Differential Subordinations and Inequalities in the Complex Plane

SANFORD S. MILLER*

Department of Mathematics and Computer Science,
State University of New York, Brockport, New York 14420

AND

PETRU T. MOCANU

Faculty of Mathematics, Babes-Bolyai University,
3400 Cluj-Napoca, Romania

Received June 24, 1985

Let \(p \) be analytic in the unit disc \(U \) and let \(q \) be univalent in \(U \). In addition, let \(\Omega \) be a set in \(\mathbb{C} \) and let \(h: \mathbb{C} \times U \rightarrow \mathbb{C} \). The authors determine conditions on \(\psi \) so that
\[
\{ \psi(p(z), zp'(z), z^2p''(z); z) \mid z \in U \} \subset \Omega \Rightarrow p(U) \subset q(U).
\]
Applications of this result to differential inequalities, differential subordinations and integral inequalities are presented. © 1987 Academic Press, Inc.

1. Introduction

Let \(f \) and \(F \) be analytic in the unit disc \(U \). The function \(f \) is subordinate to \(F \), written \(f \prec F \) or \(f(z) \prec F(z) \), if \(F \) is univalent, \(f(0) = F(0) \) and \(f(U) \subset F(U) \).

In two previous papers [3, 4] the authors dealt with second order differential subordinations of the form
\[
\psi(p(z), zp'(z), z^2p''(z)) < h(z),
\]
where \(\psi \) is holomorphic on a domain in \(\mathbb{C}^3 \). They found dominants \(q \) of (1), for which \(p \prec q \) for all \(p \) satisfying (1). One of the objects of this paper is to obtain dominants for a more general second order differential subordination of the form
\[
\psi(p(z), zp'(z), z^2p''(z); z) < h(z),
\]
* The first author acknowledges support received from the International Research Exchange Board through its exchange program with the Bulgarian and Romanian Academies of Science.

0022-0396/87 $3.00
Copyright © 1987 by Academic Press, Inc.
All rights of reproduction in any form reserved.
where \(\psi: C^3 \times U \rightarrow C \). In these differential subordinations we allow functions of \(z \) to be present in addition to the terms \(p(z), zp'(z) \) and \(z^2p''(z) \). This is analogous to generalizing autonomous differential equations to nonautonomous differential equations.

For example, if we let \(B(z) \) be a function defined on \(U \) with \(\Re B(z) \geq 0 \), for \(z \in U \), then a recent paper [5, Lemma 1] proves the following useful lemma: if \(p \) is analytic in \(U \) then

\[
\Re[B(z)zp'(z) + p(z)] > 0, \quad \text{for } z \in U,
\]

\[
\Rightarrow \Re p(z) > 0, \quad \text{for } z \in U.
\]

If we let \(\psi(r, s; z) = B(z)s + r, \ h(z) = (1 + z)/(1 - z) \) and suppose \(B \) is analytic in \(U \) then (3) becomes

\[
\psi(p(z), zp'(z); z) = B(z)zp'(z) + p(z) < (1 + z)/(1 - z) = p(z) < (1 + z)/(1 - z).
\]

Thus, the first part of (3) can be written as a differential subordination of the form (2), and the second part of (3) provides a dominant of this differential subordination.

In addition to finding dominants for (2) we can weaken the holomorphicity condition needed in (2) and prove a more general result: if \(\Omega \) is a set in \(C \), \(q \) is univalent on \(U \) and \(q(U) \) has a “nice boundary,” there exists a class of functions \(\mathcal{D} \), dependent on \(\Omega \) and \(q \), for which

\[
\{ \psi(p(z), zp'(z), z^2p''(z); z) \mid z \in U \} \subset \Omega \Rightarrow p(U) \subset q(U).
\]

Result (3) with \(\Omega = \{ w \mid \Re w > 0 \} \), \(q(z) = (1 + z)/(1 - z) \), and \(\psi(r, s; t; z) = B(z)s + t \) is a special case of (5).

The definition of the class \(\mathcal{D} \) and the fundamental result (5) together with its variations are given in Section 2. In Section 3 we apply the basic result to bounded functions, while in Section 4 we apply the result to functions with a positive real part. Section 5 is concerned with some integral inequalities obtained from the previous sections.

All of the inequalities in this article involving functions of \(z \), such as (3), hold uniformly in the unit disc \(U \). The condition “for all \(z \) in \(U \)” will be omitted in the remainder of this paper, although it is understood to hold.

2. Differential Inequalities and Subordinations

We first need to specify the univalent functions \(q \) (with “nice boundary”) and functions \(\psi \) for which we intend to prove (5).
DEFINITION 1. Let Ω be set in C and let q be analytic and univalent on \bar{U} except for those $\zeta \in \partial U$ for which $\lim_{z \to \zeta} q(z) = \infty$. We define $\Psi[\Omega, q]$ to be the class of functions $\psi: C^3 \times U \to \bar{C}$ for which

$$\psi(r, s, t; z) \notin \Omega$$

when $r = q(\zeta)$ is finite, $s = m \bar{q}'(\zeta)$, $\Re(1 + t/s) \geq m \Re(1 + \bar{q}''(\zeta)/q'(\zeta))$, and $z \in U$, for $m \geq 1$ and $|\zeta| = 1$.

In the special case where Ω is a simply connected domain and h is a conformal mapping of U onto Ω we denote the class by $\Psi[h(U), q]$ or $\Psi[h, q]$.

Note that if $Q_1 \subseteq Q_2$ then $\Psi(Q_2, q) \subseteq \Psi(Q_1, q)$, that is enlarging Ω decreases the class $\Psi(\Omega, q)$.

For the function q required in the definition of $\Psi[\Omega, q]$, the domain $q(U)$ is simply connected and its boundary consists of either a simple closed analytic curve or the union (possibly infinite) of pairwise disjoint simple analytic curves which converge to ∞ in both directions. The function $q(\zeta) = (1 + \zeta)/(1 - \zeta)$ is an example of such a function. The set Ω need not be a domain nor need its boundary be nicely behaved.

LEMMA 1. [4, p. 158]. Let q be analytic and univalent on \bar{U} except for those points $\zeta \in \partial U$ for which $\lim_{z \to \zeta} q(z) = \infty$. Let p be analytic in U with $p(0) = q(0)$. If p is not subordinate to q then there exist points $z_0 \in U$ and $\zeta_0 \in \partial U$, and an $m \geq 1$ for which

(a) $p(|z| < |z_0|) \subset q(U),$
(b) $p(z_0) = q(\zeta_0),$
(c) $z_0 p'(z_0) = m \bar{q}'(\zeta_0)$ and
(d) $\Re[z_0 p''(z_0)/p'(z_0)^2] \geq m \Re[\bar{q}''(\zeta_0)/q'(\zeta_0) + 1].$

We are now prepared to state and prove our main theorem.

THEOREM 1. Let $\psi \in \Psi[\Omega, q]$, as given in Definition 1. If p is analytic in U, with $p(0) = q(0)$, and if p satisfies

$$\psi(p(z), zp'(z), z^2 p''(z); z) \in \Omega, \quad z \in U, \quad (6)$$

then $p < q$.

Proof: Assume that p is not subordinate to q. By Lemma 1 there exist points $z_0 \in U$ and $\zeta_0 \in \partial U$ that satisfy (a)-(d). Using these conditions with $r = p(z_0)$, $s = z_0 p'(z_0)$, $t = z_0^2 p''(z_0)$ and $z = z_0$ in Definition 1 we obtain

$$\psi(p(z_0), z_0 p'(z_0), z_0^2 p''(z_0); z_0) \notin \Omega.$$

Since this contradicts (6) we must have $p < q$.

Remark 1. On checking the proof of this theorem and Definition 1, we note that if $0 < q < 1$ and if all of the conditions of the theorem hold with the exception of (6) being replaced by
\[\psi(p(z), zp'(z), z^2p''(z); \eta z) \in \Omega, \quad \text{when} \; z \in U, \quad (6') \]
then we obtain the same conclusion, $p < q$. In fact, the function ηz in (6') can be replaced by any function $w(z)$ mapping U onto U.

Remark 2. For a given $\Psi[\Omega, q]$ there may not exist an analytic function p satisfying (6). As an example, let Ω be the right-half plane, $q(z) = (1 + z)/(1 - z)$ and $(r, s, t; z) = -r^2s$. A simple computation shows that $r = q(\zeta) = r_2i$ (r_2 real) and $s = -(1 + r_2^2)/2 = s_1 < 0$, when $|\zeta| = 1$ and $m \geq 1$. Hence $\psi(r, s) = r_2^2s_1 < 0$, and by Definition 1 $\psi \in \Psi[\Omega, q]$. In this case (6) becomes
\[\Re[-(p(z))^2zp'(z)] > 0. \]
However, there is no analytic function p that satisfies this inequality at $z = 0$.

Remark 3. Theorem 1 is an improvement of a previous result [3, Theorem 1] of the authors. In that result Ω was required to be a domain, the set of functions $\Psi[\Omega, q]$ was restricted to those $\phi(r, s, t)$ that were independent of z, and ϕ was required to be continuous in its domain and to satisfy $\phi(q(0), 0, 0) \in \Omega$. (Note that these conditions imply the existence of a function p satisfying (6).) Examples which could not be handled with the previous result, but which can now be handled, will be presented in Section 3 (Theorem 6) and in Section 4 (Theorem 7).

The definition of $\Psi[\Omega, q]$ requires that the function q behave very nicely on ∂U. If this is not the case, or if the behavior of q on ∂U is unknown, it may still be possible to prove $p < q$ by the following limiting procedure.

Corollary 1.1. Let $0 < \rho_0 < 1$, let q be univalent in U, let $q(\rho z) = q(\rho z)$ for $\rho_0 < \rho < 1$, and suppose that
\[\psi(r, s, t; z) \in \Psi[\Omega, q_\rho], \quad (7) \]
for all $\rho_0 < \rho < 1$. If p is analytic in U, with $p(0) = q(0)$, and if p satisfies $\psi(p(z), zp'(z), z^2p''(z); z) \in \Omega$ when $z \in U$, then $p < q$.

Proof. The function q_ρ, is univalent on U and hence $\Psi[\Omega, q_\rho]$ is well defined. From (7) and Theorem 1 we obtain $p(z) < q(\rho z)$ for $0 < \rho < 1$. Now letting $\rho \to 1^-$ we obtain $p(z) < q(z)$.

We next consider the subclasses of $\Psi[\Omega, q]$ for which Ω is a simply connected domain and $\psi(p(z), zp'(z), z^2p''(z); z)$ is an analytic function of z. In
this case \(\Omega = h(U) \), where \(h \) is a conformal mapping of \(U \) onto \(\Omega \). The following result is an immediate consequence of Theorem 1.

Corollary 1.2. Let \(\psi \in \Psi[h(U), q] \) and let \(p \) and \(\psi(p(z), z'p(z), z^2p''(z); z) \) be analytic in \(U \) with \(p(0) = q(0) \). If \(p \) satisfies
\[
\psi(\rho z), \rho z^p' (\rho z), (\rho z)^2 p''(\rho z); z) < h(\rho z),
\]
then \(p < q \).

An analogue of Corollary 1.1 for \(\Psi[h(U), q] \) can also be given.

Corollary 1.3. Let \(0 < p_0 < 1 \), let \(h \) and \(q \) be univalent in \(U \), and let \(h_\rho(z) = h(\rho z), q_\rho(z) = q(\rho z) \) for \(\rho_0 < \rho < 1 \). Suppose that \(\psi \in \Psi[h_\rho, q_\rho] \) for all \(\rho_0 < \rho < 1 \) and suppose \(p \) and \(\psi(p, zp', z^2p''; z) \) are analytic in \(U \) with \(p(0) = q(0) \). If \(p \) satisfies (8) then \(p < q \).

Proof. If \(\rho_0 < \rho < 1 \), then from (8) we obtain
\[
\psi(p(\rho z), \rho z p'(\rho z), (\rho z)^2 p''(\rho z); \rho z) < h(\rho z),
\]
which, by setting \(p_\rho(z) = p(\rho z) \), becomes
\[
\psi(p_\rho(z), z p_\rho'(z), z^2 p_\rho''(z); \rho z) \in h_\rho(U), \text{ for } z \in U.
\]
Since \(\psi \in \Psi[h_\rho(U), q_\rho] \), by using Remark 1 with \(\rho = \eta \), \(h_\rho(U) = \Omega \) and \(p_\rho = p \) we obtain \(p_\rho(z) < h_\rho(z) \). Hence \(p(\rho z) < h(\rho z) \) and by letting \(\rho \to 1^- \) we obtain \(p(z) < q(z) \).

We can apply this last corollary to obtain the following result concerning a linear second order differential subordination.

Theorem 2. Let \(h \) be convex in \(U \) with \(h(0) = 0 \), and let \(A \geq 0 \). Suppose that \(B(z) \) and \(C(z) \) are analytic in \(U \) and satisfy
\[
\text{Re}[B(z)] \geq A + |C(z) - 1| - \text{Re}[C(z) - 1],
\]
for \(z \in U \). If \(p \) is analytic in \(U \) with \(p(0) = 0 \), and if \(p \) satisfies
\[
A z^2 p''(z) + B(z) z p'(z) + C(z) p(z) < h(z),
\]
then \(p < h \).

Proof. If we let \(\psi(r, s, t; z) = A t + B(z) s + C(z) r \) then \(\psi(p(z), z p'(z), z^2 p''(z); z) \) is analytic in \(U \) and (10) becomes
\[
\psi(\rho z), \rho z^p' (\rho z), (\rho z)^2 p''(\rho z); z) < h(\rho z).
\]
The conclusion of the theorem will follow from Corollary 1.3 if we show that \(\psi \in \Psi[h_\rho, h_\rho] \) for \(1/2 < \rho < 1 \). According to Definition 1 we only need to show that
\[
\psi_0 = \psi(r, s, t; z) \notin h_\rho(U)
\]
when \(r = h_\rho(\zeta) \), \(s = m\zeta h_\rho'(\zeta) \), \(\text{Re}(1 + i/s) \geq 0 \) and \(z \in U \), for \(|\zeta| = 1 \) and \(m \geq 1 \).

If we set \(\lambda = (\psi_0 - h_\rho(\zeta))/\zeta h_\rho'(\zeta) \) then
\[
\lambda = A\text{mt}/s + mB(z) + (C(z) - 1) h_\rho(\zeta)/\zeta h_\rho'(\zeta)
\]
and
\[
0 = h_\rho(\zeta) + mC(z). \tag{12}
\]

We first show that \(\text{Re}\lambda > 0 \). Since \(h_\rho \) is convex and \(h_\rho(0) = 0 \) we have \(\text{Re}\zeta h_\rho'(\zeta)/h_\rho(\zeta) \geq 1/2 \) for \(|\zeta| = 1 \) \[1, p. 176\], or equivalently
\[
|h_\rho(\zeta)/\zeta h_\rho'(\zeta) - 1| \leq 1. \tag{13}
\]

If \(W \) and \(Z \) are complex numbers and \(|Z - 1| \leq 1 \), then
\[
\text{Re} WZ = \text{Re} W + \text{Re} W(Z - 1) \geq \text{Re} W - |W|.
\]

Using this result with \(W = C(z) - 1 \) and \(Z = h_\rho(\zeta)/\zeta h_\rho'(\zeta) \), from (13) we obtain
\[
\text{Re}[(C(z) - 1) h_\rho(\zeta)/\zeta h_\rho'(\zeta)] \geq \text{Re}(C(z) - 1) - |C(z) - 1|.
\]

Using (9) and this last inequality in (11) we obtain
\[
\text{Re} \lambda \geq (m - 1)[|C(z) - 1| - \text{Re}(C(z) - 1)].
\]

Since \(m \geq 1 \) we obtain \(\text{Re} \lambda \geq 0 \), or equivalently \(|\arg \lambda| \leq \pi/2 \). Applying this in (12) together with the fact that \(h_\rho(U) \) is a convex domain and \(\zeta h_\rho'(\zeta) \) is an outward normal to the boundary of \(h(U) \) we obtain \(\psi_0 \notin h_\rho(U) \), which completes the proof of the theorem.

Note that for \(C(z) = 1 \) the conditions \(p(0) = h(0) = 0 \) are not necessary. In this case we have the following result which is a generalization of (4).

Corollary 2.1. Let \(h \) be convex in \(U \) and let \(A \geq 0 \). Suppose \(B(z) \) is analytic in \(U \) with \(\text{Re} B(z) \geq A \). If \(p \) is analytic in \(U \) and \(p(0) = h(0) \) then
\[
Az^2p''(z) + B(z)zp'(z) + p(z) < h(z) \Rightarrow p(z) < h(z).
\]

The case \(A = 0 \) and \(h(z) = (1 + z)/(1 - z) \) corresponds to (4).

As mentioned in the Introduction, the univalent function \(q \) is said to be a
dominant of the differential subordination (8) if \(p < q \) for all \(p \) satisfying (8). If, furthermore, \(\tilde{q} \) is a dominant of (8) and \(\tilde{q} < q \) for all dominants \(q \) of (8), then \(\tilde{q} \) is said to be the best dominant of (8).

From Corollaries 1.2 and 1.3 we see that \(q \) will be a dominant of (8) if \(\psi \in \mathcal{Y}[h(U), q] \) or \(\psi \in \mathcal{Y}[h_{\rho}(U), q_{\rho}] \). If \(q \) is a dominant of (8) and \(q \) also satisfies (8) then \(q \) will be the best dominant. This gives us the following theorem for obtaining the best dominant of (8). The proof follows immediately from Corollaries 1.2 and 1.3, and is omitted.

Theorem 3. Let \(h \) be univalent in \(U, \psi : C^{3} \times U \to C \), and suppose that the differential equation

\[
\psi(q(z), zq'(z), z^{2}q''(z); z) = h(z)
\]

has a solution \(q \) that satisfies either:

(i) \(q \) is univalent on \(\overline{U} \) except for those points \(\zeta \in \partial U \) for which

\[
\lim_{z \to \zeta} q(z) = \infty, \quad \text{and} \quad \psi \in \mathcal{Y}[h(U), q],
\]

or

(ii) \(q \) is univalent in \(U \) and \(\psi \in \mathcal{Y}[h_{\rho}(U), q_{\rho}] \) for \(\rho_{0} < \rho < 1 \).

If \(p \) is analytic in \(U \) with \(p(0) = q(0) \), if \(\psi(p(z), zp'(z), z^{2}p''(z); z) \) is analytic in \(U \) and if \(p \) satisfies (8), then \(p < q \) and \(q \) is the best dominant.

3. **Bounded Dominants**

In this section we consider several interesting differential inequalities and subordinations obtained by selecting functions in the class \(\mathcal{Y}[\Omega, z] \).

Substituting \(\Omega = U \) and \(q(z) = z \) in Definition 1 we see that \(q(\zeta) = e^{i\theta} \), \(\zeta q'(\zeta) = e^{i\theta} \) and \(\text{Re}[1 + \zeta q''(\zeta)/q'(\zeta)] = 1 \). Hence the class \(\mathcal{Y}[U, z] \) consists of those \(\psi : C^{3} \times U \to C \) that satisfy

\[
|\psi(e^{i\theta}, me^{i\theta}, t; z)| \geq 1,
\]

when \(m \geq 1 \), \(\text{Re}[te^{-i\theta}] \geq m(m-1) \), and \(z \in U \).

Theorem 4. Let \(A \geq 0 \) and let \(B(z) \) be defined on \(U \) with \(\text{Re} B(z) \geq -A \) for \(z \in U \). If \(p \) is analytic in \(U \), \(p(0) = 0 \) and

\[
|Az^{2}p''(z) + B(z) \cdot zp'(z) + [1 - B(z)] \cdot p(z)| < 1,
\]

then \(p(z) < z \).

Proof. If we let \(\psi(r, s, t; z) = At + B(z) \cdot s + [1 - B(z)] \cdot r \), then (15) can be rewritten as \(\psi(p(z), zp'(z), z^{2}p''(z); z) \in U \), for \(z \in U \). We obtain our con-
clusion from Theorem 1 if we show that \(\psi \in \mathcal{P}[U, z] \), or equivalently if we show that \(\psi \) satisfies (14). For \(m \geq 1 \), \(\text{Re}[te^{-it}] \geq m(m-1) \) and \(z \in U \) we obtain

\[
|\psi(e^{it}, me^{it}; z)| = |At + me^{it}B(z) + e^{it}[1 - B(z)]| \\
\geq \text{Re}[Ate^{-it} + 1 + (m-1)B(z)] \geq Am(m-1) + 1 + (m-1)(-A) \\
= 1 + A(m-1)^2 \geq 1.
\]

Hence \(\psi \in \mathcal{P}[U, z] \) and we conclude that \(p(z) < z \).

If the expression in (15) is also analytic then

\[
A \cdot z^2 p''(z) + B(z) zp'(z) + [1 - E(z)] p(z) < z
\]

implies \(p(z) < z \), and \(q(z) = z \) is the best dominant.

Theorem 5. Let \(B(z) \) and \(C(z) \) be functions defined on \(U \) with \(B(z) \neq 0 \), and for each \(z \in U \) suppose that at least one of the following conditions is satisfied:

(i) \(|B(z) + C(z)| \geq 1 \) and \(\text{Re}[C(z)/B(z)] \geq -1 \), or

(ii) \(|\text{Im}[C(z)/B(z)]| \geq 1/|B(z)| \).

If \(p \) is analytic in \(U \), with \(p(0) = 0 \), and if

\[
|B(z) zp'(z) + C(z) p(z) | < 1, \tag{16}
\]

then \(|p(z)| < 1 \).

Proof. Letting \(\psi(r, s; z) = B(z) \cdot s + C(z) \cdot r \), we obtain our conclusion from Theorem 1 by showing that (14) is satisfied. For this particular \(\psi \), condition (14) reduces to

\[
|\psi(e^{it}, me^{it}; z)| = |mB(z) + C(z)| \geq 1,
\]

when \(m \geq 1 \) and \(z \in U \). This is equivalent to showing that

\[
L(m) \equiv m^2 |B|^2 + 2m \text{Re}[\overline{B}C] + |C|^2 - 1 \geq 0, \tag{17}
\]

when \(m \geq 1 \) and \(z \in U \). The conditions in (i) imply that \(L(1) \geq 0 \) and \(L'(m) \geq 0 \) for \(m \geq 1 \), which subsequently implies (17). The condition in (ii) implies that the discriminant of \(L(m) \) is nonpositive and since \(|B| > 0 \) we conclude that (17) is satisfied. Hence \(\psi \in \mathcal{P}[U, z] \), \(p < z \), and \(|p(z)| < 1 \).

The last result of this section provides an example of a \(\psi \in \mathcal{P}[\Omega, q] \) for
which Ω is not a domain in C and for which $\psi(q(0), 0, 0; z) \in \Omega$ [see Remark 3].

Theorem 6. If p is analytic in U with $p(0) = 0$, then

$$|zp'(z)| + |z^2p''(z)/p(z)| < 1 \quad (18)$$

implies that $|p(z)| < 1$.

Proof. If we let $\psi(r, s, t; z) = |s| + |t/r|$, then (18) can be rewritten as

$$\psi(p(z), zp'(z), z^2p''(z); z) \in \Omega,$$

for $z \in U$. Even though ψ is not continuous at $r = 0$ and $\psi(0, 0, 0; z) \notin [0, 1)$, there are nontrivial functions p satisfying (18); for example, $p(z) = p_1z + p_2z^2$, with $|p_1|$ and $|p_2|$ sufficiently small. We obtain our conclusion from Theorem 1 if we show that $\psi \in \Psi[[0, 1), z]$. The proof is analogous to that of Theorem 4 and we obtain

$$\psi(e^{i\theta}, me^{i\theta}, t; z) = |me^{i\theta}| + |te^{-i\theta}| \geq m + \text{Re}[te^{-i\theta}] \geq 1,$$

for $m \geq 1$, $\text{Re}[te^{-i\theta}] \geq m(m-1)$ and $z \in U$. Hence $\psi(e^{i\theta}, me^{i\theta}, t; z) \notin [0, 1)$, $\psi \in \Psi[[0, 1), z]$, and by Theorem 1 we have $|p(z)| < 1$.

4. Dominants with Positive Real Part

In this section we consider differential inequalities and subordinations obtained by selecting functions in the class $\Psi[q(U), q]$, where $q(z) = (1+z)/(1-z)$. If $|z| = 1$, then $q(\zeta) = r_2 i$ (real), $\zeta q'(\zeta) = -(1+r_2^2)/2$ and $\text{Re}[1 + \zeta q''(\zeta)/q'(\zeta)] = 0$. In this case the set $\Omega = q(U) = \{z | \text{Re} z > 0\}$ will be a domain. By Definition 1 the class $\Psi[q(U), q]$ consists of those functions $\psi: C^3 \times U \rightarrow C$ that satisfy

$$\text{Re} \psi(r_2 i, s_1, t_1 + t_2 i; z) \leq 0,$$

when r_2 is real, $s_1 \leq -(1 + r_2^2)/2$, $s_1 + t_1 \leq 0$, and $z \in U$.

Theorem 7. If p is analytic in U with $p(0) = 1$, and if

$$\text{Re}[2p(z) - zp''(z)/p'(z) - 1] > 0,$$

then $\text{Re} p(z) > 0$.

Proof. If we let $q(z) = (1+z)/(1-z)$ and $\psi(r, s, t; z) = 2r - t/s - 1$ then (20) can be expressed as $\psi(p(z), zp'(z), z^2p''(z); z) \in q(U)$, for $z \in U$. Note
that \(\psi \) is not continuous at \(s = 0 \) and \(\psi(q(0), 0, 0; z) \notin \Omega = q(U) \) [see Remark 3]. Nevertheless, \(p(z) = 1 + p_1 z + p_2 z^2 \), with \(|p_1| \) and \(|p_2| \) sufficiently small is an example of a function satisfying (20). The proof follows since \(\Re \psi(r_2 i, s_1, t_1 + t_2 i; z) = -(t_1/s_1 + 1) \leq 0 \), when \(r_2 \) is real, \(s_1 < 0 \) and \(s_1 + t_1 \leq 0 \). Hence by (19) and Theorem 1, \(p(z) < q(z) = (1 + z)/(1 - z) \) and \(\Re p(z) > 0 \).

Theorem 8. Let \(B(z) \) and \(C(z) \) be functions defined on \(U \), with

\[
|\Im C(z)| \leq \Re B(z). \tag{21}
\]

If \(p \) is analytic in \(U \) with \(p(0) = 1 \), and if

\[
\Re [B(z) \cdot z p'(z) + C(z) \cdot p(z)] > 0, \tag{22}
\]

then \(\Re p(z) > 0 \).

Proof. If we let \(\psi(r, s, z) = B(z) \cdot s + C(z) \cdot r \) and \(q(z) = (1 + z)/(1 - z) \), then \(\psi: C^2 \times U \to C \) and (22) becomes \(\psi(p(z), z p'(z); z) \in q(U) \), for \(z \in U \). If \(r_2 \) is real and \(s_1 \leq -(1 + r_2^2)/2 \) then from (21) we obtain

\[
\Re \psi(r_2 i, s_1, z) = s_1 \Re B(z) - r_2 \Im C(z)
\]

\[
\leq -(1 + r_2^2) \Re B(z)/2 + r_2 |\Im C(z)|
\]

\[
\leq -(1 - r_2^2) \Re B(z)/2 \leq 0.
\]

Hence (19) is satisfied and by Theorem 1 we obtain \(p(z) < q(z) \) and \(\Re p(z) > 0 \).

If \(C(z) = 1 \) in Theorem 8, then the theorem yields (3). If \(B(z) = 1 \) in Theorem 8, then for \(|\Im C(z)| \leq 1 \) we obtain

\[
\Re [z p'(z) + C(z) \cdot p(z)] > 0 \Rightarrow \Re p(z) > 0. \tag{23}
\]

A special case of this result leads to the following corollary.

Corollary 8.1. Let \(g \) be analytic in \(U \) with \(g(0) = 1 \) and \(|\Im z g'(z)/g(z)| \leq 1 \). If \(f(z) = z + \cdots \) is analytic in \(U \) then

\[
\Re [g(z) f'(z)] > 0 \Rightarrow \Re [g(z) f(z)/z] > 0,
\]

or equivalently

\[
g(z) f'(z) < (1 + z)/(1 - z) \Rightarrow g(z) f(z)/z < (1 + z)/(1 - z).
\]

Proof. If we set \(C(z) = 1 - z g'(z)/g(z) \), then \(|\Im C(z)| \leq 1 \). If we set \(p(z) = g(z) f(z)/z \), then \(p \) is analytic in \(U \), \(p(0) = 1 \) and \(p \) satisfies
$zp'(z) + C(z) p(z) = g(z) f'(z)$. Since $\text{Re } g(z) f'(z) > 0$, by (23) we get our result.

As an example of this corollary, let $f(z) = z + \cdots$ be analytic in U and let $g(z) = \lambda^z$, with $|\lambda| \leq 1$. In this case $|\text{Im } zg'(z)/g(z)| = |\text{Im } \lambda z| < 1$, and we obtain

$$\text{Re}[e^{i\lambda} f'(z)] > 0 \Rightarrow \text{Re}[e^{i\lambda} f(z)/z] > 0.$$

5. INTEGRAL INEQUALITIES

In this section we apply some of the differential inequalities of the previous two sections to obtain integral inequalities.

Theorem 9. Let $\gamma \neq 0$ be a complex number and let ϕ and φ be analytic in U, with $\phi(z) \cdot \varphi(z) \neq 0$, $\phi(0) = \varphi(0)$, and

$$|\text{Im } (\gamma \phi(z) + z \varphi'(z))/\gamma \varphi(z)| \leq \text{Re } \phi(z)/\gamma \varphi(z). \quad (24)$$

Let f be analytic in U with $\text{Re } f(z) > 0$, for $z \in U$. If $F = I(f)$ is defined by

$$F(z) = \gamma z^{-\gamma} \phi(z)^{-1} \int_0^z f(t) t^{-1} \varphi(t) \, dt, \quad (25)$$

then F is analytic in U, $F(0) = f(0)$ and $\text{Re } F(z) > 0$ for $z \in U$.

Proof. If we let $z = 0$ in (24) we obtain $\text{Re } \gamma > 0$. The restrictions on γ and the conditions on ϕ, φ and f imply that F is analytic in U and $F(0) = 1$. If we let $B(z) = \phi(z)/\gamma \varphi(z)$ and $C(z) = (\gamma \phi(z) + z \varphi'(z))/\gamma \varphi(z)$, then condition (24) implies condition (21) of Theorem 8. Since $\text{Re } f(z) > 0$, by differentiating (25) we obtain

$$\text{Re } [B(z) \cdot z F'(z) + C(z) F(z)] = \text{Re } f(z) > 0.$$

Hence condition (22) of Theorem 8 is satisfied with $p = F$, and we conclude that $\text{Re } F(z) > 0$.

Example 1. If we let $\phi = \varphi = 1$ then (24) reduces to $\text{Re } \gamma > 0$. Hence by Theorem 9 we obtain: if $\gamma \neq 0$, $\text{Re } \gamma > 0$, and f is analytic in U then

$$\text{Re } f(z) > 0 \Rightarrow \text{Re } \left[\gamma z^{-\gamma} \int_0^z f(t) t^{-1} \, dt \right] > 0.$$

This result was previously obtained by D. Hallenbeck and S. Ruscheweyh [2, p. 192] using a different method of proof.
EXAMPLE 2. If we let $\varphi = \phi$ and $\gamma > 0$ then (24) reduces to
\begin{equation}
|\text{Im} \, z\phi'(z)/\phi(z)| \leq 1.
\end{equation}
In this case, if f and ϕ are analytic in U with $\phi(z) \neq 0$, and if $\gamma > 0$ then
\[\text{Re} \, f(z) > 0 \Rightarrow \text{Re} \left[z^{-\gamma} \phi(z)^{-1} \int_0^z f(t) \, t^{\gamma-1} \phi(t) \, dt \right] > 0. \]
The function $\phi(z) = e^{z^2}$ satisfies (26) for $|\lambda| \leq 1$. In this case we obtain
\[\text{Re} \, f(z) > 0 \Rightarrow \text{Re} \left[z^{-\gamma} e^{-z^2} \int_0^z f(t) \, t^{\gamma-1} e^{it} \, dt \right] > 0. \]

THEOREM 10. Let γ be a complex number, and let φ and ϕ be analytic functions in U that satisfy $\phi(0) = 0$, $\varphi(0)/\phi(0) = 0$ and $\varphi(z) \cdot \phi(z) \neq 0$ for $z \neq 0$. For each $z \in U$ suppose that
\begin{equation}
1 + \gamma + \frac{\phi'(z)}{\phi(z)} \geq \varphi(z)/\phi(z) \quad \text{and} \quad \text{Re} \left[1 + \gamma + \frac{\phi'(z)}{\phi(z)} \right] \geq 0. \tag{27}
\end{equation}
Let f be analytic in U, $f(0) = 0$, and $|f(z)| < 1$ for $z \in U$. If $F = J(f)$ is defined by
\begin{equation}
F(z) = z^{-\gamma} \phi(z)^{-1} \int_0^z f(t) \, t^{\gamma-1} \phi(t) \, dt, \tag{28}
\end{equation}
then F is analytic in U, $F(0) = 0$, and $|F(z)| < 1$ for $z \in U$.

Proof. If $\phi(z) = a_n z^n + a_{n+1} z^{n+1} + \cdots$, with $n \geq 1$, and if we let $z = 0$ in (27) we obtain $|1 + \gamma + n| > 0$ and $\text{Re} \left[1 + \gamma + n \right] \geq 0$. These restrictions on γ together with the conditions on ϕ, φ and f imply that the function F is analytic in U and $F(0) = 0$. If we let $B(z) = \phi(z)/\varphi(z)$ and $C(z) = \gamma \phi(z)/\varphi(z) + z \phi'(z)/\varphi(z)$, then $B(z) \neq 0$ and (27) is equivalent to (i) of Theorem 5. Since $|f(z)| < 1$, if we differentiate (28) we obtain
\[|B(z) \cdot z F'(z) + C(z) \cdot F(z)| = |f(z)| < 1. \]
Hence (16) of Theorem 5 is satisfied with $p = F$, and we obtain $|F(z)| < 1$.

The conclusion of the theorem can also be written as $f(z) < z$ implies $F(z) < z$, or as $|f(z)| < |z|$ implies $|F(z)| < |z|$.

EXAMPLE 3. If we let $\phi(z) = \varphi(z) = z$ and $\alpha = \gamma + 1$ then condition (27) of Theorem 10 becomes
\[|z + 1| \geq 1 \quad \text{and} \quad \text{Re} \, [z + 1] \geq 0, \]
If \(\alpha \) satisfies both of these conditions, then by Theorem 10 we have

\[
f(z) < z \Rightarrow z^{-\alpha} \int_0^z f(t) t^{\alpha-1} dt < z.
\]

Example 4. Let \(\phi \) be analytic in \(U \) with \(\phi(0) = 0, \phi'(0) = 1, \) and \(\phi(z) \phi'(z) \neq 0 \) for \(z \neq 0. \) If we let \(\phi(z) = z\phi'(z) \) then (27) becomes

\[
|1 + \gamma + z\phi'(z)/\phi(z)| \geq |z\phi'(z)/\phi(z)| \quad \text{and} \quad \text{Re}[1 + \gamma + z\phi'(z)/\phi(z)] \geq 0,
\]

and for \(\gamma \neq -1 \) these conditions are equivalent to

\[
\text{Re}[(1 + \gamma)^{-1}z\phi'(z)/\phi(z)] \geq -1/2 \quad \text{and} \quad \text{Re}[1 + \gamma + z\phi'(z)/\phi(z)] \geq 0.
\]

If \(1 + \gamma > 0, \) then these conditions will hold if

\[
\text{Re}[z\phi'(z)/\phi(z)] \geq -(1 + \gamma)/2. \quad (29)
\]

Hence by Theorem 10 we obtain: if \(\gamma > -1, \phi(z) = z + \cdots \) is analytic in \(U \) and satisfies (29), and \(\phi'(z) \neq 0, \) then

\[
f(z) < z \Rightarrow z^{-\gamma} \phi(z)^{-1} \int_0^z f(t) t^\gamma \phi'(t) dt < z,
\]

or equivalently

\[
|f(z)| < |z| \Rightarrow \left| \int_0^z f(t) t^\gamma \phi'(t) dt \right| \leq |z^\gamma + \phi(z)|. \quad (30)
\]

For the special case \(\gamma = 0, \) (29) reduces to \(\text{Re}[z\phi'(z)/\phi(z)] \geq -1/2, \) and (30) simplifies to

\[
|f(z)| < |z| \Rightarrow \left| \int_0^z f(t) \phi'(t) dt \right| \leq |z\phi(z)|.
\]

References