗1 , . . . , F
∗

n )/∂
EY (Ea, Eb)) = val

(∏
i

∂F∗i /∂Yi(Ea, Eb)
)
=

∑
i

αi −
∑
i

δi.

This shows that Es is a simple common residue root of F∗1 (Ea, EY ), . . . , F
∗
n (Ea, EY ) for any Ea ∈ rv

−1(Et). Similarly Et is a simple
common residue root of G∗1(EX, Eb), . . . ,G

∗
n(
EX, Eb) for any Eb ∈ rv−1(Es).

Now for each iwe choose a pair of integers pi, qi. Consider the (Eγ , Eδ)-polynomials

Hi(EX, EY ) = piF∗i (EX, EY )+ qiG
∗

i (
EX, EY ).

Let σ ∈ Sn be a permutation and τ(EX, EY ) a term in the expansion of the product
∏
i ∂Hi(EX, EY )/∂Yσ(i). The coefficient cτ of

τ(EX, EY ) is of the form
∏
imi, wheremi is either pi or qi. Suppose that

val(τ (Ea, Eb)) =
∑
i

αi −
∑
i

δi

for some (hence all) (Ea, Eb) ∈ rv−1(Et,Es). Then rv(τ (EX, EY )) is constant on rv−1(Et,Es), which is denoted by rv(τ ). Observe
that there is only one such term with coefficient

∏
i pi, namely

∏
i ∂(piF

∗

i )/∂Yi. Let τi enumerate all such terms other than∏
i ∂(piF

∗

i )/∂Yi. It is not hard to see that pi, qi may be chosen so that

1+
∑
i

rv(τi)/ rv
(∏

i

∂(piF∗i )/∂Yi

)
6= 0.

This implies that, for all (Ea, Eb) ∈ rv−1(Et,Es),

val(det ∂(H1, . . . ,Hn)/∂ EY (Ea, Eb)) =
∑
i

αi −
∑
i

δi

and hence Es is a simple common residue root of the Eδ-polynomials H1(Ea, EY ), . . . ,Hn(Ea, EY ) for any Ea ∈ rv−1(Et). In fact the
choice of pi, qi can be improved so that we also have, for all (Ea, Eb) ∈ rv−1(Et,Es),

val(det ∂(H1, . . . ,Hn)/∂ EX(Ea, Eb)) =
∑
i

αi −
∑
i

γi

and henceEt is a simple common residue root of the Eγ -polynomialsH1(EX, Eb), . . . ,Hn(EX, Eb) for any Eb ∈ rv−1(Es). By Lemma7.2,
for each Ea ∈ rv−1(Et) there is a unique Eb ∈ rv−1(Es) such that

∧
i Hi(Ea, Eb) = 0, and vice versa. �

Corollary 7.7. Suppose that the substructure S is (VF,Γ )-generated. The map L induces surjective homomorphisms between
various Grothendieck semigroups, for example:

K+ RV[k, ·] −→ K+ VF[k, ·], K+ RV[k] −→ K+ VF[k].

Proof. For any RV[k, ·]-isomorphism F : (U, f ) −→ (V , g) and any Eu ∈ U , by definition, wgt(f (Eu)) = wgt((g ◦ F)(Eu)). Let

C =
{
(f (Eu), (g ◦ F)(Eu)) : Eu ∈ U

}
⊆ RVk× RVk .

By Theorem 7.6 there is a lift C↑ of C , which induces a VF[k, ·]-isomorphism between L(U, f ) and L(V , g). So L induces a
map on the isomorphism classes, which is clearly a semigroup homomorphism. By Corollary 5.7 it is surjective. The other
cases are handled similarly. �
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8. More on structural properties

Lemma 8.1. Let A ⊆ VFn be a definable subset. Suppose that there is a γ ∈ Γ such that o(Ea′, γ ) ∩ o(Ea′′, γ ) = ∅ for every Ea′,
Ea′′ ∈ A. Then A is finite.

Proof. We do induction on n. The base case n = 1 just follows from C-minimality. For the inductive step, consider the
subset pr1(A) = A1. If A1 is finite then by the inductive hypothesis fib(A, a) is finite for every a ∈ A1 and hence A is finite. If
A1 is infinite then by C-minimality there is an open ball b ⊆ A1 with rad(b) > γ . For any a′ ∈ b, a′′ ∈ b, Eb′ ∈ fib(A, a′), and
Eb′′ ∈ fib(A, a′′), if o(Eb′, γ ) ∩ o(Eb′′, γ ) 6= ∅ then o((a′, Eb′), γ ) ∩ o((a′′, Eb′′), γ ) 6= ∅, contradicting the assumption. Therefore,
by the inductive hypothesis again,

⋃
a∈b fib(A, a) is finite. So there is a Eb ∈

⋃
a∈b fib(A, a) such that fib(A, Eb) ∩ b is infinite,

contradiction again. �

Lemma 8.2. Let f : VFn −→ VFm be a definable function. Let A ⊆ VFn be the definable subset of those Ea ∈ VFn such that there
are ε, δ ∈ Γ with

o(Ea, δ) ∩ f −1(o(f (Ea), ε)) =
{
Ea
}
.

Then dimVF(A) < n.

Proof. For each Ea ∈ A let (εEa, δEa) ∈ Γ 2 be an Ea-definable pair that satisfies the condition above,which exists by o-minimality.
Let h : A −→ Γ 2 be the definable function given by Ea 7−→ (εEa, δEa). Suppose for contradiction that dimVF(A) = n. Then, by
compactness and Lemma 4.6, there is a pair (εEa, δEa) ∈ Γ 2 such that h−1(εEa, δEa) contains an open polydisc p. Without loss of
generalitywemay assume Ea ∈ p. Fix an Ea-definable γ ≥ δEa. If Ea′, Ea′′ ∈ o(Ea, γ ) are distinct then o(f (Ea′), εEa)∩o(f (Ea′′), εEa) = ∅.
By Lemma 8.1, f (o(Ea, γ )) is finite, which is a contradiction. �

Let A be a definable subset with dimVF(A) = n. A property holds almost everywhere on A or for almost every element in
A if there is a definable subset B ⊆ A with dimVF(B) < n such that the property holds with respect to A r B. For example,
if f : VFn −→ VFm is a definable function, then the property that defines the subset A in Lemma 8.2 does not hold almost
everywhere on VFn. This terminology is also used with respect to RV-dimension.

Lemma 8.3. Let f : VF×VFk −→ VFm be a definable function. Then there are a definable subset A ⊆ VF×VFk over VFk and a
finite set E of positive rational numbers such that

(1) VFr fib(A, Eb) is finite for all Eb ∈ VFk,
(2) for every Ea = (a, Eb) ∈ A there are Ea-definable ε, δ ∈ Γ and a number k ∈ E such that either f � o(a, δ)× {Eb} is constant or,
for any a′ ∈ o(a, δ),

val(f (a′, Eb)− f (a, Eb)) = ε + k val(a′ − a).

Proof. For every Eb ∈ VFk letBEb ⊆ VF×{Eb}be as givenby Lemma8.2with respect to the function f � VF×{Eb}. By compactness
A = VFk+1 r

⋃
Eb∈VFk BEb is definable. Let φ(X1, X2, EY , Z) be a quantifier-freeLv-formula, possibly with additional parameters

from VF, that defines the function on VF2×VFk given by

(a′, a, Eb) 7−→ val(f (a′, Eb)− f (a, Eb)).

Fix an Ea = (a, Eb) ∈ A such that f � VF×{Eb} is not constant on any open ball around a. For any term of the form
val(G(X1, X2, EY )) in φ(X1, X2, EY , Z) there is an Ea-definable α ∈ Γ ∪ {∞} and an integer l ≥ 0 such that, for any a+ d ∈ VF,
if val(d) is sufficiently large then

val(G(a+ d, a, Eb)) = α + l val(d).

Therefore, there is an ε ∈ Γ ∪ {∞} and a rational number k ≥ 0 such that for any sufficiently large δ ∈ Γ , the formula

val(X) > δ ∧ φ(a+ X, a, Eb, Z)

defines a function on o(a, δ)× {Eb} that is given by the equation Z = ε + k val(X). Note that, by the choice of Ea, we actually
must have k > 0 and ε 6= ∞. Since Γ is o-minimal, ε and some δ are Ea-definable. Now it is easy to see that the number k is
provided by the exponents of X1 in φ(X1, X2, EY , Z) and hence there are only finitely many choices. �

Lemma 8.4. Let a, b be open balls around 0 and f : a −→ b a definable bijection that takes open balls around 0 to open balls
around 0. Then there are definable γ , ε ∈ Γ such that val(f (a)) = ε + val(a) for every a ∈ o(0, γ ).

Proof. By the proof of Lemma 8.3 wemay assume that there is a definable ε ∈ Γ and a positive rational number k such that
val(f (a)) = ε + k val(a). We need to show that k = 1.
Suppose for contradiction k 6= 1. Let φ(X, Y ) be a quantifier-freeLv-formula, possibly with additional parameters from

VF, that defines f . Let Fi(X, Y ) be the occurring polynomials of φ(X, Y ). If a ∈ a then Fi(a, f (a)) = 0 for some i, since
otherwise f −1(f (a))would be infinite. By C-minimality, wemay shrink a if necessary so that, for every a ∈ a, Fi(a, f (a)) = 0
if and only if i ≤ m. For every Fj(X, Y )with j > m, since k 6= 1, we may shrink a again so that, for some monomial cX lY n, for
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every a ∈ a, and for every r, s ∈ VF with val(r) = val(a) and val(s) = val(f (a)), we have

val(Fj(r, s)) = val(cr lsn) = val(calf (a)n) = val(Fj(a, f (a))).

Now, using the division algorithm, there are rational functions G(X, Y ) ∈ VF(X)[Y ] and H(X, Y ) ∈ VF(Y )[X] such that,
possibly after shrinking a again,

(1) every solution of G(a, Y ) = 0 is a solution of
∧
i≤m Fi(a, Y ) = 0 for every a ∈ a,

(2) every solution of H(X, b) = 0 is a solution of
∧
i≤m Fi(X, b) = 0 for every b ∈ b,

(3) taking derivatives and using the division algorithm again if necessary, for every a ∈ a, f (a) is not a repeated root of
G(a, Y ) and a is not a repeated root of H(X, f (a)),

Moreover, we may assume that, if we write G(X, Y ) as
∑
i Gi(X)Y

i then there are indices i < i′ such that for every a ∈ a

val(f (a))i
′
−i
= val(Gi′(a)/ val(Gi(a))) > 0;

Similarly for H(X, Y ). Observe that if i′ − i > 1 then for every a ∈ a there is a root r 6= f (a) of G(a, Y ) such that
val(Fj(a, f (a))) = val(Fj(a, r)) for all j > m and hence φ(a, r) holds, which is a contradiction. So i′ = i + 1. Since the
radius of a is sufficiently large, we conclude that k must be a positive integer. Symmetrically 1/k is also a positive integer
and hence k = 1, contradicting the assumption k 6= 1. �

Lemma 8.5. Let A, B ⊆ VF be infinite subsets and f : A −→ B a definable bijection. Then for almost all a ∈ A there are a-definable
δ ∈ Γ and t ∈ RV× such that, for any b, b′ ∈ o(a, δ),

rv(f (b)− f (b′)) = t rv(b− b′).

Proof. Let A′ ⊆ A be a definable subset such that A r A′ is finite and for every a ∈ A′ there are εa, δa ∈ Γ given as in
Lemma 8.3. Translating A, B to A− a, B− f (a) and applying Lemma 8.4, we see that δa may be chosen so that

val(f (b)− f (a)) = εa + val(b− a)

for any b ∈ o(a, δa). Let Da = (o(a, δa)− a) r {0} and ga : Da −→ RV the function given by

d 7−→ rv(f (d+ a)− f (a))/ rv(d).

Since vrv(ga(Da)) is bounded from both above and below, by Lemma 3.17, there is a βa ∈ Γ such that ga(o(0, βa)r{0}) = ta.
Let h : A′ −→ Γ ×RV be the function given by a 7−→ (δa, ta). By compactness and Corollary 3.5, there are only finitelymany
a ∈ A′ that is isolated in h−1(δa, ta). On the other hand, if o(a, γ ) ⊆ h−1(δ, t)with γ ≥ δ then clearly for any b, b′ ∈ o(a, γ ),

rv(f (b)− f (b′)) = t rv(b− b′),

as required. �

Lemma 8.3 can be generalized to multivariate functions, but only with inequality:

Lemma 8.6. Let f : VFn×VFk −→ VFm be a definable function. Then there are a definable subset A ⊆ VFn×VFk over VFk and
a positive rational number k such that

(1) dimVF(VFn r fib(A, Eb)) < n for all Eb ∈ VFk,
(2) for every Ex = (Ea, Eb) ∈ A there are Ex-definable ε, δ ∈ Γ such that for any Ea′ ∈ o(Ea, δ),

val(f (Ea′, Eb)− f (Ea, Eb)) ≥ ε + k val(Ea′ − Ea).

Proof. We do induction on n. The base case n = 1 is readily implied by Lemma 8.3.
We proceed to the inductive step. By the inductive hypothesis, there are a definable subset A1 ⊆ VFn−1×VFk+1 over

VFk+1 and a positive rational number k1 with respect to which the conclusion of the lemma holds. Similarly, there are a
definable subsetA2 ⊆ VFn−1×VF×VFk over VFk+n−1 and a positive rational number k2with respect towhich the conclusion
of the lemma holds.
Let k = min{k1, k2}. Fix a Ec ∈ VFk. We shall concentrate on the subsets fib(A1, Ec), fib(A2, Ec), which, for simplicity,

are respectively written as C1, C2. Also we shall suppress mentioning Ec as parameters. Set C = C1 ∩ C2. Note that, by
compactness, dimVF(VFn rC) < n. Consider any (Ea, b) ∈ C1. Let (εb, δb) ∈ Γ 2 be an (Ea, b)-definable pair such that, for any
Ea′ ∈ o(Ea, δb),

val(f (Ea′, b)− f (Ea, b)) ≥ εb + k val(Ea′ − Ea).

Let hEa : fib(C1, Ea) −→ Γ 2 be the Ea-definable function given by (Ea, b) 7−→ (εb, δb). For each (ε, δ) ∈ Γ 2 let Bε,δ be the
topological interior of h−1

Ea (ε, δ). Let

BEa =
⋃

(ε,δ)∈Γ 2

Bε,δ and B =
⋃

Ea∈pr<n(C1)

(
{
Ea
}
× (fib(C1, Ea) r BEa)).

By C-minimality, dimVF(h−1Ea (ε, δ) r Bε,δ) = 0 for every (ε, δ) ∈ Γ 2 and hence, by Lemmas 4.3 and 4.2, dimVF(fib(C1, Ea) r
BEa) = 0 and dimVF(B) < n.
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Let (Ea1, b1) ∈ C r B and hEa1(b1) = (ε1, δ1). Since the corresponding interior Bε1,δ1 is nonempty, there are (Ea1, b1)-
definable δ2, ε2 ∈ Γ such that o(b1, δ2) ⊆ Bε1,δ1 and, for any b2 ∈ o(b1, δ2),

val(f (Ea1, b2)− f (Ea1, b1)) ≥ ε2 + k val(b2 − b1).

On the other hand, for any b2 ∈ o(b1, δ2) and any Ea2 ∈ o(Ea1, δ1),

val(f (Ea2, b2)− f (Ea1, b2)) ≥ ε1 + k val(Ea2 − Ea1).

We then have

val(f (Ea2, b2)− f (Ea1, b1)) ≥ min
{
val(f (Ea1, b2)− f (Ea1, b1)), val(f (Ea2, b2)− f (Ea1, b2))

}
≥ min {ε1, ε2} +min

{
k val(b2 − b1), k val(Ea2 − Ea1)

}
= min {ε1, ε2} + k val((Ea2, b2)− (Ea1, b1)).

Now the lemma follows from compactness. �

Clearly this lemma holds with respect to any definable function f : A −→ VFm with A ⊆ VFn and dimVF(A) = n, since f
may be extended to VFn by sending VFn rA to any definable tuple in VFm. In application we usually take k = 0.

Lemma 8.7. Let f : VFn −→ VFm be a definable function. Then there is a definable closed subset A ⊆ VFn with dimVF(A) < n
such that f � (VFn rA) is continuous with respect to the valuation topology.

Proof. Let A ⊆ VFn be the definable subset of ‘‘discontinuous points’’ of f ; that is, Ea ∈ A if and only if there is a γ ∈ Γ such
that f −1(o(f (Ea), γ )) fails to contain any open polydisc around Ea. Let EA be the topological closure of A, which is definable,
and set f1 = f � (VFn rEA). For any Ea ∈ VFn rEA and any γ ∈ Γ , since f −1(o(f (Ea), γ )) contains an open polydisc around
Ea, f −11 (o(f (Ea), γ )) must also contain an open polydisc around Ea. So it is enough to show that dimVF(EA) < n, which, by
Lemma 4.6, is equivalent to showing that dimVF(A) < n.
Suppose for contradiction that dimVF(A) = n. Let A′ ⊆ A be the definable subset given by Lemma 8.6 with respect to

f . Since dimVF(A′) = n, by Lemma 4.6 again, A′ contains an open polydisc p. Fix an Ea ∈ p and let γ ∈ Γ be such that
f −1(o(f (Ea), γ )) fails to contain any open ball around Ea. By Lemma 8.6, there are ε, δ ∈ Γ such that

(1) o(Ea, δ) ⊆ p,
(2) ε + δ > γ ,
(3) for any Eb ∈ o(Ea, δ)with Eb 6= Ea, val(f (Eb)− f (Ea)) ≥ ε + δ.

So o(Ea, δ) ⊆ f −1(o(f (Ea), γ )), contradiction. �

Definition 8.8. A function f : VFn −→ P (RVm) is locally constant at Ea if there is an open subset UEa ⊆ VFn containing Ea such
that f � UEa is constant. If f is locally constant at every point in an open subset A then f is locally constant on A.

Lemma 8.9. Let f : VFn −→ P (RVm) be a definable function. Then f is locally constant almost everywhere.

Proof. We do induction on n. For the base case n = 1, let A ⊆ VF be the definable subset of those a ∈ VF such that f
is not constant on any o(a, γ ). Let EA be the topological closure of A. It is enough to show that dimVF(EA) = 0, which, by
C-minimality, is equivalent to showing that A is finite. Suppose for contradiction that A is infinite. By C-minimality again
there is a definable γ ∈ Γ such that A contains infinitely many cosets of o(0, γ ). By Lemma 3.18, f fails to be constant on
only finitely many cosets of o(0, γ ), contradiction.
We proceed to the inductive step. For any Ea = (a1, Ea1) ∈ VFn, let (αEa, βEa) ∈ Γ 2 be an Ea-definable pair such that f is

constant on both o(a1, αEa) ×
{
Ea1
}
and {a1} × o(Ea1, βEa). If no such pair exists then set αEa = βEa = ∞. Let g : VFn −→ Γ 2

be the function given by Ea 7−→ (αEa, βEa). By the inductive hypothesis and compactness, dimVF(g−1(∞,∞)) < n. For each
(α, β) ∈ Γ 2 let Bα,β be the topological interior of g−1(α, β). By Lemma 4.6,

dimVF(g−1(α, β) r Bα,β) < n.

Let B =
⋃
(α,β)∈Γ 2 Bα,β . By compactness, dimVF(VF

n rB) < n. For any Ea = (a1, Ea1) ∈ B, since BαEa,βEa contains an open polydisc
around Ea, clearly for any sufficiently large γ and any (a′1, Ea

′

1) ∈ o(Ea, γ ) we have f (a1, Ea1) = f (a1, Ea′1) = f (a
′

1, Ea
′

1). So f is
locally constant on B. �

9. Differentiation

We shall extend the results in Sections 5 and 7 to finer categories of definable subsets with volume forms. To define these
categories we first need a notion of the Jacobian in the VF-sort. There are two approaches, which essentially give the same
data. The first one is an analogue of the classical analytic approach, where we first define differentiation and the notion of
‘‘approaching a point’’ is expressed via valuation. This methodmakes certain computations very easy (see Lemmas 9.11 and
9.12). The second approach is an algebraic one, where we are reduced to the case of computing the Jacobian of a regular
map between varieties over VF. The Jacobian in the RV-sort will also be defined in this way. This makes the compatibility of
the Jacobian in both sorts transparent.
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In the discussion below it is convenient to think that there is a ‘‘point at infinity’’ in the VF-sort, denoted by p∞. The set
VF∪ {p∞} is denoted by P(VF). Balls around p∞ are defined in a reversed way. For example, for any γ ∈ Γ , the open ball
o(p∞, γ ) around p∞ of radius γ is the subset VFrc(0,−γ ). Note the negative sign in front of γ . We emphasize that p∞ will
not be treated as a real point. It is merely a notational device that allows us to discuss complements of balls around 0 more
efficiently.

Definition 9.1. Let A ⊆ VFn, f : A −→ P (VFm) a definable function, Ea ∈ VFn, and L ⊆ P(VF)m. We say that L is a limit set of
f at Ea, written as limA→Ea f ⊆ L, if for every ε ∈ Γ there is a δ ∈ Γ such that if Ec ∈ o(Ea, δ)∩ (Ar Ea) then f (Ec) ⊆

⋃
Eb∈L′ o(

Eb, ε)
for some L′ ⊆ L.

A limit set L of f at Ea is minimal if no proper subset of L is a limit set of f at Ea. Observe that if limA→Ea f ⊆ L and Eb ∈ L is
not isolated in L then actually limA→Ea f ⊆ Lr {Eb}. So in a minimal limit set every element is isolated. Moreover, if a minimal
limit set L exists then its topological closure EL is unique:

Lemma 9.2. Let L1, L2 ⊆ VFm be two minimal limit sets of f at Ea and EL1, EL2 their topological closures. Then EL1 = EL2.

Proof. Suppose for contradiction that, say, EL1 r EL2 6= ∅ and hence there is a Eb ∈ L1 r EL2. So there is an ε ∈ Γ such that
o(Eb, ε) ∩ L2 = ∅. Let δ ∈ Γ be such that, for all Ec ∈ o(Ea, δ) ∩ (A r Ea), f (Ec) ⊆

⋃
Ed∈L′2

o(Ed, ε) for some L′2 ⊆ L2. Since

o(Eb, ε)∩ o(Ed, ε) = ∅ for any Ed ∈ L2, we see that L1 r {Eb} is a limit set of f at a, contradicting the minimality condition on L1.
So EL1 ⊆ EL2 and symmetrically EL2 ⊆ EL1. �

This lemma justifies the equality limA→Ea f = Lwhen L is a closed (hence the unique) minimal limit set of f at Ea.

Lemma 9.3. Let f1, f2 : A −→ P (VFm) be definable functions with limA→Ea fi = Li, then limA→Ea(f1 ∪ f2) = L1 ∪ L2.

Proof. Let f = f1 ∪ f2 and L = L1 ∪ L2. Clearly L is a closed limit set of f at Ea. We need to show that it is minimal. To that
end, fix a Eb ∈ L1. If Eb ∈ L1 ∩ L2 then, since Eb is isolated in both L1 and L2, there is an ε ∈ Γ such that o(Eb, ε) ∩ (L r {Eb}) = ∅.
If Eb ∈ L1 r L2 then, since L2 is closed, there is again an ε ∈ Γ such that o(Eb, ε)∩ (Lr {Eb}) = ∅. Now, since L1 is a limit set of
f1 at Ea but L1 r {Eb} is not, we see that L r {Eb} cannot be a limit set of f at Ea. This shows that L is minimal. �

Lemma 9.4. Let f : A −→ P (VFm) be a definable function with finite images. Let k be the maximal size of f (c). Let a ∈ VF and
suppose that there is an open ball b containing a such that b r {a} ⊆ A. Suppose that limA→a f = L. If L is finite then |L| ≤ k.

Proof. Let L = {Eb1, . . . , Ebl} and suppose for contradiction that l > k. Letα ∈ Γ be such that o(Ebi, α)∩o(Ebj, α) = ∅whenever
i 6= j. Without loss of generality we may assume that A r {a} = b r {a} and

⋃
f (A) ⊆

⋃
i o(
Ebi, α). For each D ⊆ L with

|D| = k let

AD =
{
c ∈ A : f (c) ⊆

⋃
Ebi∈D

o(Ebi, α)
}
.

Each AD is 〈L, α〉-definable. By C-minimality, some AD∪{a} contains an open ball around a and hence limA→a f = limAD→a(f �
AD) ⊆ D, contradicting the assumption that limA→a f = L. �

Here is the key lemma that makes the definition of differentiation in VF below work. It is essentially a variation on a
fundamental property of henselian fields, see [9, Proposition, p. 70].

Lemma 9.5. Let b ⊆ VF be a ball containing 0 and A ⊆ (b r {0})× VFm a definable function b r {0} −→ P (VFm) with finite
images. Then there is a definable finite subset L ⊆ P(VF)m such that limbr{0}→0 A = L.

Proof. Without loss of generality we may assume that b is an open ball. Let a = b r {0}. We first consider the basic case:
m = 1 and there is a polynomial G(X, Y ) ∈ VF(S)[X, Y ] such that (a, b) ∈ A if and only if a ∈ a and G(a, b) = 0.
Fix an ε ∈ Γ . Write G(X, Y ) as YmH(X)G∗(X, Y ), where H(X) ∈ VF(S)[X] and G∗(X, Y ) ∈ VF(S)[X, Y ] is of the form

Hn(X)Y n + · · · + H0(X),

where the polynomials Hj(X)Y j ∈ VF(S)[X, Y ] are relatively prime. Shrinking a if necessary, we may assume that a does not
contain any root of H(X) or nonzero Hj(X). If n = 0 then clearly L = {0} is as required. If m > 0 then (a, 0) ∈ A for every
a ∈ a. So let us assume n > 0 and m = 0. Let E ⊆ {0, 1, . . . , n} be the subset such that i ∈ E if and only if X divides Hi(X).
Let

G1(X, Y ) =
∑
i∈E

Hi(X)Y i, G2(X, Y ) =
∑
i/∈E

(H∗i (X)+ Hi(0))Y
i.

Note that X also divides each H∗i (X). For any sufficiently large δ ∈ Γ , val(Hi(X)) has a sufficiently large lower bound
on o(0, δ) r {0} for every i ∈ E; similarly for every H∗i (X). On the other hand, let d1, . . . , dk be the distinct roots of
G2(0, Y ) ∈ VF(S)[Y ] (k = 0 if G2(0, Y ) is a nonzero constant) then, for any sufficiently large α ∈ Γ , val(G2(0, b)) > α
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only if b ∈ o(di, ε) for some i. Therefore, if δ ∈ Γ is sufficiently large then for every a ∈ o(0, δ) r {0} and every
b /∈ o(p∞, ε) ∪

⋃
i o(di, ε)we must have

val(G∗(a, b)− G2(0, b)) > val(G2(0, b))

and hence G∗(a, b) 6= 0. This concludes the basic case.
More generally, by compactness, A ⊆ VF2 is a union of finitely many subsets of the form Ai ∩ Di, where each Ai is given

by a VF-sort equality as above. Since the lemma holds for each Ai ∩ Di, it holds for A by Lemma 9.3.
For the casem > 1, let Ai =

{
(b, pri(Ea)) : (b, Ea) ∈ A

}
for each i ≤ m and limbr{0}→0 Ai = Li. It is easy to see that

lim
br{0}→0

A ⊆ L1 × · · · × Lm

and hence, as in the proof of Lemma 9.4, there is a definable L ⊆ L1 × · · · × Lm such that limbr{0}→0 A = L. �

Definition 9.6. Let f : VFn −→ VFm be a definable function. For any Ea ∈ VFn, we say that f is differentiable at Ea if there is a
linear map λ : VFn −→ VFm (of VF-vector spaces) such that, for any ε ∈ Γ , if Eb ∈ VFn and val(Eb) is sufficiently large then

val(f (Ea+ Eb)− f (Ea)− λ(Eb))− val(Eb) > ε.

It is straightforward to check that if such a linear function λ (a matrix with entries in VF) exists then it is unique and hence
may be called the derivative of f at Ea, which shall be denoted by dEa f .
For each 1 ≤ j ≤ m let fj = prj ◦f . For any Ea = (ai, Eai) ∈ VF

n, if the derivative of the function fj � (VF×
{
Eai
}
) at ai exists

then we call it the ijth partial derivative of f at Ea and denote it by ∂ ij
Ea f .

The classical differentiation rules, such as the product rule and the chain rule, hold with respect to this definition. Here
we only check the chain rule:

Lemma 9.7 (The Chain Rule). Let f : VFn −→ VFm be differentiable at Ea ∈ VFn and g : VFm −→ VFl differentiable at f (Ea).
Then g ◦ f is differentiable at Ea and

dEa(g ◦ f ) = (df (Ea) g)× (dEa f ),

where the right-hand side is a product of matrices.

Proof. Fix an ε ∈ Γ . Since dEa f is a linear function, there is an α ∈ Γ such that, for every Eb ∈ VFn, val(dEa f (Eb))− val(Eb) ≥ α.
Similarly there is a β ∈ Γ such that, for every Eb ∈ VFm, val(df (Ea) g(Eb)) − val(Eb) ≥ β . Let s : VFn −→ VFm be the function
given by

Eb 7−→ f (Ea+ Eb)− f (Ea)− dEa f (Eb).

By assumption, for any Eb ∈ VFn with val(Eb) sufficiently large,

val(df (Ea) g(s(Eb))) ≥ val(s(Eb))+ β > val(Eb)+ (ε − β)+ β = val(Eb)+ ε.

Therefore, if val(Eb) is sufficiently large then either

val(g(f (Ea+ Eb))− g(f (Ea))− df (Ea) g(dEa f (Eb))) > val(Eb)+ ε

or

val(g(f (Ea+ Eb))− g(f (Ea))− df (Ea) g(dEa f (Eb))) = val(g(f (Ea+ Eb))− g(f (Ea))− df (Ea) g(dEa f (Eb))− df (Ea) g(s(Eb)))

= val(g(f (Ea)+ dEa f (Eb)+ s(Eb))− g(f (Ea))− df (Ea) g(dEa f (Eb)+ s(Eb)))

> val(dEa f (Eb)+ s(Eb))+min {β, ε − α}

≥ val(Eb)+ ε.

In either case the lemma follows. �

Lemma 9.8. Let f : VFn −→ VFm be a definable function. Then each partial derivative ∂ ijf is defined almost everywhere.

Proof. Let Ea = (ai, Eai) ∈ VFn. Let g
ij
Ea : VF

×
−→ VF be the Ea-definable function given by

b 7−→ (fj(ai + b, Eai)− fj(Ea))/b,

where fj = prj ◦ f . By Lemma 8.6, for almost all Ea ∈ VF
n there is an Ea-definable open ball bEa punctured at 0 such that

val(g ij
Ea (bEa)) is bounded from below. By Lemmas 9.5 and 9.4, limbEa→0 g

ij
Ea = ζ (Ea) for some ζ (Ea) ∈ VF. The linear function is

constructed in the usual way, taking ζ (Ea) as the slope. �

Corollary 9.9. Let f : VFn −→ VFm be a definable function. Then f is continuously partially differentiable almost everywhere.

Proof. This is immediate by Lemmas 9.8 and 8.7. �
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Wewould like to differentiate functions between arbitrary definable subsets. The simplestway to do this to be ‘‘forgetful’’
about the RV-coordinates. Let f : VFn× RVm −→ VFn

′

× RVm
′

be a definable function. For each Et ∈ RVm let UEt =
prv(f (VFn×{Et})). For every Es ∈ UEt let fEt,Es be the function on {Ea : prv(f (Ea,Et)) = Es} given by Ea 7−→ pvf(f (Ea,Et)). Note that,
by compactness, there is an Es ∈ UEt such that dimVF(dom(fEt,Es)) = n and hence, by Lemma 4.6, dom(fEt,Es) contains an open
polydisc. For such an Es and each Ea ∈ dom(fEt,Es)we define the ijth partial derivative of f at (Ea,Et) to be the ijth partial derivative
of fEt,Es at Ea. It follows from Corollary 9.9 and compactness that every partial derivative of f is defined almost everywhere.

Definition 9.10. If n = n′ and all the partial derivatives exist at a point (Ea,Et) then the Jacobian of f at (Ea,Et) is defined in the
usual way, that is, the determinant of the Jacobian matrix, and is denoted by JcbVF f (Ea,Et).

Lemma 9.11. For any special bijection T : A −→ A], the Jacobians of T and T−1 are equal to 1 almost everywhere. If A is a
nondegenerate RV-pullback then they are equal to 1 everywhere.

Proof. Wemay assume that the length of T is 1. Then this is clear if we apply the proof of Lemma 9.8 to (additive) translation
and canonical bijection (or its inverse). �

Lemma 9.12. Let f : A −→ B and g : B −→ C be definable functions. Then for any Ex ∈ A,

JcbVF(g ◦ f )(Ex) = JcbVF g(f (Ex)) · JcbVF f (Ex),

if both sides are defined.

Proof. This is immediate by the chain rule. �

Next we describe the second approach to defining the Jacobian in VF. Let f : VFn −→ VFn be a definable function, which
in general is not a rational map. Let D ⊆ VF2n be the Zariski closure of the graph of f . By Proposition 4.8 the dimension of D
is n and hence pr≤n � D is finite-to-one. Let D1 = pr≤n(D) = VF

n and D2 = pr>n(D). For almost all (Ea1, Ea2) = Ea ∈ D, pr≤n
and pr>n induce surjective linear maps of the tangent spaces (see [14, Lemma 2, p. 141]):

dEa pr≤n : TEa(D) −→ TEa1(D1), dEa pr>n : TEa(D) −→ TEa2(D2).

Since the dimension ofD1 is also n, we see that dEa pr≤n is an isomorphismof the tangent spaces for almost all (Ea1, Ea2) = Ea ∈ D
and hence the composition

(dEa pr>n) ◦ (dEa pr≤n)
−1
: TEa1(D1) −→ TEa2(D2)

is defined and is given by an n × n matrix λEa with entries in VF (not necessarily invertible). Suppose f (Ea1) = Ea2. Then λEa
satisfies the defining property in Definition 9.6 and hence det λEa = JcbVF f (Ea1). It is clear that this equality holds for almost
all Ea1 ∈ VFn. Note that the construction can be carried out even if f is a partial function, as long as dimVF(dom(f )) = n.
Now the Jacobian in RV may be defined almost identically as above. But for clarity we shall repeat the whole procedure.

Let (U, f ), (V , g) ∈ RV[n, ·]. Set A = f (U) ∩ (RV×)n and B = g(V ) ∩ (RV×)n.

Definition 9.13. An essential isomorphism between (U, f ) and (V , g) is an isomorphism between (f −1(A), f � f −1(A)) and
(g−1(B), g � g−1(B)).

Let F : (U, f ) −→ (V , g) be an essential isomorphism. Note that if A 6= ∅ then a lift of F is defined almost everywhere on
L(U, f ). Actually, since the parts f (U) r A and g(V ) r B will not concern us, we may assume f −1(A) = U and g−1(B) = V .
We also assume that A, B are of RV-dimension n. Set

C =
{
(f (Eu), g(F(Eu))) : Eu ∈ U

}
⊆ A× B.

Note that, since F is an isomorphism, both pr≤n � C and pr>n � C are finite-to-one. We first consider the simple situation
A, B ⊆ (K

×
)n. By Remark 7.5, A, B are unions of locally closed subsets (in the sense of Zariski topology). We may assume

that A, B, C are varieties. Clearly the dimensions of A, B, C are all n. Since the projections πA, πB of C to A and B are dominant
rational maps, for almost all (f (Eu), g(F(Eu))) = Ec ∈ C (that is, outside of a closed subset of dimension < n), πA, πB induce
isomorphisms of the tangent spaces:

dEc πA : TEc(C) −→ TπA(Ec)(A), dEc πB : TEc(C) −→ TπB(Ec)(B).

Therefore the composition

(dEc πB) ◦ (dEc πA)−1 : TπA(Ec)(A) −→ TπB(Ec)(B)

is defined and is given by an invertible n× nmatrix λEu with entries in K. The determinant of λEu, denoted by JcbK F(f (Eu), Eu),
is the Jacobian of F at Eu, which is a Eu-definable element in K

×
. Note that JcbK F is defined almost everywhere in A, that is, the

subset of those f (Eu) ∈ A such that JcbK F(f (Eu), Eu) is not defined is of dimension< n.
In general, if (f (Eu), g(F(Eu))) ∈ C is contained in amultiplicative coset O of (K

×
)2n thenwemay translate A, B coordinate-

wise by f (Eu), g(F(Eu)) respectively so that O is mapped into (K
×
)2n. Let (U, f ′), (V , g ′) be the induced objects and F ′ the

induced isomorphism on f ′−1((K
×
)n).
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Definition 9.14. The Jacobian JcbRV F(f (Eu), Eu) of F at Eu is a Eu-definable element in RV× given by

(Π f (Eu))−1(Πg(F(Eu))) JcbK F
′(1, . . . , 1)

if it exists, whereΠ(t1, . . . , tn) = t1 × · · · × tn.

By Lemma 4.11 and compactness, the subset of those f (Eu) ∈ A such that JcbRV F(f (Eu), Eu) is defined is not empty and the
subset of those f (Eu) ∈ A such that JcbRV F(f (Eu), Eu) is not defined is of dimension< n. Symmetrically this is also true for B.
We may further coarsen the data and define the Γ -Jacobian

JcbΓ F(f (Eu), Eu) = Σ(vrv ◦g ◦ F)(Eu)−Σ(vrv ◦f )(Eu),

whereΣ(γ1, . . . , γn) = γ1 + · · · + γn. Obviously this always exists and

vrv(JcbRV F(f (Eu), Eu)) = JcbΓ F(f (Eu), Eu).

Note that the chain rule clearly holds for both JcbRV and JcbΓ whenever the things involved are defined.
For the rest of this section we do not need to assume that A, B are of RV-dimension n.

Lemma 9.15. Let F↑ : L(U, f ) −→ L(V , g) be a lift of F . Then for every f (Eu) ∈ A outside of a definable subset of A of dimension
< n and almost all (Ea, Eu) ∈ rv−1(f (Eu), Eu),

rv(JcbVF F
↑(Ea, Eu)) = JcbRV F(f (Eu), Eu).

Also, for almost all (Ea, Eu) ∈ L(U, f ),

val(JcbVF F
↑(Ea, Eu)) = JcbΓ F(f (Eu), Eu).

Proof. Without loss of generality we may assume dimRV(A) = n. Also, by Lemma 9.12 and compactness, we may assume
A, B ⊆ (K

×
)n. For almost all (Ea, Eu) ∈ L(U, f ), JcbVF F↑(Ea, Eu)may be obtained by running the construction described above

with respect to rv−1(A), rv−1(B), rv−1(C) and the projection maps. For almost all f (Eu) ∈ A this construction modulo the
maximal ideal agrees with the construction that yields JcbRV F(f (Eu), Eu). The second assertion follows from Lemma 9.12. �

Let a, b ∈ O be definable units. Set rv(a) = t and rv(b) = s. Clearly for any definable unit c ∈ O there is a definable
bijection f : rv−1(t) −→ rv−1(s) such that dx f = c for all x ∈ rv−1(t). This simple observation is used in the following
analogue of Theorem 7.6, where we need to assume that f , g are finite-to-one, that is, (U, f ), (V , g) ∈ RV[n] (for otherwise
we may not have definable points in VF to work with).

Theorem 9.16. Suppose that S is (VF,Γ )-generated and f , g are finite-to-one. Let ω : U −→ RV be a definable function such
that

(1) ω(Eu) = JcbRV F(f (Eu), Eu) for every Eu ∈ U outside of a definable subset of U of dimension< n,
(2) vrv(ω(Eu)) = JcbΓ F(f (Eu), Eu) for every Eu ∈ U.

Then there is a lift F↑ : L(U, f ) −→ L(V , g) of F such that for almost all (Ea, Eu) ∈ L(U, f ),

rv(JcbVF F
↑(Ea, Eu)) = ω(Eu).

Proof. As in the proof of Lemma 9.15 we may assume A, B ⊆ (K×)n and hence vrv ◦ ω is the zero function. By Theorem 7.6
and Lemma 9.15 we are reduced to showing this for a definable subset A1 ⊆ A of RV-dimension <n. We do induction on
dimRV(A1). For the base case, since A1 is finite, by Lemma 3.13 the rv-balls involved have centers, then it is easy to see that
we may apply the simple observation above in one of the coordinates and use additive translation in the other coordinates.
We proceed to the inductive step. Let f −1(A1) = U1, F(U1) = V1, and B1 = (g ◦F)(U1). Since dimRV(A1) = k < n, without

loss of generality, we may assume over a definable finite partition of A1 that both pr≤k � A1 and pr≤k � B1 are finite-to-one.
Let

f1 : U1 −→ pr≤k(A1), g1 : V1 −→ pr≤k(B1), F1 : (U1, f1) −→ (V1, g1)

be the naturally induced definable functions and

C1 = {(f1(Eu), g1(F1(Eu))) : Eu ∈ U1} ⊆ pr≤k(A1)× pr≤k(B1).

Clearly both pr≤k � C1 and pr>k � C1 are finite-to-one and hence, by Theorem 7.6 and Lemma 9.15 again, there is a definable
subset A2 ⊆ pr≤k(A1) and a lift F

↑

1 of F1 such that dimRV(pr≤k(A1) r A2) < k and for all f1(Eu) ∈ A2 and almost all
(Ea, Eu) ∈ rv−1(f1(Eu), Eu),

rv(JcbVF F
↑

1 (Ea, Eu)) = JcbRV F1(f1(Eu), Eu).

Let U2 = (pr≤k ◦f )−1(A2). By the inductive hypothesis there is a lift of F � (U1 r U2) as desired.
We construct a lift F↑2 of F � U2 as follows. Let Et ∈ A2 and UEt = f −1(fib(A1,Et)). For any Ea ∈ rv−1(Et) we have Ea-definable

centers

hEa : fib(A1,Et) ∪ ω(UEt) −→ O r M .



Y. Yin / Annals of Pure and Applied Logic 161 (2010) 1541–1564 1563

For any (Ea, Eu) ∈ rv−1(Et, Eu), using the centers provided by hEa as above, we may construct an (Ea, Eu)-definable bijection

FEa,Eu : rv−1((pr>k ◦f )(Eu)) −→ rv−1((pr>k ◦g ◦ F)(Eu))

such that, for any Eb ∈ dom(FEa,Eu),

JcbVF FEa,Eu(Eb) = (JcbVF F
↑

1 (Ea, Eu))
−1hEa(Eu)

if the right-hand side is defined; otherwise let FEa,Eu be any (Ea, Eu)-definable bijection. Now let F
↑

2 be the lift of F � U2 given by

(Ea, Eb, Eu) 7−→ (Ea, FEa,Eu(Ea, Eb), Eu) 7−→ (F↑1 (Ea, Eu), FEa,Eu(Ea, Eb)).

Multiplying the Jacobians of the two components (Lemma 9.12), we see that F↑2 is as desired. �

10. Categories with volume forms

In this section we shall assume that the substructure S is (VF,Γ )-generated.
We shall define finer categories of definable subsets with the notion of the Jacobian factored in. This will make the

homomorphisms between various Grothendieck groups compatible with the Jacobian transformation, as in the classical
integration theory.

Definition 10.1 (VF-categories With Volume Forms). First setµVF[0, ·] = VF[0, ·]. Suppose k > 0. An object in the category
µVF[k, ·] is a definable pair (A, ω), where pvf(A) ⊆ VFk and ω : A −→ RV× is a function. The latter is understood as a
definable RV-volume form on A, or simply a volume form on A. Amorphism between two objects (A, ω), (A′, ω′) is a definable
essential bijection F : A −→ A′, that is, a bijection that is defined outside of definable subsets of A, A′ of VF-dimension <k,
such that for every Ex ∈ dom(F),

ω(Ex) = ω′(F(Ex)) · rv(JcbVF F(Ex)).

We also say that such an F is an RV-measure-preserving map, or simply measure-preserving map.
An object in the category µΓ VF[k, ·] is a pair (A, ω), where A ∈ VF[k, ·] and ω : A −→ Γ a definable function. The latter

is understood as a definable Γ -volume form on A. A morphism between two objects (A, ω), (A′, ω′) is a definable essential
bijection F : A −→ A′ such that for every Ex ∈ dom(F),

ω(Ex) = ω′(F(Ex))+ val(JcbVF F(Ex)).

We also say that such an F is a Γ -measure-preserving map.
The category VF1[k, ·] is the full subcategory of µVF[k, ·] such that (A, ω) ∈ VF1[k, ·] if and only of ω = 1. The category

VF0[k, ·] is the full subcategory of µVF[k, ·] such that (A, ω) ∈ VF0[k, ·] if and only of ω = 0.
The category µVF[k] is the full subcategory of µVF[k, ·] such that (A, ω) ∈ µVF[k] if and only of A ∈ VF[k]; similarly for

the categories µΓ VF[k], VF1[k], VF0[k].
The categoryµVF∗[·] is defined to be the direct sums (coproducts) of the corresponding categories; similarly for the other

ones.

Note that, for conceptual simplicity, we have allowed redundant objects in these categories. For example, if (A, ω) ∈
µVF[k, ·] with dimVF(A) < k then (A, ω) is isomorphic to the empty object. Also, given how each µVF[k, ·] is defined,
µVF∗[·] is actually just the union of the corresponding categories.

Remark 10.2. Any twomorphisms inµVF[k, ·] that agree almost everywhere may be naturally identified. It is conceptually
more ‘‘correct’’ to define a morphism inµVF[k, ·] as such an equivalence class, although in practice it is more convenient to
work with a representative. The ‘‘equivalence class’’ point of view is required when it comes to defining the Grothendieck
semigroup. Consequently, since the Jacobian of the identity map is equal to 1 almost everywhere, by Lemma 9.12, every
morphism is actually an isomorphism. This is very similar to birationalmaps in algebraical geometry. Belowby a ‘‘morphism’’
we shall mean either an equivalence class or a representative of the class, depending on the context.

Definition 10.3 (RV-categories With Volume Forms). First set µRV[0] = RV[0]. Suppose k > 0. An object of the category
µRV[k] is a definable triple (U, f , ω), where (U, f ) ∈ RV[k] andω : U −→ RV× is a function,which is understood as a volume
form on (U, f ). A morphism between two objects (U, f , ω), (U ′, f ′, ω′) is an essential isomorphism F : (U, f ) −→ (U ′, f ′)
such that

(1) ω(Eu) = ω′(F(Eu)) · JcbRV F(f (Eu), Eu) for every Eu ∈ dom(F) outside of a definable subset of dom(F) of dimension< k,
(2) vrv(ω(Eu)) = (vrv ◦ω′ ◦ F)(Eu)+ JcbΓ F(f (Eu), Eu) for every Eu ∈ dom(F).

It is easily seen from the definitions of JcbRV and JcbΓ that every morphism here is actually an isomorphism.
The categories µΓ RV[k], RV1[k], RV0[k] are similar to the corresponding VF-categories.
The categoriesµRV[≤ k],µRV[∗] are defined to be the direct sums (coproducts) of the corresponding categories; similarly

for the other ones.

Note that, as in the VF-categories with volume forms, we have allowed redundant objects in the RV-categories with
volume forms. For example, for an object (U, ω), if LU is strictly degenerate then (U, ω) is isomorphic to the empty object.
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For any (U, ω) ∈ µRV[k], let Lω be the function on LU naturally induced by ω. The lift of (U, ω) is the object
L(U, ω) = (LU,Lω) ∈ µVF[k].
For each (A, ω) ∈ µVF[k] let Aω =

{
(Ea, ω(Ea)) : Ea ∈ A)

}
. The function ω induces naturally a function on Aω , which will

also be denoted by ω for simplicity. Clearly (A, ω) and (Aω, ω) are isomorphic.

Theorem 10.4. Every object (A, ω) in µVF[k] is isomorphic to another object L(U, π) in µVF[k], where (U, π) ∈ µRV[k];
similarly for other pairs of corresponding categories.

Proof. By Corollary 5.6 there is a special bijection T : Aω −→ A1 with A1 an RV-pullback such that (rv(A1), pr≤k) ∈ RV[k].
Letω1 = ω◦T−1. Soω1 is constant on every rv-polydisc. By Corollary 9.9 and Lemma9.11, (A, ω) and (A1, ω1) are isomorphic.
Let π : rv(A1) −→ RV be the function naturally induced by ω1. Then (rv(A1), pr≤k, π) is as required.
The arguments for the other cases are essentially the same. �

Theorem 10.5. Let F : (U, ω) −→ (U′, ω′) be a µRV[k]-isomorphism. Then there exists a measuring-preserving lift F↑ :
L(U, ω) −→ L(U′, ω′) of F .

Proof. Let ω∗ : dom(F) −→ RV be the function given by Eu 7−→ ω(Eu)/ω′(F(Eu)). By Theorem 9.16, there is a lift
F↑ : LU −→ LU′ such that rv(JcbVF F↑(Ea, Eu)) = ω∗(Eu) for almost all (Ea, Eu) ∈ LU, that is, F↑ is a µVF[k]-isomorphism
between L(U, ω) and L(U′, ω′). �

Corollary 10.6. The map L induces surjective homomorphisms between the various Grothendieck semigroups associated with
the categories with volume forms, for example:

K+ µRV[k] −→ K+ µVF[k], K+ µΓ RV[k] −→ K+ µΓ VF[k].

As mentioned in Step 3 in the introduction, various classical properties, in particular, special cases of Fubini’s theorem
and a change of variables formula, can already be verified for the inversions of the homomorphisms in Corollary 10.6 and
hence we may complete the Hrushovski–Kazhdan construction of motivic integration right here. However, we choose to
postpone this until we have achieved a more satisfying theory by putting forward a canonical description of the kernels of
these homomorphisms in a sequel.
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