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1. AN ANTIPODAL THEOREM FOR D"

In R”, let B (1 <j <2p + q) be pairwise disjoint n-balls (i.e., n-di-
mensional closed balls) all contained in the interior of another n-ball Bf,
and let S;“l denote the boundary of B (0 <j<2p+¢q). We are
interested in the set

2p+q
(1) D" = {x € By: xisnotinthe interior of |J B/).
j=1

We say that D" is the set bounded by the (n — 1)-spheres S ;“1 O<j<2p
+ q). Here p and g are nonnegative integers. In case p =g =0, D" is
just By. Each S"~* is called a boundary (n — 1)-sphere of D". Two points
x,y of D" are said to be antipodal if there is an index j,0 <j < 2p + g,
such that {x,y} ¢ §7~* and (x +y)/2 is the center of S/~ ' Our main
result is the following antipodal theorem.

THEOREM 1. Let D" be a set in " bounded by 1 + 2p + q (n — 1)-
spheres S7'~ 10 <j < 2p + q), and let m be a positive integer independent of
n. Let A;, A_; (1 <i < m) be closed subsets of D" satisfying conditions (2),
(3), and (4):

o

2 (4,UA4_)=D",

i=1

(3) A,NA_ =0 forl<i<m,
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(4) For any two antipodal points x and y on a boundary (n — 1)-sphere
Sj”_l, there is an indexi € {+1, + 2, ..., + m} such that

x€A, and yeA_;, if0<j<2p;

{x,y} €A, f2p+1<j<2p+q.
Then we have the following conclusions:
(5) m=>=n+ 1.
(6) There exist n + 1 indices 1 <k, <k, < -+ <k,,, <m such

that at least one of the two intersections

n+1 n+1

n A(_l)i—lki and m A(—l)’ki
i=1 i=1

is nonempty.

(7) Foreachj,0 <j < 2p, there exist n indices 1 <h, <h, < -+ <
h, < m such that

n
-1
SITNA N Ay, * 2.
i=1

When p = g = 0, Theorem 1 reduces to a result in [1], where we have
seen that this result strengthens slightly the antipodal theorems of Lus-
ternik—Schnirelmann—-Borsuk and Borsuk—Ulam (see, e.g., [3, pp.
134-141)]). The present Theorem 1 implies also immediately a fixed point
theorem which we shall discuss before proving Theorem 1.

2. A FIXED POINT THEOREM FOR D"

For a continuous mapping g: D" - R" and x = (x, x,,...,x,) € D",
we write g(x) = (g(x), g,(x),..., g,(x)) and N(x) = max;_;_, Ig(x)
—xl.

THEOREM 2. Let D" be a set in N" bounded by 1 + 2p + q (n — 1)-
spheres S]”_l 0<j<2p+¢q). Let g: D" - N" be a continuous mapping
satisfying the following:

(8) Foranyindexj, 0 <j < 2p + q, and for any two antipodal points
X,y on S;“l, we can choose an indexi, 1 <i < n, and € = +1 such that

8i(x) —x;=eN(x) and g(y) —y;= —eN(y) if0<j<2p;
g(x) —x;=eN(x) and g(y)—y = eN(y)
if2p+1<j<2p+gq.
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Then g has a fixed point

Proof. Suppose g has no fixed point. Then N(x) > 0 for all x € D".
For 1 <i < n, define

A;={x eD": g(x) —x; = N(x)},
A_;={xeD": g(x) —x;,= —N(x)}.

These n pairs of closed sets obviously satisfy (2) and (3). Our hypothesis
(8) says that condition (4) is also satisfied. But we have only n pairs of sets
A;, A_;, contradicting conclusion (5) of Theorem 1. |

Remark. In Theorem 2, hypothesis (8) would become simpler if we
replace it by

(9) For any ordered pair of antipodal points x, y on S]f“‘l, there is
t > 0 such that

g(x) —x=1t(y—g(y)) if0<j<2p;
g(x) —x=1t(g(y) —y) if2p+1<j<2p+gq.

But this replacement would weaken Theorem 2 considerably, since (9) is
much more restrictive than (8).

3. THREE COMBINATORIAL LEMMAS

In the proof of Theorem 1, we shall need Lemma 3, which depends on
two other results proved many years ago in [1, 2]. For the convenience of
the reader, we give their statements below as Lemma 1 and Lemma 2. Our
first lemma is a combinatorial result for n-pseudomanifolds. Since this
term may not be widely used, we recall its definition [4].

A finite simplicial complex M" is called an n-pseudomanifold if the
following conditions are satisfied:

(a) Every simplex of M" is a face of at least one n-simplex of M™".

(b) Every (n — 1)-simplex of M" is a face of at most two n-sim-
plexes of M".

(¢c) If s and s’ are n-simplexes of M", there is a finite sequence
s =15,8,,...,5, =s of n-simplexes of M" such that s, and s, , have an
(n — 1)-face in common for 1 < i < m.
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An (n — 1)-simplex of M" is called a boundary (n — 1)-simplex if it is a
face of exactly one n-simplex of M".

LEMMA 1. Let M" be an n-pseudomanifold. To each vertex of M", let a
nonzero integer, positive or negative, be assigned such that for any 1-simplex
of M", the integers assigned to its two vertices have sum different from 0. Then
we have the congruence

(10)
)y {a(ky, —ky kg, =y, (=1) "k, )

0<ky<hk,< - <kpiq
b —haiky, ks ke (<) )

= )y B(kl,—kz,k3,—k4,.__,(—1)”_1kn) mod 2.

0<ky<k,< - <k

n

Here a(hy, hy, hy, ..., h, ) denotes the number of those n-simplexes of M"
whose vertices receive the integers hy, h,, hs, ..., h, | (in an arbitrary order of
arrangement). Similarly, B(hy, h,, hy, ..., h,) is the number of those bound-
ary (n — D-simplexes of M" whose vertices receive the integers
hyhy hg, ..., h,.

Lemma 1 is a special case of a theorem in [2], where the n-pseudomani-
fold is oriented and an equality replaces congruence (10).

In the statement of Lemma 2, an octahedral subdivision of an (n — 1)-
sphere $”~1in M" is the subdivision of $”~* into 2" (n — 1)-simplexes by
n arbitrarily chosen orthogonal hyperplanes in )" passing through the
center of S"~ 1. A barycentric derived octahedral triangulation of S"~ ! is the
triangulation of S~ ! obtained by a finite number of successive barycentric
subdivisions of an octahedral subdivision of S"~!. The next lemma is
already proved in [1] as a generalization of a result of Tucker (see
[3, pp. 134-141)).

LEMMA 2. Let M"™ ' be the (n — 1)-pseudomanifold obtained by a
barycentric derived octahedral triangulation of an (n — 1)-sphere S"~ . To
each vertex of M"~* let one of the 2m integers +1, +2,..., + m be assigned
such that the following conditions are fulfilled:

(@) The integers assigned to the two vertices of any 1-simplex of M"~*
have sum different from 0.

(b) The integers assigned to any two antipodal vertices of M"~* have
sum 0.
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Then the congruence

(11)
Y B(ky, —ky kg, —ky,....(=1)" 'k,) =1 mod2

1<k;<k,< - <k,<m

holds. Here B(k,, —k,, ks, —ky,...,(=1)""'k) is the number of those
(n — 1)-simplexes of M"~ whose vertices receive the indicated integers. In
particular, m > n.

For a set D" in \" bounded by 1+ 2p + g (n — 1)-spheres S/~ *
(0 <j <2p + q), a barycentric derived octahedral triangulation of D" is a
triangulation of D" such that its restriction to each S]”‘1 O<j<2p+gq)
is a barycentric derived octahedral triangulation of Sf‘l.

From Lemmas 1 and 2, we can derive the following.

LEMMA 3. Let D" be a setin R" boundedby 1 + 2p + q (n — 1)-spheres
S]”_1 O0O<j<2p+q). Let M" be the n-pseudomanifold obtained by a
barycentric derived octahedral triangulation of D". Let m be a positive integer
independent of n. For each vertex v of M", let ¢(v) be an integer among
+1, +2,..., + m satisfying

@ (v + ¢(v,) #+ 0 for the vertices v, v, of any 1-simplex of M",

(b) @) + ¢(v) =0 for any two antipodal vertices u,v on S}~ * if
0<j<2p,

(©  ¢w) = ¢p(v) for any wo antipodal vertices u,v on S;'~* if 2p +
1<j<2p+gq.

Then we have the congruence

(12)
y {a(kl,—k2,k3,—k4,...,(—1)"kn+l)

1<k <k,< - <k, .<m

+a(_kllk2!_k31k41---1(_1)n+1kn+1)}El m0d2
In particular, m > n + 1. Here a(hy, h,,..., h,, ) has the same meaning
as in Lemma 1.

Proof. By Lemma 1, congruence (12) is equivalent to

(13)
Y B(ky, —ky kg, —ky,....(=1)" 'k,) =1 mod2.

1<k <k,< - <k,<m
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Here B(k,, —k,,...,(=1" 'k,) is the number of those boundary
(n — 1)-simplexes of M" whose vertices v,,v,,...,v, can be so arranged
that ¢(v;) = (=1 'k, (1 <i <n). As every boundary (n — 1)-simplex
of M" lies on one of the 1+ 2p + ¢ boundary (n — 1)-spheres §7~*
(0 <j<2p+q), we have

Bky —kpro o (1) k) = X Bi(ky —kpo o (D) k),

j=0

where g; counts the number of relevant (n — 1)-simplexes on S]”‘l. If we
define y; (0 <j <2p + q) by

(14)
y, = Y Bi(ky— Ky kg, —ky, ... (—1)"'k,),

1<k <k,< - <k,<m
then (13) may be written

2ptq
(15) Y2 y=1 mod2.
j=0

In view of properties (a),(b) of ¢, Lemma 2 shows that vy, is odd if
0 <j < 2p. On the other hand, property (c) of ¢ clearly implies that Y is
even if 2p + 1 <j < 2p + q. This proves (15) and therefore the desired
congruence (12). 1

Remark. Like Lemma 1, Lemmas 2 and 3 can be sharpened if we
consider an orientation of the pseudomanifold and replace congruences by
equalities.

4. PROOF OF THEOREM 1

Let D" be a set in %" bounded by 1 + 2p + g (n — 1)-spheres S+
O<j<2p+¢q)andlet A, A_;, (1 <i <m) be 2m closed subsets of
D" satisfying (2), (3), and (4). Let A be the Lebesgue number for the closed
covering {A;: i = £1,+ 2,..., + m} of D". Make D" into an n-pseudo-
manifold M" by a barycentric derived octahedral triangulation of D" such
that the diameter of each simplex of M" is less than A. For each vertex v
of M™", choose an integer ¢(v) € {+1, +2,..., +m} such that

(16) v E Ay

and conditions (a), (b), (c) of Lemma 3 are satisfied. Such an assignment ¢
is possible on account of hypothesis (2), (3), (4).
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By Lemma 3, we have m > n + 1 and congruence (12). This congruence
implies the existence of integers 1 < k; <k, < -+ <k, ,, < m such that

a(kl’ _kz’k3n---v(_1)nkn+1)
+ a(_kykz’ _k3’---:(_1)n+1kn+1) =

For these n + 1 integers 1 <k, <k, < -+ <k,,, <m, there is an n-
simplex of M" with vertices v,,v,,...,v, ., such that either
d(v) =(-1)"Y% (Q<i<n+1)
or
o(v) =(-)'k; (L<i<n+1).
In view of (16), we have either
(17) v €Ay, (L<i<n+1)
or
(18) U €A gy, (I<i<n+1).
Since each simplex of M" has a diameter less than the Lebesgue number
A, (17) or (18) implies

n+1 n+1
(19) m A(_l)i—lki * or n A(—l)iki * .
i=1

i=1

Thus we have proved the existence of » + 1 indices 1 < k; <k, < -
<k,,; <m such that at least one of the two intersections in (19) is
nonempty.

With vy, defined by (14), we have seen in the proof of Lemma 3 (or
directly from Lemma 2) that v, is odd if 0 <j < 2p. Let us fix an index j
such that 0 <;j < 2p. Since v, is odd, there exist n integers 1 < h; < h,
< -+ < h, < m such that

Bi(hy, —hy by, —hy, ..., (=1)" "h,) = 1,
where g; counts the number of relevant (n — 1)-simplexes on S;“l. This
means the existence of an (n — 1)-simplex on S7 ' with vertices

Wi, Wy, ..., w, such that ¢(w,) = (-1 th, (1 <i < n), By (16), we have

-1 .
w, €S8 NA_y-y, (1<i<n),
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and, because each simplex of M" has a diameter less than the Lebesgue
number A, we have

(20) Sjnil N n A(fl)iflhi * .
i=1

This completes the proof of Theorem 1. ||
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