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Let (A,, A ,) be an interpolation couple of normed Abelian groups. The 
approximation functional is defined for each a E A, + A, and 0 < t by 

~(~,~;~o,~,)=i~f{l~--a,l,,/l~ol,~~,~~~. (1) 

For the properties of E, see [3 1. The interpolation groups (AO, A ,)n,4:6 are 
defined by 

0 
119 

Ial (A0.A 1)a,4:t. = 
m (t”E(t,u:A,,,A,))9~) > 

-0 
(2) 

whereO<a<oo,O<q<co. 
An operator T: A ,, + A, -+ B, + B, is defined to be E-quasilinear 14 1, iff 

constants c, d exist such that 

E(t,+t,,T(~,+~,);B,,B,)~c{~(tod,T~o;Bo~B,) 

+ E(t,d, Tu,; B,, B,)}. (3) 

For operators mapping into t(p, q) spaces, pointwise quasilinearity 
implies E-quasilinearity. 

Theorem 1 is proved in [2/. 

THEOREM 1. Let T: A,, + A 1 -+ B, + B, be E-quasilinear and 

f~iE(s,Tu;B,,B,)ds-E(t,Tu;B,,B,)~c,lul~,, (4) 
0 

I w9, < co l~l.4,. (5) 
11 
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12 CWIKEL AND SAGHER 

foralla~A,nA,. Then,forO<a<oo,O<q<cc 

(6) 

Theorem 1 generalizes the well-known interpolation theorem, where (4) is 
replaced by ] Ta IB, < c, 1 a iA,. 

Let us recall some notation (see [2]). 

DEFINITION 1. Let f be defined on (0, co), and integrable on each 
interval (0, t). We define 

fAt) = f j;f (s) ds - f W 

lflw=lfxlaY 

(7) 

(8) 

Condition (4) is therefore ]E(s, Ta; B,, I?,)], < c, la IAl. The calculation of 
]E(s, a; A,,, A,)I, for given couples (AO, A ,) becomes therefore a matter of 
considerable interest. We begin by giving some results along these lines. L, is 
defined by 

If ILo = c,x,,.x,, >o, dp(x) (9) 

and clearly the best approximation f - f, to f in L, norm for all choices of 
f. : ] f0 ILo Q t is achieved by removing from f its piece supported on a set of 
which f is largest. Hence 

Jqt,f;~,,L,)=f *co (10) 

where f * is the nonincreasing rearrangement off: See [3] for this and related 
results. Denote by W(A,,A,) the set of all a for which 
\E(s, a; A,,, A,)(, < co. Then W(L,, L,) is the class of functions f satisfying 

fj;f*(s)ds-/*(t&h (11) 

On R” this class was shown by Bennett-DeVore-Sharpley [I ] to be the 
rearrangement invariant hull of BMO(Q), where Q is any fixed cube. They 
called this class weak-L,. We shall prove in the sequel that for 0 < p < 00, 
W(L,, L(P, 1)) 2 L(P, co), and for 0 < p < 1, w(L,, L(P, 1)) = L(P, 00). 
Another result we shall prove is that for 1 <p < m, W(L,, L&2 L(p, m). 
The result raises an interesting question: What is an intrinsic charac- 
terization of functions in W(L,, L,)? This class interpolates with L(r, q) 
(r # p) in much the same way as L(p, co) does and a characterization of its 
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elements might make verification of condition (4) for particular operators, 
easier. Another result proved in the sequel is that we can replace the 
difference between E and its average by differences of higher averages, and 
still get the interpolation theorem. This shows for example that L, is only 
one in a whole scale of function classes, each interpolating with L,, as L, 
does, and furthermore the class corresponding to the nth averages contain 
certain functions growing as fast as (log+ l/t)“. 

The reader should recognize of course that statements such as 
WLO, Jq g2 L(PY co 1 involve an abuse of notation. E(t, a; A 0, A ,) is defined 
for aEA,+A,. and so Ial W(AO,A ,) < c is defined for a E A, + A,, and the 
statement W(L,, Lp) 3 L(p, ro) means that for f E L, + L, 

and that the reverse of the inequality does not hold. 
The classes W(AO, A r) do not lend themselves to sublinear conditions. Our 

final result is an attempt to generalize them to classes which will be more 
tractable. This involves the introduction of functions g,(t) which compensate 
for sudden descents of E(t, Ta; B,, B,). 

THEOREM 2. W(L,,L(p, l))~L(p, cm>, for all 0 < p < co, and 
W(L,J(P, l))=L(P, oo)fir 0 < P< 1. 

Proof The same considerations which show E(r,S; L,, L,) =f*(t), 
show that 

E(t,f;L,, L(p, 1)) = i”f*(u)(u - f)‘,+’ du. 
-t 

(131 

Therefore 

EC.3 f)&) = f j-l E(s, f) ds - Et& f> 
0 

1 ILo =- f i,, 
s 

f*(u)(u-~)“~~‘d~ds--!.~f*(~)(~-f)”~~’du 
f 

1 A I 
=-J 1 f 

f*(u)@ - s)“~-~ du ds 
0 s 

+ +j-;l,” f*(u)[(u - s)“~-’ - (u - f)“p-‘] duds 
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If 0 < p < 1, both terms are nonnegative so that iff E W(L,, L(p, l)), then 
(l/t) I:, f”(u) 24 ‘lp du < c. Since f * is nonincreasing this is equivalent to 

f*(u) 24 ‘M < c, (c does not have the same value at each occurrence), and so 
f E L(p, co). Consider the reverse inclusion L(p, co) c W(L,, L(p, 1)). 
Clearly, it suffices to show that the second integral is bounded. Denote 

q?(x) = (1 -x)l’P-l, o<x< 1, 

= 0, I <x. 

If U”“f*(U) < c, 

I,rn~*(~)f~~((~-~)~~~-~-(~-~)‘~~-~~d~du 

&fjj; [ (1 -t)“” - (1 -;) “‘-I ] ds$ 

all 
=C 

s I 

t/u 
t o [(l -x)“P-- 

t 
- (1 ~~)“p-‘]&$ 

=c 

Since 

f j; g(u) du - $ j; g(u) du = [ g,(u) t 

(see [I]) and since ‘p# does not change sign, we have 

= lim t-to+ if Jo cp(u) du - Jo cp(u) du / = I l -- PI. 

The proof is complete. 

We next consider W(L,, Lp). 

(14) 

(15) 

THEOREM 3. If 1 < P < 00, w&l, Lp) $2 qp, 00). 
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Proof E(t,f; L,, LJ = (I,00 [f*(u)l” du)““, so that 

E( ., f>&> = f !‘I E(s, f> ds - W, .I-) 
0 

1 f cJZ 
= - f (j” 

t-o s 
(f*(u)>” du )‘I’ ds - (J;= (f*(u))” du) ’ ’ 

,< f f [i” (f*(u))” du - [= (f*(u))” du] “’ ds 
-0 s -I 

1 I -I =---- f (1 (f*W~pd~)“pd~ t 0 ‘S 
‘lP 

; (f*(u))” u du I”“. 

Iff*(u) u’lp < c we get therefore ]f] wcLo,LDJ < G and UP, ~1 c W(b13 LPI. 
Take on 10, l],f(s)=f*(s)=s-“P(log(l/s))“P’, where (l/p)+ (I/p’)= I. 
Clearly, f 6L L(p, co), while f E W(L,, Lp), 

(( fP(u) du )‘” = (js’ (log t)“’ $)‘I’ = ($1 I” log f. 

Therefore 

We should emphasize, however, that W(L,.L,) is not a lattice and the 
condition (ra)*(t) t’lp < c cannot be replaced by (i”u)*(t) t”“(log’ I/t) ’ I’ 
< c. The functions in the range whose rearrangements are larger than would 
be permitted by L(p, co) conditions, have to compensate for this by having 
smoother rearrangements. This smoothness, as expressed by 

1 .f .a: 

-J (I (f*(U))“dl()l:YdS- (jy (f*(u))%)’ F<c 
t II ‘F 

(16) 

seems hard to verify in practice. The results we have, while interesting from 
the point of view of interpolation theory, will probably be be useful in 
applications only after condition (16) is replaced by conditions involving J 
directly. 
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We next consider various extensions of Theorem 1. One extension involves 
higher averages. If both f and f, are in L,(O, t) Vt > 0, we can consider 
f#* = (f,), . Note that if f E W, f, E L, and f,, is defined. In the same way 
we make 

DEF*NI=IoN 2. f,, = (f#cn-l,)# and If Iw, = If#A,. 
The spaces W,, = {f/l f Iw < co ) increase with n. We check that 

(log+ (l/t))” E W,, (log’ (l/t)j” G W,- i. Note also that there is an abuse of 
notation in referring to functions in W,,. The elements of W, are equivalence 
classes after factoring out polynomials of degree (n - 1) in log t. A final 
comment: we have If,,l, = If#+&= If#lw,_,. 

For the application of Wolffs theorem in the sequel, we shall need 

THEOREM 4. W, is complete. 

ProoJ We first show f E W,, * If I < c[ 1 + 1 log tl” 1. This will show that 
the following operator is well defined on each W,,: 

b: h -+ h, = -h(t) - j; h(u) $, (17) 

From (15) we have 

f E W, implies f#E Wn-,, and so by induction, I f,(u)1 < c( 1 + I log u In-‘), 
and 

~fj~f(u)du I<41 +llogul”). 

Also since If HI < If#(t)l + Illtlb f(u) d u we have the desired inequality, I 
and b is well defined. We can verify fbx = f, and fsb(t) = f (t) - j: f(u) du. 
Since the elements of W,, are defined modulo polynomials in log t, we have 
f#b E J Therefore 6: W,- , + W, is l-l isometry onto W, and this proves 
inductively that W, is complete. 

THEOREM 5. (L,, W,,),,p,qGE = L(p, q), where 0 < p < 00, 0 < q < co. 

ProoJ The proof, using induction, is similar to that of [2, Theorem 41, 
and we shall be brief. It is shown in [2] that for 1 < p 

Ifl L(P.cl) - If#IUP.Q~' (18) 
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Also, our theorem for n = 1 is proved there. We can assume the theorems 
holds therefore for W,-, , and prove it for W,. From the validity of the 
theorem for W,-, follows, using standard reiteration theorems 

W(l? a>, Wn-d9,,;K = L(p, q), where (l/p) = 1 - 8, 0 < B < 1. Since 
clearly #: W, + u/,-, and #:L,+L(l,m) we have #:(L,, W,,)H,4:A-* 
(L(l, aJ)T K-,)o,q:s = L(p, q). Using this and (18), we have for (l/p) = 
l-&O<q<m, 

(The last inequality simply since L, c W,,.) We therefore have 

CL, f K>o,,:K = L(p, q), (I/p) = 1 - 8, 0 < q < co. The extension to the full 
range, using Wolffs theorem follows as in [ 21, and the theorem is proved. 
Wolffs theorem is in IS]. Its restatement in 12 ] is easier to apply here: 
A,,A,,A3,A, are quasi-Banach Abelian groups and A,nA,cAznA,. 
Assume 

(Ad&,q;E =A*, o<p<al, o<q<c0, (19) 

G%JJo,r;~ =A33 O<w<l, O<r<ao. (20) 

Then 

@dJa~,q:~ =A*, a, = Plv, C-21) 

(4JJa3,r:E =A33 a3 = PC1 - WI/W. (22) 

THEOREM 6. Let T:A,+A,-+B,+B, be E-quasilinear and satisfr 
3p > 0, 6 > 0 such that for every a E A, n A,, 3g,(t): R + -+ R ’ measurable. 
and 6 < g,(t) Vt, and 

(23) 

(24) 

Then T: (A,, A,),,,:, -+ (Bo,B1),,q;Efir 0 < a < 00, 0 < q < ~0. 

Proof Consider, as in [2], E, : A, + A, + Lo + W,, defined 

E,(a)(s) = E(s, Ta; B,, B, >. (25) 

Since T is E-quasilinear, ] TaICBOSB,jo,q:b is a semi-quasinorm on A, f? A,, 
which satisfies 
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Taking pth roots we get 1 Tu ICB,,B,Ja,q:E < c/6”” I a ITo I a IA, and reiteration 
between different values of a gives I Tu~~~~,~~),,,:~ < c la I~Ao,A,~,,,:f. The 
theorem is proved. 

Theorem 6 generalizes [2, Theorem 5] in three respects: the introduction 
of p, of g,(t), and taking W, norms instead of W norms. / EP lW < co, leads to 
still more interpolation classes, sometimes larger than those defined by I E I wj. 
The analysis in each case is straightforward. 

The introduction of g,(t) is motivated by the following considerations: the 
W classes are very rigid, because of the subtraction which occurs in the 
definition of #. The introduction of g,(t) helps in this respect; for example, 
take f(t) which is positive on (0, l), 0 for 1 < f and f(t) < log+ (l/t). An f 
satisfying these conditions and which is not in W is easy to construct. 
Taking g(t) = log+(l/t)/f(t) > 1 gives 1 g(f)f(t)lw = 1. 

The generalization involving the replacement of 1 I,+, by / lW, is clear. 
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