Note

On the Number of Disjoint Mendelsohn Triple Systems*

C. C. LINDNER

Department of Mathematics, Auburn University,
Auburn, Alabama 36830

Communicated by the Managing Editors

Received May 9, 1980

1. INTRODUCTION

In what follows an ordered pair will always be an ordered pair \((x, y)\), where \(x \neq y\). A cyclic triple is a collection \(t\) of three ordered pairs such that an element occurs as a first coordinate of an ordered pair in \(t\) if and only if it occurs as a second coordinate of an ordered pair in \(t\). We will denote the cyclic triple \(\{(a, b), (b, c), (c, a)\}\) by \((a, b, c)\), \((b, c, a)\), or \((c, a, b)\). A Mendelsohn triple system (MTS) is a pair \((S, T)\) where \(S\) is a set containing \(v\) elements and \(T\) is a collection of cyclic triples of elements of \(S\) such that every ordered pair of distinct elements of \(S\) belongs to exactly one cyclic triple of \(T\). The number \(|S| = v\) is called the order of the MTS \((S, T)\) and in 1971 N. S. Mendelsohn proved that the spectrum for MTSs is the set of all \(v \equiv 0\) or \(1\) (mod 3), except \(v = 6\) [4]. Mendelsohn himself called such systems cyclic triple systems. This vernacular, however, can be a bit confusing since Steiner triple systems admitting a cyclic automorphism (see Peltesohn [5]) are also called cyclic triple systems. The terminology “Mendelsohn triple system” is due to Mathon and Rosa [3]. It is well taken since it not only eliminates some ambiguity but recognizes, as well, the fact that Mendelsohn was the first to determine the spectrum for such systems. (It is well known (of course) that a MTS is equivalent to a quasigroup satisfying the identities \(x^2 = x\) and \(x(yx) = y\). However, in what follows, we will use design vernacular exclusively.)

For example, the pairs \((S, T)\) and \((Q, B)\) defined as follows are MTSs:

\[
S = \{1, 2, 3\}, \quad T = \{(1, 2, 3), (2, 1, 3)\};
\]

and

\[
Q = \{1, 2, 3, 4\}, \quad B = \{(1, 2, 3), (1, 3, 4), (1, 4, 2), (2, 4, 3)\}.
\]

* Research supported by NSF Grant MCS 77-03464 A01.

0097-3165/81/030326-05$02.00/0
Copyright © 1981 by Academic Press, Inc.
All rights of reproduction in any form reserved.
It is a trivial exercise to see that if \((S, T)\) is a MTS of order \(v\) that \(|T| = v(v - 1)/3\). Now, if \(S\) is a set of size \(v\) and \(C(S)\) is the set of all cyclic triples of \(S\), then \(|C(S)| = v(v - 1)(v - 2)/3\). In view of these last remarks, the following problem arises quite naturally: Given a set \(S\) of size \(v = 0\) or \(1\) (mod 3), is it always possible to partition \(C(S)\) (the set of all cyclic triples of \(S\)) into \(v - 2\) subsets \(T_1, T_2, \ldots, T_{v-2}\) so that each of \((S, T_1), (S, T_2), \ldots, (S, T_{v-2})\) is a MTS? Such a collection of MTSs is called a large set of pairwise disjoint MTSs. (Two MTSs \((S, T_1)\) and \((S, T_2)\) are said to be disjoint provided that \(T_1 \cap T_2 = \emptyset\).) Barring the existence of a large set of pairwise disjoint MTSs of order \(v\), we can ask for the largest positive integer \(D(v)\) for which \(D(v)\) pairwise disjoint MTSs of order \(v\) exist. This paper is the first attack on this problem. In particular we prove that \(D(3v) \geq 2v + D(v)\) (except possibly for \(3v = 18\)) and \(D(3v + 1) \geq 2v + D(v + 1)\) for all \(v \geq 3\), where, of course, \(D(v)\) and \(D(v + 1)\) are zero whenever \(v\) or \(v + 1\) is \(\equiv 0\) or \(1\) (mod 3).

It is worth remarking that an extensive amount of work has been done on the similar problem for Steiner triple systems; i.e., the construction of large sets of pairwise disjoint Steiner triple systems. (See, for example, [1, 2, 6, 8, 9, 10].) This problem remains far from settled however, and the reader is referred to the excellent survey article by Rosa [7] for an up-to-date account of constructing large sets of pairwise disjoint Steiner triple systems.

2. \(D(3v) \geq 2v + D(v)\)

Let \(v \geq 3\), \(v \neq 6\), and let \(Q\) be a latin square of order \(v\) having \(v\) disjoint transversals \(T_1, T_2, \ldots, T_v\) (equivalent to a pair of orthogonal latin squares). We write

\[
T_k = \begin{pmatrix}
1 & 2 & 3 & \cdots & v \\
X_{1k} & X_{2k} & X_{3k} & \cdots & X_{vk} \\
Y_{1k} & Y_{2k} & Y_{3k} & \cdots & Y_{vk}
\end{pmatrix}
\]

to indicate that the cell \((i, x_{ik})\) belongs to \(T_k\) and is occupied by \(y_{ik}\). Now let \(\alpha = (1\ 2\ 3\ \cdots\ v)\) and for each \(k = 1, 2, \ldots, v\) define six permutations \(\alpha_k, \beta_k, \gamma_k, \alpha^*_k, \beta^*_k,\) and \(\gamma^*_k\) on \(Q\) by

\[
\alpha_k = \begin{pmatrix}
1 & 2 & 3 & \cdots & v \\
X_{1k} & X_{2k} & X_{3k} & \cdots & X_{vk}
\end{pmatrix},
\]

\[
\alpha^*_k = \begin{pmatrix}
1 & 2 & 3 & \cdots & v \\
Y^*_{1k} & Y^*_{2k} & Y^*_{3k} & \cdots & Y^*_v
\end{pmatrix},
\]

\[
\beta_k = \begin{pmatrix}
X_{1k} & X_{2k} & X_{3k} & \cdots & X_{vk} \\
Y_{1k} & Y_{2k} & Y_{3k} & \cdots & Y_{vk}
\end{pmatrix},
\]

\[
\beta^*_k = \begin{pmatrix}
X_{1k} & X_{2k} & X_{3k} & \cdots & X_{vk} \\
Y^*_{1k} & Y^*_{2k} & Y^*_{3k} & \cdots & Y^*_v
\end{pmatrix},
\]

\[
\gamma_k = \begin{pmatrix}
1 & 2 & 3 & \cdots & v \\
X_{1k} & X_{2k} & X_{3k} & \cdots & X_{vk}
\end{pmatrix},
\]

\[
\gamma^*_k = \begin{pmatrix}
1 & 2 & 3 & \cdots & v \\
Y^*_{1k} & Y^*_{2k} & Y^*_{3k} & \cdots & Y^*_v
\end{pmatrix}.
\]
C. C. LINDNER

\[
\beta_k^* = \begin{pmatrix}
y_{1k}^* & y_{2k}^* & y_{3k}^* & \cdots & y_{vk}^*
x_{1k} & x_{2k} & x_{3k} & \cdots & x_{vk}
\end{pmatrix},
\]

\[
\gamma_k = \begin{pmatrix}
y_{1k} & y_{2k} & y_{3k} & \cdots & y_{vk} \\
1 & 2 & 3 & \cdots & u
\end{pmatrix},
\]

\[
\gamma_k^* = \begin{pmatrix}
x_{1k} & x_{2k} & x_{3k} & \cdots & x_{vk} \\
1 & 2 & 3 & \cdots & u
\end{pmatrix},
\]

where \(y_{ik}^* = y_{ik} \alpha^k \).

Set \(S = Q \times \{1, 2, 3\} \), let \((Q, \circ)\) be any idempotent quasigroup (not necessarily related in any way to the latin square \(Q \)), and define \(2v + D(v) \) MTSs as follows:

1. For each \(k = 1, 2, \ldots, v \), define a collection of cyclic triples \(t_k \) by

 (i) \(((i, 1), (x_{ik}, 2), (y_{ik}, 3)) \) and \(((x_{ik}, 2), (i, 1), (y_{ik}, 3)) \) belong to \(t_k \) for every \(i \in Q \); and

 (ii) if \(i \neq j \in Q \), the six cyclic triples \(((i, 1), (j, 1), ((i \circ j) \alpha_k, 2)), ((j, 1), (i, 1), ((j \circ i) \alpha_k, 2)), ((i, 2), (j, 2), ((i \circ j) \beta_k, 3)), ((j, 2), (i, 2), ((j \circ i) \beta_k, 3)), ((i, 3), (j, 3), ((i \circ j) \gamma_k, 1)) \) and \(((j, 3), (i, 3), ((j \circ i) \gamma_k, 1)) \) belong to \(t_k \).

2. For each \(k = 1, 2, \ldots, v \), define a collection of cyclic triples \(t_k^* \) by

 (i) \(((i, 1), (x_{ik}, 2), (y_{ik}^*, 3)) \) and \(((x_{ik}, 2), (i, 1), (y_{ik}^*, 3)) \) belong to \(t_k^* \) for every \(i \in Q \); and

 (ii) if \(i \neq j \in Q \), the six cyclic triples \(((i, 1), (j, 1), ((i \circ j) \alpha_k^*, 3)), ((j, 1), (i, 1), ((j \circ i) \alpha_k^*, 3)), ((i, 2), (j, 2), ((i \circ j) \beta_k^*, 2)), ((j, 2), (i, 2), ((j \circ i) \beta_k^*, 2)), ((i, 3), (j, 3), ((i \circ j) \gamma_k^*, 1)) \) and \(((j, 3), (i, 3), ((j \circ i) \gamma_k^*, 1)) \) belong to \(t_k^* \).

3. Let \((Q, q_1), (Q, q_2), \ldots, (Q, q_u)\) be any collection of \(u = D(v) \) pairwise disjoint MTSs and for each \(k = 1, 2, \ldots, u \), define a collection of cyclic triples \(d_k \) by

 (i) For each \(i = 1, 2, 3 \), \(((x, i), (y, i), (z, i)) \in d_k \) if and only if \((x, y, z) \in q_k \); and

 (ii) if \(i \neq j \in Q \), \(((i, 1), (j, 2), ((i \circ j) \alpha^{k+1}, 3)) \) and \(((j, 2), (i, 1), ((i \circ j) \alpha^{k+1}, 3)) \in d_k \).

It is straightforward to see that the \(2v + D(v) \) MTSs constructed in (1), (2), and (3) are pairwise disjoint giving the following theorem.

Theorem 2.1. \(D(3v) \geq 2v + D(v) \) for all \(v \geq 3 \), except possibly \(v = 6 \).
DISJOINT MENDELSON TRIPLE SYSTEMS

3. $D(3v + 1) \geq 2v + D(v + 1)$

Let $F = \{\infty, 1, 2, 3\}$ and denote by f_1 and f_2 the collections of cyclic triples given by

$$f_1 = \{(\infty, 1, 2), (\infty, 2, 3), (\infty, 3, 1), (1, 3, 2)\},$$

and

$$f_2 = \{(\infty, 1, 3), (\infty, 2, 1), (\infty, 3, 2), (1, 2, 3)\}.$$

Then, of course, (F, f_1) and (F, f_2) are disjoint MTSs of order 4. Now let Q be as in Section 2, set $S = \{\infty\} \cup (Q \times \{1, 2, 3\})$, and define $2v + D(v + 1)$ MTSs of order $3v + 1$ by modifying the constructions (1), (2), and (3) in Section 2 as follows:

1. For each $k = 1, 2, \ldots, u$, define a collection of cyclic triples t^*_k by replacing (i) in (1) with: $(\infty, (i, 1), (x_{ik}, 2))$, $(\infty, (y_{ik}, 3), (i, 1))$, and $((i, 1), (x_{ik}, 2), (y_{ik}, 3))$ belong to t^*_k for every $i \in Q$. (Note that these four cyclic triples are a copy of (F, f_1).)

2. For each $k = 1, 2, \ldots, u$, define a collection of cyclic triples t_k^\prime by replacing (i) in (2) with: $(\infty, (i, 1), (y_{ik}, 3), (x_{ik}, 2))$, $(\infty, (x_{ik}, 2), (y_{ik}, 3))$, and $((i, 1), (y_{ik}, 3), (x_{ik}, 2))$ belong to t_k^\prime for every $i \in Q$. (Note that these four cyclic triples are a copy of (F, f_2).)

3. Let $(\infty \cup Q, \{1\})$, $(\infty \cup Q, \{2\})$, ..., $(\infty \cup Q, \{u\})$ be any collection of $u = D(v + 1)$ pairwise disjoint MTSs of order $v + 1$ and for each $k = 1, 2, \ldots, u$, define a collection of cyclic triples d_k^\prime by

(i) For each $i = 1, 2, 3$, define a copy of q_k^i on $(\infty \cup (Q \times \{i\})$ and place these cyclic triples in d_k^\prime;

(ii) if $i \neq j \in Q$ and $2 \leq k \leq v - 2$, $((i, 1), (j, 2), ((i \circ j) \alpha^{k+1}, 3))$ and $((j, 2), (i, 1), ((i \circ j) \alpha^{k+1}, 3))$ belong to d_k^\prime; and

(iii) if $i \neq j$ and $k = v - 1$, set $T = \{(x, 1), (y, 2), (z, 3)\}$ all $x, y, z \in Q$ and place the cyclic triples $T \setminus (t_1' \cup t_2' \cup \cdots \cup t_v' \cup t_v^{x'} \cup t_v^{x'} \cup \cdots \cup t_v^{y'} \cup d_1' \cup d_2' \cup \cdots \cup d_{v-2}' \cup d_{v-1}')$ in d_{v-1}'.

There is no difficulty in showing that the $2v + D(v + 1)$ MTSs constructed in (1'), (2'), and (3') are pairwise disjoint MTSs.

Theorem 3.1. $D(3v + 1) \geq 2v + D(v + 1)$ for all $v \geq 3$.

Proof. The case where $3v + 1 = 19$ is handled as follows. In [1] Denniston has shown the existence of a large set of pairwise disjoint Steiner triple systems of order 19 (i.e., 17 pairwise disjoint Steiner triple systems of order 19). In each Steiner triple system of this collection replace each triple
\{a, b, c\} with the two cyclic triples \((a, b, c)\) and \((b, a, c)\). This, of course, gives a large set of pairwise disjoint MTSs of order 19.

Combining Theorems 2.1 and 3.1 gives the following result.

Theorem 3.2. \(D(u) \geq \lfloor 2u/3 \rfloor\) for all \(u \equiv 0 \text{ or } 1 \pmod{3}\) and \(u \geq 9\), except possibly \(u = 18\).

4. Remarks

Trivially \(D(3) = 1\) and \(D(4) = 2\), and C. Colbourn (unpublished) has shown that \(D(7) = 5\). Beginning with \(u = 9\), Theorems 2.1 and 3.1 coupled with the fact that a large set of pairwise disjoint Steiner triple systems of order \(u\) exists for all \(u \equiv 1 \text{ or } 3 \pmod{6}\) such that \(9 \leq u \leq 99\) (except possibly \(u = 37, 85,\) and 97) give a large set of pairwise disjoint MTSs of every order \(u \equiv 0 \text{ or } 1 \pmod{3}\) such that \(9 \leq u \leq 100\), except possibly for \(u = 16, 18, 22, 24, 40, 42, 46, 48, 52, 54, 58, 60, 64, 66, 70, 72, 76, 78, 85, 94,\) and 96. Note that Theorems 2.1 and 3.1 produce large sets of pairwise disjoint MTSs of orders 37 and 97 even though the similar problem for Steiner triple systems is unsettled.

References