
JOUIWAL OF SIATHEMATICAL ANALYSIS AhD AI’PI.ICATIONS 74, 578-598 (1980) 

Generalized Kuhn-Tucker Conditions and Duality 
for Continuous Nonlinear Programming Problems 

T~obr.4~ 1%'. KEILATW* AKD MORGAX A. HANSON' 

* Department of Statistics and Graduate Program in Operations Research, 
North CaroIina State Uniwrsity, Raleigh, ATorth Carolina _37650; azd 

+ Department of Statistics, Norida State liniuersity, Tallahassee, Florida 32306 

Submitted by M. Aoki 

1. INTH~DUCTI~N 

Bellman [l] first introduced continuous time programming in the treatment 
of production and inventory “bottleneck” problems. Tyndall [21] extended 
Bellman’s theory and obtained existence and duality theorems for a class of 
continuous linear programming problems. The theory was again extended by 
Levinson [13] who dealt with problems of the following form: 

Primal Linear Problem 

Maximize 

subject to 

and 

1 
T 

a’(t) a(t) dl 
‘0 

z(t) 3 0, O<t<T, 

B(t) x(t) ,< c(t) + 1” K(t, s) z(s) ds, 
‘0 

0 sg t < 1; 

where z(.) is a bounded and measurable n-dimensional function on LO, 7’1. 

Dual Linear Problem 

Minimize 

subject to 

s 

T 

c’(t) w(t) di 
0 

w’(t) 3 0, 0<t<T, 
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KUILX-TUCKER CONDITIONS 579 

H’(t) w(t) 2 a(t) - J, K’(s, t) w(s) ds, 0 < t < 7’. 

In this gcncralization Levinson required that each element of the time-dependent 
matrices a, 13, C, and K he piecewisc continuous and that the latter three matrices 
satisfy the following positivity conditions: 

(i) H(i), c(t), and K(f, S) arc nonnegative for 0 .:< .s ,< t :< 7’, 

(ii) :x E JP: Y 3 0, B(t) s :g 0,o < t < T> = {O), 

(iii) K(2> S) = 0 for s > t. 

‘I‘hcsc assumptions enabled Levinson to construct uniform bounds for the 
prima! and dual solution sets and apply weak convergence in the normed linear 
space I,‘[O, 2’1 to obtain existence and duality theorems. 

The assumptions made by Levinson drew considerable attention in the 
subsequent literature. Hanson and Mend [9] rclaxcd the assumption of piece- 
wise continuity for the vector functions a and c and required only that their 
components bc bounded and measurable. Grinold [7] further extcndcd these 
results by similarly relaxing the assumption of piecewise continuity for the 
entries of the matrices H and K. Later Schecter [19] investigated the effects of 
allowing the components of c to be in f?[O, T] and eliminated the requirement 
that K(t, s) 0 for s > t. In each case existence and duality theorems were 
obtained. 

In summary. this sequence of works established that the assumptions (i) and 
(ii), togcthcr with the assumptions of boundedness and measurability, provide 
sufficient conditions for the existence of optimal solutions and duality for pro- 
blems of the form stated above. 

Jianson and RIond [9] further generalized the problem by introducing an 
objective function of the form 

r 4&(t)) dt, 
* 0 

whcrc ~b is a twice differentiable concave function, and obtained similar existence 
and duality results. The introduction of concavity to the objective function was 
consider& an important development from an economic perspective since it 
allowed the concept of diminishing returns to bc represented in the continuous 
time frame. This work also presented a continuous time analogue to the J<uhn-- 
‘J’ucker Theorem [I I] for nonlinear programming in finite dimensions. Farr and 
Jfanson [4] introduced nonlinearity to the constraints and considered the 
problem 

!Uaximize 

i-“’ 4(--(t)) dt 
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subject to 
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and 

f@(t)) < c(t) -;- j‘b K(t, s) g(z(s)) ds, O<t<T, 

where z(.) is a bounded and measurable n-dimensional function on [0, T], d, is a 
continuously twice differentiable scalar function, K(t, S) has nonnegative entries 
with K(r, S) -- 0 for s > t, c(.) > 0, and each component of -f and g is concave 
and differentiable. Under positivity conditions analogous to those of Levinson 
[13], they obtained existence and duality thcorcms for this class of problems as 
well as a theorem which establishes the necessity and sufficiency of a set of 
Kuhn-Tucker conditions. 

‘I’he technique used by Farr and Hanson to prove duality cntailcd a lineariza- 
tion of the constraints by expansion about the optimal solution. This technique 
allowed application of Grinold’s Duality Theorem [7] and provided duality for a 
linearized form of the problem. To establish duality for the nonlinear problem 
Farr and Hanson assumed that, for each t E [0, T], the components of the 
gradient vector of &, evaluated at the optimal solution .%( .), be tither all negative 
or all nonnegative. Modification to eliminate the need for such an assumption 
is desirable since the assumption relates to propcrtics of the objective function 
beyond the typical regularity conditions (e.g. whether the function is continuous 
or differentiable). ‘I’he only possible finite-dimensional analogue to a require- 
mcnt of this nature is the constraint qualification proposed by Gcoffrion [5, 
pp. 6-71. 

In this paper WC extend the results obtained by Farr and Hanson [4] by 
considering a more general form of the constraints and removing the above- 
mcntioncd assumption on the objective function. We develop a constraint 
qualification analogous to that prescntcd by Zangwill [23] which hopefully 
will allow for direct extensions of other basic concepts underlying finite- 
dimensional programming. An example is presented wherein these results are 
applied to a version of the oil terminal model considered by Christofides, 
Martello, and ‘Ioth [2]. 

2. PRIMAL PROBI;EM A 

l’he problem to be considered is: 

!Uaximizc 

P(.z> = /-’ ‘-%@(~h t>, t) dt “” (1) 



suhjcct to the constraints 

z(t) ‘3 0, 0 ;< t .;; 7’, ‘2’ i I 
and 

f(z(t), t) 5; k(y(z, t), f), 0 I.2 1 -;, T, 13) 

where a EL,~“[O, I’], i.e. u” is a bounded and measurable n-dimensional function; 
?; is a mapping from LrLz[O, T] x [0, T] into E’ defined by 

f(o(t), f), h(y(z, t), I) E 8”’ andg(z(t), 1) E BP; and Y(g( ,, f), f) is a scalar function, 
continuousiv differentiable in its first argument throughout [0, T] and concave 
in z. It is further assumed that each component of --f, g, and h is a scalar 
function, concave and differentiable in its first argument throughout [0, 7’1 with 
each component of k also concave in z, that there exists 8 ::- 0 such that cithcr 

G,fi($ t) = 0 or C,f,(q t) 3 6, (5) 

‘I’he scalar functions Iq(O, t) and the vectors F:A,(O, t), ; - ! )..., nr, are continuous 
on [0, ‘IJ; similarly for gj(O, i) and Vgj(O, t), j = I,..., p. 

Xotc that if each entry of the matrix [V~(T, t)] ” IS nonnegative, then assumption 
(6) is equivalent to the statement that each column of [Vf(q, t)] has at lcast one 
positive element. Hence assumptions (5) and (6) arc nonlinear extensions of 
assumptions imposed initially by Levinson ([I 31. (I .7) and (1.8)) to prove the 
existence of an optimal solution to the linear prob!em. Lksumptions (5) and (6) 
are implemented hclow in the proof of Theorem 1 to establish the existence of an 
optimal solution to the nonlinear problem. 

A function 2 ELnf[O, T] . is termed feasible for Prima! Problem A if it satisfks 
the constraints (2) and (3). The primal problem is itself said to be feasible if A 
feasible z exists. 
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THEOREM 1 (Existence). If Primal ProhIem A is feasible then it has an optimal 
solution that is, there exists a feasible z for which 

P(2) = sup P(z), 

where the supremum is tahen ova all feasible z. 

We preface the proof of this theorem with two lemmas which are provided by 
Levinson [13]. 

LEMMA I. If q is a nonnegative integrable function for which there exists scalar 
constants 0, > 0 and e2 > 0, such that 

then q(t) < Q?zt, 0 < t < T. 

LEMMA 2. If {qd}, d =: 1, 2 ,..., is a unlyormly bounded sequence of measurable 
junctions which converges weakly on [O, T] to q0 , then 

qo(t) < liT-,yp qd(t), a.e. in [O, Tl, 

that is, the inequality holds for all t E [0, T] except possibly on a set of Lebesgue 
measure zero. 

Proof of Theorem 1. Let x be feasible for Primal Problem A and multiply the 
constraint (3) by the ytz-dimensional vector (I,..., 1) to obtain the inequality 

@@(t), 1) < ?I h,(y(s, t), t), 0 < t G T. (8) 

From the convexity of each fi in its first argument it follows from [17, p. 2421 that 

a,<(t) = f Vk.fi(O, t). 
i- 1 

Set 0, -.: max{O; - xi.y ,f,(O, r), 0 :< t z< T) and observe that by assumptions 

(5) and (6) 

i:f m<in ak(t) > 0. 



KUHS-TUCKER COSDI’TIONS 583 

Since z is feasible and therefore satisfies constraint (2), it then foliows that there 
exists a posit& scalar A for which 

and 

and set 

Gb, t, .r) = = [Gh(y(-, t), t)] &+), s) 

and 

Rj. application of the chain rule for differentiation, the concavity of g and 11, ii 7; 
and assumption (7), it follows that 

h(~(x, “), t) < h(0, t) .I- [’ G(0, t, s) ds -; [’ H(0, t, s) z(s) ds, 
* 0 ‘0 

0 -g t b 7’. 

Seicct 8r > 0 and 0a ; 0 such that 

and 

(” i sup ,C &(O, t) -I- 5 J” Gi(0, t, S) J”i < 0, 
1 (i-1 ?-;I 0 

From (9) we have that 0: :. (0, :- 0,)/A and ei;’ -:: B,iLl are nonnegative ano 
positive constants respectively for which 

f-Iencc by Lemma I, it is concluded that the set of feasible so!utions for Prima: 
Problem A is uniformly bounded on [0, T]. 

Since the composite functionc$( ., t) = Y’(f(., t), t) is concave and differentiable 
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in its first argument throughout [0, T], it follows from [I 71 and the uniform 
boundedness property that, for any feasible solutions z and 9, 

P(x) - P(.z”) < T i sup(z,(t) - zko(t)) sup ‘V,+“(t), t) < ED 
I;=1 L 1 

where 

and hence P is bounded above for all feasible a. 
Let P = sup P(z), where the suprcmum is taken over all feasible Z. Then 

there exists a sequence of feasible solutions (+} such that 

lj.z P(z”) = P. 

Since {ad} is uniformly bounded, it follows from [20] that there exists a 2 to 
which a subsequence of {z”} converges weakly in L,‘[O, T]. The application 
of Lemma 2 to each component of ad then provides uniform boundedness for f 
except possibly on a set of measure zero where, as will be shown later, it can be 
assumed to be zero. 

From (7), [17] and the concavity of g and h we have 

Iz(y(z”, t), t) < h(y(9, t), t) + IoL H(S, t, s) (.zd(s) - Z(s)) ds. 

Since each entry of the m x n matrix H(2, t, s) is bounded and measurable, it 
follows that fl,(~?, t, .) EL,“[O, T] CL,*[O, TJ and so by weak convergence 

s ’ ZZ(i, t, s) (zd(s) - Z(s)) ds --f 0, as d + 03. 
0 

Thus by constraint (3) 

liT.qf(Zd(t), 2) < Q@, t), t). > 

By the convexity off 

f(s”(t), t) > /(,qt>, t) + Fw(t>, t)l’ WYt) - W). 

VO) 

Therefore, from (10) 

/(qt), t) < h(y(f, t), t) (11) 



except on a set of mcasurc zero, since b!; (171, assumption (5) and !,cmma 2 

limLzp[Vj(Z(i). t)]’ (zd(t) --- i(l)) > 0 

except 01, such a wt. 
\ second application of Lemma 2 to each component :)i 2” provides 

-S(t) < liy+sxup(-zd(/)) < 0, a.c. in [O. T]. 

dnd conscquentiy 5 is nonncgativc except on a set of measure xcro. From this 
result and expression (1 I), it is observed that Z can \:iolate the constraints of 
Primal Problem A on, at most, a set of measure zero in [0, T]. IVe define F to be 
zero on this set of measure zero and equal to 5 on the complement. ‘The feasibility 
of SF is then established by noting that 

and that 

Iin;-yp j(Y’(t), I) > f‘(0, t), 0 :;; i I.< 2’, 

b\: the convexity off, constraint (2) and assumption. (5). 
R\I the concavity and diffcrcntiability of C/J 

,/f +(2”(f), 1) dt -< I” $(2(t), f) dt -+ I*’ (zd(t) - 2(t))’ L$(-“(t), ‘) dt. 
‘0 . 0 

Thcreforc by weak convcrgcnce 

Hk the definition of P and the feasibility of z, F’(Z) 6: P, thus P(s) ..: 1’ ano 
1; is an optimal solution for Primal I’roblcm A. cl.lm. 

before the dual to Primal Problem A is formail\ stated, a continuous tlmc 
~,a~ranGm function and its I~rcchct differential will be introduced. ‘I’hrs a ‘3 
introduction serves to further unify the theory with that of finite dimensional 
~xy.yamming as well as allowing brevity in the notation. 

For u E I-,,‘f [O, T] and w EL,,~[O, I”], defkc 

f,(u, iu) f“ [+(24(t), t) $ w’(l) qu, t)l dt, (12) -’ ,I 
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where 

F’(% 1) Ny(u, t), 2) -f(u(t), t), 0 :< t < T, 

and let 6,Z,(u, u:; y) dcnotc the FrCchct differential [15] of I, with respect to its 
first argument, evaluated at u with the increment y EL,~-[O, I’]. The dificren- 
tiability of each of the functions involved in I, ensures that the Frechet differcn- 
tial exists and allows S,L(u, u;; y) to be dctermincd by the simple differentiation 

V(u, u; Y) L &(u + =y, w) Iryo - (13) 

‘The Frechet differential has two additional properties which will be used 
extensively in the ensuing discussion, namely the linearity of 6,L(u, U; y) in its 
increment y and the continuity of S,L(u, w’; y) in y under the norm 

1 y ii: rnzx j/ yk I-. 

Here /I . % denotes the essential supremum [18]. 
From (13) it is observed that 

- Jo’ w’(t) If@, t, s) y(s) ds - w’(t) [Vj(u(t), t)] y(t)/ dt 

(14) 

which, through application of Fubini’s Theorem [I81 to interchange the limits 
of integration, can be expressed as 

S,L(u, w; y) r 6P(u, y) -;. /’ y’(t) F*(u, w, t) dt, 
‘0 

where 

F”(u, ‘c, t) = 
s 

T H’( u, s, t) 4s) ds - FWt), 41’ 4th 0 < t < II’. 
1 

Under this notation the dual of Primal Problem A will be shown to be: 

Minimize 

G(u, w) = L(u, w) - S,L(u, w; u) 

subject to the constraints 

w(t) > 0, 0 < t :=, T, 

and 

P(zl, ‘Et, t) -; [V~(u(t), t)-j < 0, 0 < t c: II’. 

(15) 

(16) 

(17) 

(18) 

(‘Y 



P(z) <s G(u, z). 

Prwof. 13~ the concavity of $, ---f, g, and /I and hy assumption (7) it follows 
that L is concave in its first argument and 

P(z) -- G(u, w) := qz, w) - ff w’(t) F(.z, t) dt - Lcju, w) 8,L(u, EC; 10 
- 0 

rr 
::-, 6,L(u, w; .z -- 21) L S,L(u, w; IL) -- ( rL.‘(t)F(z, t) tit 

. 0 

= : S,L(u, ZL’; z) - j-r w’(t) qz, 1) 111 

by the linearity of the FrCchet differential in its increment, 

P(z) -- G(u, EC) = ,$: a’(t) {[v&L(t), t)] -.- zyu, x, t)j tit -- fi w’(t) I+-(,“, f) dt 
- 0 

‘by (IQ 
2-, .o 

by constraints (2), (3), (18) and (19). !.).I:.!). 

From Theorem 2 it is observed that if there esist feasible solutions, S anti 
(6, G), for the primal and dual problems and if the corresponding primal and 
dual objective function values, P(S) and C( J 6, &), are equal, then these wlutions 
arc optimal for their respective problems. 

‘I’he content of this section is in general analogous to concepts and rcsilrlts I&IL 
‘we well-known in finite-dimensional mathematical programming; SW. foor 
example, Theorem 3 (strongly duality), lxmma 3, and 1,cmma 4. In addition. 
the constraint qualification introduced here is motivated hv the constraint 
qualification presented by Zangwill [23]. The basic theory surrounding this 
qualification is established to provide a framework for the remaining thcorcnw. 

qz; y) = ST ?‘(t) [L+(t), t)] dt :;- 0 
0 
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where ,z, y E L,“[O, ‘f J, then there exists a scalur (T > 0 such that 

P(z -(- Ty) > P(z), for 0 < T < 0. 

Proof. IQ (13) 

$n[P(z -;. 7y) - P(z)]/7 = W(z; y) > 0, 
v 

thus a positive (T can be chosen which is sufficiently small so that 

P(z c Ty) > P(z), for 0 <T<fJ. Q.E.D. 

DEFIXITION 1. For each z which is feasible for Primal Problem A define I>(z) 
to bc the set of n-vector functions y for which 

0) Y EL,V, Tl 
(ii) there exists a scalar o > 0 such that 

and 
z(t) + 7-y(t) 3 0, 

F(z + 7y, t) 2 0, 

a.e. in [O, 11, 

a.e. in [0, T], 

DEFIMTION 2. Define D(z) to be the closure of D(z) under the norm 

I: . II;, that is, if a sequence {yd) C D(z) and !I y” - y Ii,” -* 0, as d--+ CO, then 
y E B(z). 

Henceforth the FrCchet differential of the mapping F(., t): L,“[O, T] -+ En”, 
evaluated at x and with increment y, will be denoted by W(z; Y)~. It should be 
observed that, for any specified value of t E [O, TJ, the existence of W(z; Y)~ 
is ensured by the differentiability off, g, and h and that 

SF@; r)t = It I&, t, s) y(s) ds - F’fC$t>, t)ldt). 
0 

(21) 

Similarly, the FrCchct differential of a component Fi( ., t) of r( ‘, t), evaluated at B 
and with increment y, will bc denoted by W,(z; r), . 

DEFINITIOS 3. For each z which is feasible for Primal Problem A define 
9(z) to be the set of n-vector functions y for which 

(i) y C-Lm[O, 77, 
(ii) yk(t) g> 0 a.c. in TIk(a), Ir : I,..., n, 

(iii) W,(z; Y)~ > 0 a.c. in Tzi(z), i : : I,..., m, 
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where 

and 

?;p(Z) = [t E [O, 7’1: xl,(t) = 01, I2 =z I,..., n, 

T&) = [t E [O, T]:Fi(z, t) :-= 01, ; =: l,..‘) 111. 

In a comparison of the sets D(z) and 9( ) z with their finite dimensional 
counterparts presented in Zangwill [23], it is observed that D(z) is analogous 
to the set of “feasible directions” at z and a(z) is analogous to that set of 
directions for which the directional derivatives of each of the active constraints 
at x are nonnegative. Furthermore the form of the constraint qualification for 
continuous time problems given below is identical to that for finite-dimensional 
problems. 

DEFNTIOX 4 (Constraint Qualification). Primal Problem 11 will be said 
to satisfy the Constraint Qualification if the problem is feasible and if 

D(2) = 9(X), 

where ti is an optimal solution to the problem. 
In problems such as Primal Problem A where convexity and concavity 

properties are assumed, violations of the Constraint Qualification can be shown 
to arise when the constraints take the form of equalities on some set of positive 
measure. For example, consider the constraints 

and 

(q(t) + q(t) - t)2 s; 1 - G(t), 0 .< t y., T, 

where E is a set of positive measure in [0, T] and I,(.) is its indicator function. 
For z(t) z (t/2, tj2)‘, 0 < t < T, the function y(t) -= (t, t)‘, 0 < t < I’. is an 
element of .9(z) but not an element of D(z): thus the Constraint Qualification 
is violated. 

To establish strong duality two additional assumptions arc required. These are: 

Ji(%, f, s) > 0, 05;s<t<T, (22) 
and 

F(2, t) - SF(z; $ > 0, 0 :< t ,G T, (2:ij 

where 2 is an optimal solution for Primal Problem .A. 

'THEOREM 3 (Strong Duality). C:nder the Construint _Oualijication and 
assumptions (22) and (23), there exists an optimal solution (ii, ti)fbr J>ual Problew -4 
such that ii = 5 and G(Y, 5) = I’(Z). 
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Before proving Theorem 3 the following linearized problem, called Primal 
Problem A’, will be considered: 

Maximize 

SP(X; z - z) 

subject to the constraints 

and 
z(t) 3 0, O<t<d, (24) 

F(%; t) + SF@; .a - 5)( > 0, O<t<ll’. (25) 

LEMMA 4. G&r the Constraint Qualification, z is an optimal solution for 
Primal Problem A’. 

Proof. Assume that there exists a f which satisfies (24) and (25) and for 
which 

sqz; f - 5) > 0. 

Then there exists a positive scalar CT- such that 

[P(% -1 T(2 - 2)) - P(S)](T > 0, for 0 < 7 < f7*. 

Observe that 7 7 (2 - a?) ESS(Z) since 

j%(t) 2 0, for t E 7;k(.S), k = I ,..., n, 

and 

SF&; f)I > 0, for t E 7ii(%), i :- I ,..., m, 

and therefore, under the Constraint Qualification, 9 E D(n). 
If p E D(Z), then a positive scalar 6 E (0, cr*] can be chosen such that % + c+? is 

feasible for Primal Problem A except on a set of Lebesgue measure zero where, 
as in the proof of Theorem I, it can bc assumed to be zero. The feasibility of the 
adjusted f -). C+ and the inequality 

P(iz + l?p> > P(2) 

contradict the optimality of z for Primal Problem A and it is therefore concluded 
that 

SP(S; 7) < 0, if 9 c D(s). (26) 

If {yd} is a sequence of functions in D(Z) which converges to p in the norm 
1’ . 1 Z then by (26) 8, I.119 
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.This result and the assumption that 6P(ti; p) > 0 contradict tire continuity or 

?W’(%; .) and it is therefore concluded that 

for a!1 z satrsfying (24) and (25). ‘The optimality of z? follows since z is feasible 
for Primal Problem A’ and since ~Z’(Z; 0) = 0. Q.E.D. 

Proof of Theorem 3. To apply the results obtained in the sequence of works 
by Tyndall [21], Levinson [13], and Hanson and Mend [9], Grinold [7], and 

Schechter [19], Primal Problem A’ is rewritten in the form 

Maximize 

.r: a’(t) z(l) dt 

subject to the constraints 

and 

~3~~1 z(t) G +) -: i” k’(t, s) +) ds, 0 6 f .< ?‘, 
‘” 

where a(t) :-: [V+(s(t), t)], B(i) = [Vf(z(t), t)], r(t) 1 F’(%, 1) --- W(Z; ;i)t, and 
K(t, s) =-: ZZ(z, f, s). From assumptions (5), (22) and (23) it is observed that 
R(t), c(t), and K(t, S) are nonnegative for 0 6: s < I < T and from assumption 

(6)T 

‘l’hus Primal Problem A’ satisfies the requirements for duality summarized by 
Schcchter and there exists an m-vector function isi satisfying 

ti(t) > 0, 0 5; t :<; T, (27) 

and 

R’(t) ii(t) 3 a(t) r j’ K’(s, t) w(s) fis, 0 +. I :< r, 
I’ 1 

(28) 

for which 

1’ d(t) c(t) nt .= jr U’(f) Z(f) d!. “9) I- 
-n * n 

With the identities (12), (14), and (I 6), the expressions (28) and (29) can b,: 
expressed as 
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and 
I,@, z&r) - 6,L(2, iii; 2) = P(2), (29’) 

respectively. From (27) and (28’) it then follows that (5, %) is feasible for Dual 
Problem A, and from (17) and (29’) 

G(%, ST) = P(s). (30) 

Finally, by the weak duality established in Theorem 2, it is concluded from (30) 
that (z, W) is an optimal solution for Dual Problem A. Q.E.D. 

In order to apply Theorem 3 in practice, it is desirable to be able to verify 
conditions (22) and (23), without prior knowledge of the optimal solution Z. 
The following corollary provides this capability. 

COROLLARY 1. If 

V,g,(v, 2) = igj(q, t)(+f; > 0, (3’) 
j = l,..., p, I2 L-2 I,..., ?I, for7 E En 

rl 20, and t E [O, q 

F(O, t) 3 0, 0 -g t < T, (32) 

then under the Constraint @uzlijication there exists an optimal solution (ii, 25) for 

Dual Problem A such that u .- Y and G(.s, iti) P(Y). 

Proof. We have from (7) and (31) that 

H(e t, s) = [Vh(y(% t), t)] F’g(4.9, 41 3 0, O,<s<t<T, 

and by (32) and the concavity of F that 

F&z, t) - SF(q .qt >F(O, t) > 0, O<t<T. 

From these results it follows that the conditions of Theorem 3 are satisfied. 
Q.E.D. 

5. KUIIZI-TUCKER THEORY 

THEOREM 4 (Complementary Slackness Principle). If f and (z, @) are 
optimal solutions for the Primal and Dual Problems A, then 

and 
I 
oT &(t) F(z, t) dt = 0 (33) 

s 
o= s’(t) {F*(z, 20, t) L- [C&s(t), t)]} dt = 0. (34) 
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Z’HJCJ~. Since a(t) > 0 and I+(.%, C, t) f [‘7$(~(t)~ t)j < 0, 0 <t < T, it 
follows from the identity (15) that 

-1 
j. S(t) (F*(.S, ti, t) + [VC#J(%(~), t)]} dt = 6,1!,(%~ f2; e) <: 0, 

and thcrcfore, by (29’) 

f.(Z, UT) - I+) == j’ a’(t)F(z, t) dt < 0. 
0 

Since ,zd(t) > 0 and F(%, t) >, 0, 0 < t < T, it also follows that 

1 
T 

a’(t)I;(f, t) dt >, 0, 
0 

;351 

thus the equality in (33) is established. 
Similarly, (29’) and (35) imply that 

and therefore, by (15) 

JOT Z?‘(t) {F”(%, ti, t) im [V$(%(t), t)]} dt 3 0. 

The equaiit!; in (34) is then established since z(t) > 0 and 

I-(%, Is, t) $- [v+(t), t)] < 0, 0 c: t :g 7‘. y.rxl. 

‘hEORI31 5 (Kuhn.-Tucker Conditions). Assume that (31) amI (32) arc 
satisfied for Primal Problem A. Then under the Constraint Qualification 5 is itn 
optimal solution if and only if there exists an m-z’ector function ~6 such that 

G(t) > 0, O<t<T, (36) 

F*(z, 6, t) -+ [Vl#@(t), t)] < 0, 0 < t I< T, (37) 

,-I‘ 

f i’(t){F”(-“, 6, 1) j- [VI@(t), t)]) dt = 0, (38) 
‘0 

c 

T 

&‘(t)F(z, t) dt = 9. (33) 
‘0 

I-‘roc!i. Xccessity: ‘[‘he necessity of the conditions follows from Corollary ! 
and Theorem 4, since the m-vector function 3 of the optimal solution (s, EJ) to 
Dual I’rohlcm .1 satisfies conditions (36)-(39). 
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Sufficiency: Let a be feasible for Primal Problem A. Then since P is concave 

P(z) - P(k) < SP(Z; z - 5) 

-; or [z(t) - z(t)]’ [v+(qt), t)] fit 
s 

?g - or [x(t) - z(t)]‘F”(z, 53, t) dt 
s 

by (37) and (38) since z(t) 3 0, 0 < t .< ‘1’, 

P(x) - P(2) = - Jr G’(t) SF@; z - %), dt 
0 

by (16), (21), and Fubini’s Theorem [ 181, 

P(z) - P(2) < - 1’ 22’(f) [F(z, t) - F(k, t)] dt 
‘0 

by (36) and the concavity of F, 

P(z) - P(z) =- - J’ ti’(t)F(z, t) nt 
0 

by (39), 
P(2) - P(k) < 0 

since G(t) 2 0 and F(z, t) 2 0, 0 < t .< T. Thus P(z) < P(2) and i is an 
optimal solution for Primal Problem A. Q.E.D. 

Sonlinear programming in infinite-dimensional spaces has been previously 
considered by Luenberger [IJ], I’araiya [22], Guignard [8], and others [see, 
e.g. [3], [6], [IO] and [12] and the references therein]. 

Juenberger [ 14, p. 2471 considers the problem 

subject to 

minimize .f(x) 

G(x) < ‘4 

wheref is a real-valued function on a vector space X and G is a mapping from X 
into a normed space % having positive cone P. Xote that in contrast to this 
problem the domain L,m[O, T] x [0, T] f 0 our constraint function F(z, t) = 
II(JJ(Z, t), t) --j(z(t), t) differs from the domain 15,~[0, 7’1 of our objective 
function P(a). This difference between the domain of the constraint and objective 
functions gcncrates associated Kuhn-Tucker conditions that are more general 
than those of Luenberger [14, p. 2491. In particular, if X has a positive cone 
then Luenbcrgcr’s Kuhn--Tucker conditions can be modified to allow for the 



condition “.\ .c 6”. The Kuhn-l’ucker conditions (36) thru (39) are an extension 

of Lucnbcrgcr’s modified Kuhn-Tucker conditions applied to the Banach 
space X L,“[O, 1’3. In addition, Lucnbcrgcr’s constraint quaiilication [14, 
1’. 2481 in the finite-dimensional setting is more stringent than the tinitc- 
dimensional version of our constraint qualification [16> p. 6471. 

Guignard 1.81 addrcsscs nonlinear programming in Hanach spaces and gcne- 
ralizes the, Kuhn---‘Tucker conditions obtained by LVaraiya [22]. IIoth papers 
consider problems of the form: 

maximizc{$(s): .Y E C, a(.%) C B:. 

whew U( .) IS d real-valued function on a real banach space .,y, a( .) is a map from 
X into I;, ,11so a real Uanach space, and B and C arc noncmpty subsets of Y and 
.V, respectively. \‘araiya assumes differentiability of $(.I) and u(.) over X Lvhilc 
Guignard limits differentiability to a particular point 2 under consideration; the 
authors esprcss their results in terms of cones of tangents [22. Dcf. 2.21 and 
pseudotangents [8, Def. 51. As in the comparison in the preceding paragraph, 
the difierence between the domains of our constraint and object& functions 
result in Kuhn-Tucker conditions that are natural extensions of those tlerivcd 
?X ‘\.arai\:a [22, Th. 4.11 and Guignard [8, Th. 21. For cxamplc, conditions (36) 
aild (39)-are, for every t E [0, 7’1, equivalent to Guignard’s “11 E P (11, a(%))” 
[.8, Th. 21 by setting u -= c(r), B : E..‘“, and a(.*;) = : I:(%, 1). Similarly, condi- 
tions (37) and (38) arc, for every t E [0, 7’1, equivalent to Guignard’s “V#(S) --I- 
r( Ccz(.?)~l G-” [8, Th. 21 by setting G = P (LF+[O, ‘I’], a), whcrcL$[O, 7‘] :: 
(y EId7L=-[0, T]:?,(t) .> 0, 0 2: t < 7’1. WC note that the constraint qualifications 
of \:araiya 122, Dcf. 3.41 and Guignard [8, ‘1-h. 21 arc equivalent to our constraint 
qualification in finite-dimensional spaces [16, p. 6471 and that an existence thco- 
rem comparable to Theorem 1 is not established in any of the three above- 
mcntioncd papers. 

One of the factors motivating the extension of mathematical programming to 
iniinitc-dimensional spaces was to derive results that arc applicable to the 
theory of optimal control; hopefully, our formulation wi!l facilitate such applica- 
tions. 

\Ve cons;dcr a generalization of the oil tcrmina! model considcrcd ‘>\ 
C‘hristoiides [2]. Crude oil arrives on ships and is to bc unloaded to a “tank 
farm” \vhich consists of several storage tanks. Each ship carries scwral grades 
of crude and there is a separate storage tank for each grade. The storage tanks in 
turn supply a refinery whcrc the crudcs arc mixed and processed into refined 
grades. Given that a group of ships has arrived at the terminal, v,e desire a policy 
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for unloading the ships and supplying the refinery in the time period CO, T]. ‘I’he 
policy should be optimal in the sense that, subject to resource and production 
constraints, the net gain rcalizcd from production in the interval [0, T] is 
maximized. 

For the dynamics of the problem, we assume that each storage tank is capable 
of simultaneously receiving oil from the ships and pumping oil to the refinery. 
Let Ri and Bi , i --: I,..., r dcnotc the initial store of crude oil in tank i and the 
capacity of tank i, respectively. Let q(t) dcnotc the combined flow rate of crude i 
from all the ships to storage tank i, pi(t) th e fl ow rate from tank i to the refinery, 
and y&t), j, k = I,..., p,i + k, the rate at which refined gradej is recycled back 
into the production process for use in producing refined grade ii. ‘l’he store of 
crude oil in tank i at time t can then be expressed as 

Ci(t) y- Oi + lt (cx~(s) - pi(s)) dsy i = l,..., 1. 

Let z = (a, /3, y)’ be th c n-vector of flow rates, where n ::L 2r + p(p 
resource constraints can thus be formulated as: 

for i = l,..., r and 

zl yjr(t) < flf(z(t), t), 0 G t G T, 
tij 

1); the 

(40) 

(41) 

(42) 

(43) 

forj = I,..., p, where Ai , Bj are the maximum allowable flow rates into and out 
of tank i, respectively; IIj(z(t), t) is the rate of production of refined gradcj when 
operating at a flow rate level z(t) at time t, where II,(., t) is concave and dif- 
fcrentable in its first argument throughout [0, T]. ‘The functions I+(r), l/<(t) are 
lower and upper bounds, respectively, for the cummulative flow of crude i; these 
bounds typically are determined by the total amount of crude i to be unloaded 
from the ships and by the desire to maintain uniform utilization of the facilities 
over the planning period [0, T] and avoid penalties in the form of overhead 
costs that result if the ships are in port for an excessive length of time. 

‘l’he production constraints can be cxpresscd as 

H(t) < jt I+(s), s) ds < V(t), O<t<T, (45) 
0 



where LI(,, t) -: (II,(., t),..., n,(., t))‘; the p- I c imcnsional functions l-l(i) anti 

V(t) are, respectively, the lower and upper bounds for the production of the p 
refined grades of oil that must take place in the portion of the planning period 
from 0 to t. These bounds arc determined by estimates of the demand function 
during the planning period [0, 7’1 and by the desire to control imentory costs. 

Assuming the role of the oil company, WC: want to select an oil Aow policy to 
maximize the net profit realized by production during the planning period; the 
net profit for the period [0, T] is 

s 

T 

(m(t) I+(t), t) - c@(t), t) dt 
0 

where thejth component of the function m(t) = (nzr(/),..., m,,(t))’ is the market 
\;aluc of one unit of thejth refined grade of oil at time i and c(z(t), t) is the cost of 
operating at the rate z(l) at time t; c(., t) is a scalar function, convex and dif- 
ferentiable in its first argument throughout [0, r]. ‘I’he problem is to rxaximize 
the above integral by proper choice of the functions a,(.), &( .), yik(.) subject to 
constraints (4Oj-(50). 

Through proper association of the terms of this model with those of l’rima! 
Problem A, it can be shown by application of Theorem 1 that feasibility ensures 
the existence of an optimal oil flow policy; necessary and sufficient conditions 
for a solution are given by the Kuhn-Tucker Conditions in Section 5. 
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