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1. INTRODUCTION

Bellman [1] first introduced continuous time programming in the treatment
of production and inventory “bottleneck” problems. Tyndall [21] extended
Bellman’s theory and obtained existence and duality theorems for a class of
continuous linear programming problems. The theory was again extended by
Levinson {13] who dealt with problems of the following form:

Primal Linear Problem

Maximize

T
[ () a() dt
)]
subject to
() >0, 0<t<T,

and

B(t) a(t) < e(t) + | ‘K, s) 2(s)ds, 0<t<T,

‘0
where 2(-) is a bounded and measurable z-dimensional function on [0, 7.
Dual Linear Problem
Minimize
T
f () w(?) dt
0

subject to
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and

T
B'(t) w(t) z= a(t) — J K'(s,tyw(s)ds, 0t
t

In this gencralization Levinson required that cach element of the time-dependent
matrices a, B, ¢, and K be piecewise continuous and that the latter three matrices
satisfy the following positivity conditions:

(i) B(), <), and K(1, s) are nonnegative for 0 «<{s <t LT,
(1) xeEnx=0,B(t)xy<0,0<t LT} ={0],
(i) K(t,5) =0 for s > t.

These assumptions cnabled Levinson to construct uniform bounds for the
primal and dual solution sets and apply weak convergence in the normed linecar
space 1[0, 7] to obtain existence and duality theorems.

The assumptions made by Levinson drew considerable attention in the
subsequent literature. Hanson and Mond [9] rclaxed the assumption of piece-
wise continuity for the vector functions @ and ¢ and required only that their
components be bounded and measurable. Grinold [7] further extended these
results by similarly relaxing the assumption of piecewise continuity for the
entries of the matrices B and K. Later Schecter [19] investigated the effects of
allowing the components of ¢ to be in L![0, T] and eliminated the requirement
that K(#,s) . -0 for s > £. In each case existence and duality theorems were
obtained.

In summary, this sequence of works established that the assumptions (i) and
(11}, together with the assumptions of boundedness and measurability, provide
sufficient conditions for the cxistence of optimal solutions and duality for pro-
blems of the form stated above.

Hanson and Mond [9] further generalized the problem by introducing an
objective function of the form

T

[ dula) at,

“0
where & is a twice differentiable concave function, and obtained similar existence
and duality results. The introduction of concavity to the objective function was
considered an important development from an economic perspective since it
allowed the concept of diminishing returns to be represented in the continuous
time frame. 'This work also presented a continuous time analogue to the Kuhn--
"F'ucker Theorem [11] for nonlinear programming in finite dimensions. Farr and
Hanson [4] introduced nonlinearity to the constraints and considered the
problem

Maximize

[ #eton a
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subject to

2(t) =0, 0

/N
N

T,
and

SE0) < ) - [ K gle) s, 0<i<T,

where z(-) is a bounded and measurable #-dimensional function on [0, T], ¢ is a
continuously twice differentiable scalar function, K(, 5s) has nonnegative entries
with K(z,5) - O fors > ¢, ¢(*) = 0, and cach component of —f and g is concave
and differentiable. Under positivity conditions analogous to those of Levinson
[13], they obtained existence and duality theorems for this class of problems as
well as a theorem which establishes the necessity and sufficiency of a set of
Kuhn-T'ucker conditions.

T'he technique used by Farr and Hanson to prove duality entailed a lineariza-
tion of the constraints by expansion about the optimal solution. This technique
allowed application of Grinold’s Duality Theorem [7] and provided duality for a
linearized form of the problem. To establish duality for the nonlinear problem
Farr and Hanson assumecd that, for each z¢e[0, T'], the components of the
gradient vector of ¢, evaluated at the optimal solution £(-), be cither all negative
or all nonnegative. Modification to eliminate the necd for such an assumption
is desirable since the assumption relates to propertics of the objective function
beyond the typical regularity conditions (e.g. whether the function is continuous
or differentiable), The only possible finite-dimensional analogue to a require-
ment of this nature is the constraint qualification proposed by Geoffrion [5,
pp. 6-7].

In this paper we cxtend the results obtained by Farr and Hanson [4] by
considering a more gencral form of the constraints and removing the above-
mentioned assumption on the objective function. We develop a constraint
qualification analogous to that presented by Zangwill [23] which hopefully
will allow for dircct extensions of other basic concepts underlying finite-
dimensional programming. An example is presented wherein these results are
applied to a version of the oil terminal model considered by Christofides,
Martello, and 'Toth [2].

2. PrimaL PROBLEM A

The problem to be considered is:

Maximize

P(z) = [ W(g(a(t), 1), 1) dt M

0
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subject to the constraints

3(t) =0, 0t 5T, 2}
and

A ) <z 00, 0t < T, 3)

where 5 €L,*{0, T, i.e. 5 is a bounded and measurable #-dimensional function;
v is a mapping from L,=[0, T x [0, T] into E¥ defined by

vz, 1) = J: £(=(5), 5) ds; {4)

F(=(t), 1), h(¥(2, t), t) € E™ and g(2(2), t) € EP; and W(g(', ¢), t) 1s a scalar function,
continuousiy differentiable in its first argument throughout [0, T and concave
in z. It is further assumed that cach component of -—f, g, and % 1s a scalar
function, concave and differentiable in its first argument throughout [0, T'] with
cach component of / also concave in 2z, that there exists 8 > 0 such that cither

Vifiln ) =0 o Vifi(n1) =5, (5)

where
VSl 1)y = &f(n, t);6m,. {o=1,.,m ko=t .n
for

ne kr, 1 =0, and tel0, T,

fxe B (N, )] » 50,8 20,0 =0 ¢ < T} = {0} forpe kv, 5220, (6)
where

Vi, 0] = {Vifdom Dmocas
and

Vv, t) == Ohy(w, t):0v; = 0, forve Er and 10, T]. (7
The scalar functions /,(0, ¢) and the vectors Vi, (0, t), / - - 1,..., m, are continuous
on [0, T7; sunilarly for g0, 1) and Vg0,1), 7 = 1,..., .

Note that if each entry of the matrix [Vf(#, 1)] is nonnegative, then assumption
{6) is equivalent to the statement that each column of [Vf(y, #)] has at least one
positive element. Hence assumptions (5) and (6) are nonlinear extensions of
assumptions imposed initially by Levinson ({13]. (1.7) and (1.8)) to prove the
existence of an optimal solution to the linear problem. Assumptions (5) and (6)
are implemented below in the proof of Theorem 1 to establish the existence of an
optimal solution to the nonlinear problem.

A function 2 € L,%[0, T] is termed feasible for Primal Problem A if it satisfies
tne constraints (2) and (3). The primal problem is itself said to be feasible if a
feasible z exists.
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Tueorem 1 (Existence). If Primal Problem A is feasible then it has an optimal
solution that is, there exists a feasible Z for which

P(z) == sup P(z),

where the supremum is taken over all feasible z.

We preface the proof of this theorem with two lemmas which are provided by
Levinson [13].

LemMa 1. If g is a nonnegative integrable function for which there exists scalar
constants 6, 2= 0 and 0, > 0, such that

(1) < 8, = 6, [q(s)ds, 0<t<T,
then q(t) < 0%, 0 <<t << T.

LemMma 2. If{q.}, d = 1, 2,..., is a uniformly bounded sequence of measurable
Sfunctions which converges weakly on [0, T] to q, , then

g(t) < llmsupqd(t) ae. in [0,T],

that is, the inequality holds for all t € [0, T] except possibly on a set of Lebesgue
measure zero.

Proof of Theorem 1. Let 2 be feasible for Primal Problem A and multiply the
constraint (3) by the m-dimensional vector (1,..., 1) to obtain the inequality

ZLMOO ihMmm& 0<t<T. (®)

From the convexity of each f; in its first argument it follows from [17, p. 242] that

m

Zf(z(f), ) > Z 40, 8) + Z ay(t) (1),
where

at) = 3, Vufi0,1).

m

Set 6, —= max{0; — 3., f:(0,1),0 < ¢ << T} and observe that by assumptions
(5) and (6)

ir}f m’in a(t) > 0.
i1
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Since 2 is feasible and therefore satisfies constraint (2), it then follows that there
exists a positive scalar 4 for which

| z 2(1) < 0, = Z R(v(z, 1), 1), 0Lt T 9)
w1 i=1
Define

[Ve(n, 9} = (Vg pxen s forme Br, sel0, T,
and

[Vh(s, D] = (Vi Doy, for vz By, 1[0, T),
and set

Gler ,) -+ [Vh(3(z, 1), )] g(a(), )

and

H(z, 1, 5) == [VA(x(2, 1), 1)] [Ve(2(s), 5)]-
By application of the chain rule for differentiation, the concavity of g and 4, {i7]
and assumption (7), it follows that

= =

t ¢
(2, 1), £) < h(O, 1) - {) G(0, 1, 5) ds - (0 H(O, t, 5) 2(s) ds, 0Lt T

Sclect 8; > 0 and 6, > 0 such that

m

zh(o 1) - ZJ G0, 1, s)dséglil

%Up (
i=1 i=1

and

sup max Z H,,(0, ¢, s)% £ 0,

From (9) we have that 0F =. (8, - 0,)i4 and 8 — 8,/4 are nonnegative and
positive constants respectively for which

n { n

Y mt) <0765 [ Y mle)ds, 0Lt T
feo=1

Y0 p=1

Hence by Lemma 1, it is concluded that the set of feasible solutions for Prima;
Problem A is uniformly bounded on [0, 7.
Since the composite function (-, 1) = ¥(g(-, 1), t} is concave and differentiable

40974/2-18
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in its first argument throughout [0, T, it follows from [17] and the uniform
boundedness property that, for any feasible solutions z and 29,

P() — P < T z sup(ai(t) — (1)) sup Vibl(2). 1) < o0
where

V() 1) = 3. V,E(g(0), 1), 1) Vigs(0(), 2,

P}

and hence P is bounded above for all feasible z.
Let P = sup P(z), wherc the supremum is taken over all feasible 2. Then
there exists a scquence of feasible solutions {7} such that

Li__)rg P(z%) = P.
Since {27} is uniformly bounded, it follows from [20] that therc exists a % to
which a subsequence of {&%} converges weakly in L,2[0, T]. The application
of Lemma 2 to each component of 2¢ then provides uniform boundedness for #
except possibly on a set of measure zero where, as will be shown later, it can be

assumed to be zero.
From (7), [17] and the concavity of ¢ and /2 we have

Ay(z% 1), 1) < h(y(%,8),t) + fot H(g, t, s) (29(s) — Z(s)) ds.

Since each entry of the m X » matrix H(%, t, s) is bounded and measurable, it
follows that H,(%, ¢, -)eL,<[0, T]CL,2[0, T] and so by weak convergence

fo ‘LG 1 5) (595) — 5(65) ds—0, as  d— oo.
Thus by constraint (3)
1ir3_)§cupf (z4(2), 1) < h(y(%, 1), 1). (10)
By the convexity of f
F(24(2), 1) = f(&(2), 1) + [VF(2(2), )] (2%(¢) — Z(2))-
Therefore, from (10)

J(E®D), 1) < K(3(%, 1), 1) (11)
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except on @ set of measure zero, since by [17], assumption (5) and Lemma 2
lim sup[Vf(&(1). O]’ (°(2) — 5(1)) >
d=%

except on such a set.

\ sccond application of Lemma 2 to each component of 37 provides
—&(t) < llm sup( —zi) < a.c. in [0.T].

and conscquently 3 is nonnegative except on a set of measure zero. IFrom this
result and expression (11), it is obscrved that # can violate the constraints of
Primal Problem A on, at most, a sct of measurc zero in [0, 7]. We define ¥ to be
zero on this set of measure zero and equal to & on the complement. The feasibility
of ¥ is then established by noting that

(7, 1) = v(% 1), 0t LT,
and that
lim sup f{=9(1), t) = f(0, 1), SN ARE AN
d->x

by the convexity of f, constraint (2), and assumption (3).
By the concavity and differentiability of ¢

.g.ord)(zd(f), 1) dt < J‘(;[</>(§(t), 0y dt -+ C ((t) — () Sh{z(1), )

Therefore by weak convergence
i T o
P iim [ s4(e), 1) de < | (z(), ¢) di = P(3).
> Yo “o

By the definition of P and the feasibility of 2, P(g) < P, thus P(3) - P anc
5 1s an optimal solution for Primal Problem A. Q.E.D.

3. Duai ProBLEM A

Before the dual to Primal Problem A is formally stated, a continuous timc
Lagrangian function and its Fréchet differential will be introduced. This
introduction serves to further unify the theory with that of finite dimensional
programming as well as allowing brevity in the notation.

For uecl. [0, TTand w € L,,#[0, T], definc

L, w) - | " lb(ut), 1) + (1) Flu, 1)] de, (1

Yo

o
~
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where
T,

A

Fu, t) - h(y(u, 1), t) — f(u(t), 1), 0<1t

and let 8,L(u, w; y) denote the Fréchet differential [15] of I with respect to its
first argument, cvaluated at # with the increment y € L,*[0, 7. The differen-
tiability of each of the functions involved in I ensures that the Fréchet differen-
tial exists and allows 8,L(x, w; ) to be determined by the simple differentiation

d
SuL(u, wiy) —= 7 Llu+ ay,w)| . (13)
144 x—0
‘The Fréchet differcntial has two additional properties which will be used
extensively in the ensuing discussion, namely the linearity of 8,L(u, =; ) in its
increment y and the continuity of §,L(x, t; v) in y under the norm
|yl - maxjiyg (=

Here | - ' denotes the essential supremum [18].
From (13) it is observed that

Sl ws9) = [ {780, ) (0
. (14
= [ w0 e £5) 76) ds — /(1) [/ ), 0) 'y(t)t dt

which, through application of Fubini’s Theorem [18] to interchange the limits
of integration, can be expressed as

8,L(u, w; y) — 8P(u, y) - | O FH, w, 1) d, (15)

~0

where
F¥u, w, t) = f:‘ H'(u, s, t) w(s) ds — [Vf(u(t), 1)]" w(t), 0t (16)

Under this notation the dual of Primal Problem A will be shown to be:
Minimize
G(u, w) = L(u, w) — 6,L(u, w; u) (17)
subject to the constraints
w(t) = 0, 0<et<T, (18)

and

FXu, o, t) = [V(u(t), )] <0, 0<t<T. (19)
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Uneorem 2 (Weak Duality). If 2z and (u, ) are feasible solutions for Primal
and Dual Problems A respectively, then

P(z) < G(u, =).

Proof. By the concavity of ¢, —f, g, and £ and by assumption (7) it foilows
that L is concave in its first argument and
L(z, w) — L(u, w) <. 6, L(u, w; x - u).
Thus
P(z) - Glu, w) == I(2, w) ~ ‘ w' (1) F(z, t)dt - L{u, wy - 8. L(u, w; u)

*0
52 8 L(u, wy 2 — 1) = 8, L(u, w; 1) — ( w' () F(z, 1) dt

~o

- 8, L(u, w; 5) — ‘ C(t) F(z, 1) dt

by the linearity of the Fréchet differential in its increment,

P(z) —— Glu, w) = ( 2 (2) {[V(u(t), 1)] -~ F¥(u, 20, 1)} dt — g: ' (t) F(z, 1) dt
by (15),
Z,\\‘ 0

by constraints (2), (3), (18) and (19). Q.E.D.

From Thcorem 2 it is observed that if there exist feasible solutions, £ and
(#, @), for the primal and dual problems and if the corresponding primal and
dual objective function values, P(%) and G(&, @), are equal, then these solutions
are optimal for their respective problems.

4. T'HE CoNSTRAINT (QQUALIFICATION AND Duanrry

The content of this section is in general analogous to concepts and results that
are well-known in finite-dimensional mathematical programming; sce, for
example, Theorem 3 (strongly duality), Lemma 3, and Lemma 4. In addition,
the constraint qualification introduced here is motivated by the constraint
qualification presented by Zangwill [23]. The basic theory surrounding this
qualification is established to provide a framework for the remaining theorems.

Leanvia 3. If

P(siy) = | ¥/(0) [Sb{a(t), ) di = 0 (20)
0
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where 3,y € L, %[0, T], then there exists a scalar o > 0 such that
P(z+-7y) > P(2), for0O<r<o.
Proof. By (13) |
l[P(z - 7v) — P(3)]/r = 8P(z;y) > 0,
thus a positive ¢ can be chosen which is sufficiently small so that
Pz + ) > P(2), for0 <t <o Q.E.D.

DerINtTION 1. For each » which is feasible for Primal Problem A define D(z)
to be the set of n-vector functions y for which

(i) yel,[0,T]
(i1) therc exists a scalar o > 0 such that

2(t) + m(t) =0, ae. in [0, 77,
and
Flz 4y, 1) =0, a.c. in [0, 7],

DerFINITION 2. Define D(z) to be the closure of D(z) under the norm
[ 1=, that is, if a sequence {y%} C D(2) and | y¢ — y |2 — 0, as d — o0, then
v e D(2).

Henceforth the Fréchet differential of the mapping F(-, t): L,[0, T]-— E™,
evaluated at z and with increment y, will be denoted by 8F(z; y), . It should be
observed that, for any specified value of #€ [0, 7], the existence of 8F(z; y),
is ensured by the differentiability of f, g, and A and that

OF(z; ) = fo (s, 1, 5) 9(s) ds — [/ (=(0), 0] 9. @1

Similarly, the Fréchet differential of a component F,(-, t) of F(, t), evaluated at z
and with increment y, will be denoted by 3F,(z; v), .

DrriniTioN 3. For each z which is feasible for Primal Problem A define
Z(2) to be the set of n-vector functions y for which

(i) ycl,=[0,T]
(i) () =0 ac. in Ty(2), k= 1,..,n,
(iii) 8Fy(z;y), =0 a.c.in Ty(3), ¢ : - 1,..., m,
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where

Ty(2) = [te 0, T7: z4(t) = 0], k==, n,
and

To(2) = [t €0, T): Fy(z, t) == 0], (== 1., m.

In a comparison of the sets D(z) and Z(2) with their finite dimensionai
counterparts presented in Zangwill [23], it is observed that D(2) is analogous
to the set of “feasible directions” at z and Z(z) is analogous to that set of
directions for which the directional derivatives of each of the active constraints
at z are nonnegative. Furthermore the form of the constraint qualification for
continuous time problems given below is identical to that for finite-dimensional
problems.

DerFiNiTiON 4 (Constraint Qualification). Primal Problem A will be said
to satisfy the Constraint Qualification if the problem is feasible and if

D(z) = 2(2),

where % is an optimal solution to the problem.
In problems such as Primal Problem A where convexity and concavity
properties are assumed, violations of the Constraint Qualification can be shown
to arise when the constraints take the form of equalities on some set of positive

measure. For example, consider the constraints
(1) =0, 2(t) = 0, (UE IE

’

and
(7{t) + 2(t) — 1)2 <1 — L(2), 0 T

where E is a set of positive measure in [0, T and Zg(-) is its indicator function.
For 2(t) = (¢/2,1/2), 0 <t << T, the function y(t) -= (¢, ¢}, 0 <t < T, is an
element of Z(z) but not an element of /(z); thus the Constraint Qualification
1s violated.

To establish strong duality two additional assumptions are required. These are:

Hz1,5) 20, 0<s<t <7, (22)
and
F(,1) = 3F(5,2), 20, 0t T, 23

where ¥ is an optimal solution for Primal Problem A.

‘TreoreM 3 (Strong Duality). Under the Constraint Qualification and
assumptions (22) and (23), there exists an optimal solution (ii, i) for Dual Problem A
such that & = ¥ and G(%, @) = P(%).
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Before proving Theorem 3 the following linearized problem, called Primal
Problem A’, will be considered:

Maximize
8P(%; 2 — &)
subject to the constraints
H0) >0, 0<I1<T, (24)
and
F(z t) + 8F(5;2 — 2), = 0, RS S ) (25)

LemMa 4. Under the Constraint Qualification, % is an optimal solution for
Primal Problem A’

Proof. Assume that there exists a £ which satisfies (24) and (25) and for
which
8P(z;2— z) > 0.

Then there exists a positive scalar o* such that
[Pz (3 — ) — P(3)]jr >0, for0 < r < o*,
Observe that § — (8 — £) € Z(%) since
yi(t) =0, forte 7(%8), k= 1,.,n,

and
8F{(z;,7) = 0, forte 1,(%), i{—1,.,m,

and therefore, under the Constraint Qualification, 3 € D(Z).

If § € D(Z), then a positive scalar 6 € (0, o*] can be chosen such that ¥ 4 67 is
feasible for Primal Problem A except on a set of Lebesgue measure zero where,
as in the proof of Theorem 1, it can be assumed to be zero. The feasibility of the
adjusted £ -'- 7 and the inequality

P(z + 65) > P(3)

contradict the optimality of % for Primal Problem A and it is therefore concluded
that
3P(%;9) <0, if  veD(z). (26)

If {¥%} is a sequence of functions in D(&) which converges to 4 in the norm
[ -1, then by (26)

lim sup 8P(z; y9) < 0.
dsoc
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This result and the assumption that 8P(z; ) > 0 contradict the continuity of
8P(%; -) and it is thercfore concluded that

SP(% 2 — 2) <0
for all » satisfying (24) and (25). The optimality of £ follows since 5 is feasible
for Primal Problem A’ and since 8(%; 0) = 0. Q.E.D.

Proof of Theorem 3. To apply the results obtained in the sequence of works
by Tyndall {21], Levinson [13], and Hanson and Mond [9], Grinold [7], and
Schechter [19], Primal Problem A’ is rewritten in the form

Maximize
T
[ a'(t) =(t) dt
Yo
subject to the constraints
E(t) > 0, 4] I t = T
and

ot
B(t) (1) < c(t) - | K(t,s)2(s)ds, Ot T,
Y0
where a(t) == [V(2(2), )], B(t) = [Vf(3(t), 1)], e(t) = F(3, 1) — 8F(%; 2),, and
K(t,s) = H(Z, t,s). From assumptions (5), (22) and (23) it is observed that
B(t), c(t), and K(t, 5) are nonnegative for 0 <'s < ¢ <X T and from assumption
(6),
(xeE":x=0,B(t)x 0,0 <t L T)=={0}

Thus Primal Problem A’ satisfics the requirements for duality summarized by
Schechter and there exists an m-vector function @ satisfying

w(t) = 0, 0Lt T, (27)
and
T
B(t)at) >a(t) - | K(styw@)ds, 0«i<T, 28
n
for which

T T
[ w()ynde = | a(zna.

i}

With the identities (12), (14), and (16), the expressions (28) and (29) can be
expressed as

Fi(s ) - [Vo(s(0), ] 0, 017,

()
>
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and
L(%, %) — 8,L(5, @; 5) = P(2), (29)

respectively. From (27) and (28') it then follows that (%, @) is feasible for Dual
Problem A, and from (17) and (29)

G(z, @) = P(3). (30)
Finally, by the weak duality established in Theorem 2, it is concluded from (30)
that (2, #0) is an optimal solution for Dual Problem A. Q.E.D.

In order to apply Theorem 3 in practice, it is desirable to be able to verify
conditions (22) and (23), without prior knowledge of the optimal solution Zz.
The following corollary provides this capability.

CoroLrary 1. [If

Vlcg:i(’?’ t) = 5g7'(77’ f)/'am; =0, (31)
7i=1L...,p ka=1,.,mn, forne E7

7 =0, and te (0, T,

F(0,1) >0, <t<T, (32)

then under the Constraint Qualification there exists an optimal solution (&, @) for
Dual Problem A such that & — Z and G(3, @) - - P(2).

Proof. We have from (7) and (31) that
H(z,t,5) = [VA(3(Z, 1), t)] [Ve(3(s), 5)] 20, O0<s<<t T,
and by (32) and the concavity of F that
F(3t) — 8F(z; 8), = F(0,1) 20, 0<t<T.

From these results it follows that the conditions of Theorem 3 are satisfied.
Q.E.D.

5. KunN-Tvcker THEORY

TueoreM 4 (Complementary Slackness Principle). If Z and (%, @) are
optimal solutions for the Primal and Dual Problems A, then

f ’ @' (t)F(z, t)dt =0 (33)
and ’

fT () (F(5, w, £) — [Ve(2(2), )]} dt = 0. (34)
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Proof. Since z(t) =0 and F*(3, @, 1) + [Vé(2(2), 1)] <0, 0 <t LT, 1t
follows from the identity (15) that

AT

U W FHE @, 1) + [VEW, O]} dt = 3,L(5, 5 =) < 0,
‘o
and therefore, by (29)
T
L@@y_m@:fzwanzgmgo
0
Since w(t) =0 and F(2,1) =2 0, 0 <t < T, it also follows that

T
f @'(t) F(z, 1) dt >0, 35)
0

thus the equality in (33) is cstablished.
Similarly, (29") and (35) imply that
8,L(%, @, 2) =0
and therefore, by (15)

[ 20 P 1) - [Ve(=(0), 1]} dr > 0.

Jo
The equality in (34) is then established since %(2) 2= 0 and

F¥(z, @, t) + [Vé(z(t), 1)] <0, 0t T Q.E.D.

Tueorem 5 (Kuhn-Tucker Conditions). Assume that (31) and (32} are

satisfied for Primal Problem A. Then under the Constraint Qualification % is an
optimal solution if and only If there exisls an m-vector function % such that

() >0, 0<t<T,  (36)

Fr(e,d,0) - [V4(s(0, 0] <0, O0<t<T,  (37)

[ =0 e, 0) 4 (Fel, 0 e - 0, (38)
‘fwmp@am:o‘ (39

H

Proof. Nccessity: "I'he necessity of the conditions follows from Corollary !
and Theorem 4, since the m-vector function % of the optimal solution (2, @) to
Dual Problem A satisfics conditions (36)—(39).
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Sufficiency: Let 2z be feasible for Primal Problem A. Then since P is concave

P(z) — P(2) < 8P(%; 2 — %)

= [ 1) — 50 9(s00, v a

< — f 2(t) — &(t)] FX(2, 4, t) dt

by (37) and (38) since 2(¢t) > 0,0 <t < T,

=

T
P(z) — P(2) = — f @' (1) SF(%; = — &), dt
0
by (16), (21), and Fubini’s Theorem [18],

P(z) — P(z) < — | " () [Fi, ) — F(& 1)) dt

“0

y (36) and the concavity of F,

P(z) — P(8) = — f( ]T @'(t) F(z, t) dt

by (39),
P(z) — P(2) < 0

since @(¢) =0 and F(z,1) 20, 0 <t < T. Thus P(2) < P(Z) and % is an
optimal solution for Primal Problem A. Q E.D.

Nonlinear programming in infinite-dimensional spaces has been previously
considered by Luenberger [14], Varaiva [22], Guignard [8], and others [see,

g. [3], [6], [10] and [12] and the references therein].

Luenberger [14, p. 247] considers the problem

minimize f(x)

subject to
Glx) <6

where f is a real-valued function on a vector space X and G is a mapping from X
into a normed space Z having positive cone P. Note that in contrast to this
problem the domain L,*[0, T] X [0, T] of our constraint function F(z,t) =
W y(z, 1), t) -~ f(2(2), t) differs from the domain L,*[0, 7] of our objective
function P(2). This difference between the domain of the constraint and objective
functions generates associated Kuhn—Tucker conditions that are more general
than those of Luenberger [14, p. 249]. In particular, if X has a positive cone
then Luenberger’'s Kuhn-Tucker conditions can be modified to allow for the
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condition "y 2 7. The Kuhn-Tucker conditions (36) thru (39) are an extension
of Luenberger’s modified Kuhn-Tucker conditions applied to the Banach
space A" - - L,*[0, T). In addition, Luenberger’s constraint qualification [14,
p. 248] in the finite-dimensional setting is more stringent than the finite-
dimensional version of our constraint qualification {16, p. 647].

Guignard [8] addresses nonlinear programming in Banach spaces and gene-
ralizes the Kuhn-"Tucker conditions obtained by Varaiya [22]. Both papers
consider problems of the form:

maximize{f(x): x € C, a(x) € BY,

where @(°} 1s a real-valued function on a real Banach space X, o(+) is a map from
Xinto ¥, also a real Banach space, and B and C are¢ nonempty subsets of ¥ and
X, respectivelv. Varaiya assumes differentiability of (-} and a(-) over X while
Guignard Limits differentiability to a particular point £ under consideration; the
authors express their results in terms of cones of tangents {22, Def. 2.2] and
pseudotangents [8, Def. 5]. As in the comparison in the preceding paragraph,
the difference between the domains of our constraint and objective functions
result in Kuhn-Tucker conditions that are natural extensions of those derived
by Varaiva (22, Th. 4.1] and Guignard [8, Th. 2]. For example, conditions (36)
and (39) are, for every t€ [0, T, equivalent to Guignard’s “ue P (B, a(%))”
[8, Th. 2] by setting u = w(?), B = E.™, and a(x) = : F(Z, t). Similarly, condi-
tions (37) and (38) are, for every f € [0, T], cquivalent to Guignard’s “Vij(&) -§-
u - Va(x)e G [8, Th. 2] by setting G+ = P (L3, {0, T'], ), where L7, [0, T7 =
{yel,*[0, T]:»(t) > 0,0 =t <{ 7). We note that the constraint qualifications
of Varaiya {22, Def. 3.4] and Guignard [8, 'T'h. 2] arc equivalent to our constraint
qualification in finite-dimensional spaces [16, p. 647] and that an existence theo-
rem comparable to Theorem 1 is not established in anyv of the three above-
mentioned papers.

One of the factors motivating the extension of mathematical programming to
infinite-dimensional spaces was to derive results that are applicable to the
theory of optimal control; hopefully, our formulation will facilitate such applica-
£ions.

6. ExampPLE—THE OPERATION OF AN OIL TERMINAL

We consider a generalization of the oil terminal model considered by
Christofides [2]. Crude oil arrives on ships and is to be unloaded to a “tank
farm™ which consists of several storage tanks. Lach ship carries several grades
of crude and there is a separate storage tank for cach grade. The storage tanks in
turn supply a refinery where the crudes are mixed and processed into refined
grades. Given that a group of ships has arrived at the terminal, we desire a policy
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for unloading the ships and supplying the refinery in the time period [0, T]. ‘The
policy should be optimal in the sensc that, subject to resource and production
constraints, the net gain rcalized from production in the interval [0, 77 is
maximized.

For the dynamics of the problem, we assume that each storage tank is capable
of simultaneously receiving oil from the ships and pumping oil to the refinery.
Let 2, and 6, , 7 == 1,...,  denote the initial store of crude oil in tank 7 and the
capacity of tank 7, respectively. Let «,(¢) denote the combined flow rate of crude ¢
from all the ships to storage tank 7, B,(¢) the flow rate from tank 7 to the refinery,
and y;(2), 7, B = 1,..., p, J  k, the rate at which refined gradc is recycled back
into the production process for use in producing refined grade %. 'I'he store of
crude oil in tank 7 at time ¢ can then be expressed as

Cyft) = 2, + fo (o) — B s, = L.

Let 7 == (&, B, ¥)" be the n-vector of flow rates, where n == 2r 4 p(p — 1); the
resource constraints can thus be formulated as:

0 < o(t) < 4, 0<t<T, (40)
0 < Bi(t) < B;, 0<<T, (41)
0<Ct) <0, 0<t<T, (42)
L) < [ @@ < U, 0<t<1 (43)

for i =1,...,7 and
3 ) <I0,0, 0<t<T, (44)

ki
forj = 1,..., p, where A, , B, are the maximum allowable flow rates into and out
of tank z, respectively; TT(2(2), t) is the rate of production of refined grade j when
operating at a flow rate level 2(2) at time ¢, where IT(, 1) is concave and dif-
ferentable in its first argument throughout [0, T'). The functions L,(t), U(2) are
lower and upper bounds, respectively, for the cummulative flow of crude ; these
bounds typically are determined by the total amount of crude ¢ to be unloaded
from the ships and by the desire to maintain uniform utilization of the facilities
over the planning period [0, 7] and avoid penalties in the form of overhead
costs that result if the ships are in port for an cxcessive length of time,
'T'he production constraints can be cxpressed as

H@) < fo ‘), ) ds < V1), 0<t<T, (45)
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where TI(-, 1) = (I1(, t),..., [T, 1))’; the p-dimensional functions H({/) and
V(1) are, respectively, the lower and upper bounds for the production of the p
refined grades of oil that must take place in the portion of the planning pericd
from 0 to ¢. These bounds arc determined by estimates of the demand function
during the planning period [0, 77 and by the desire to control inventory costs.

Assuming the role of the oil company, we want to select an oil flow policy to
maximize the net profit realized by production during the planning period; the
net profit for the period [0, 77 is

[[ oy 110, 1 — et 1

where the jth component of the function m(t) = (my(t),..., m,(¢))" is the market
value of one unit of the jth refined grade of oil at time # and ¢(=2(¢), £) is the cost of
operating at the rate z(¢) at time #; ¢(-, #) is a scalar function, convex and dif-
ferentiable in its first argument throughout [0, 7. 'T'he problem is to maximize
the above integral by proper choice of the functions a,(*}, 8;(), y:(*) subject to
constraints (40}~(50).

Through proper association of the terms of this model with those of Primal
Problem A, it can be shown by application of Theorem 1 that feasibility ensures
the existence of an optimal oil flow policy; necessary and sufficient conditions
for a solution are given by the Kuhn-Tucker Conditions in Section 3.
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