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fractional calculus of variations with a Lagrangian depending on the free end-points. The
fractional derivatives are defined in the sense of Caputo.
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1. Introduction

Fractional calculus is one of the generalizations of classical calculus and it has been used successfully in various fields
of science and engineering; see, e.g., [1–12]. In recent years, there has been a growing interest in the area of fractional
variational calculus and its applications [13–28]. Applications include classical and quantum mechanics, field theory, and
optimal control. In the papers cited above, the problems have been formulated mostly in terms of two types of fractional
derivative, namely Riemann–Liouville and Caputo. The natural boundary conditions for fractional variational problems, in
terms of the Riemann–Liouville and the Caputo derivatives, are presented in [13,14]. Here we develop the theory further
by proving the necessary optimality conditions for more general problems of the fractional calculus of variations with a
Lagrangian that may also depend on the unspecified end-points y(a), y(b). More precisely, the problem under our study
consists in minimizing a functional which is defined in terms of the Caputo derivative and having no constraint on y(a)
and/or y(b). The novelty is the dependence of the integrand L on the free end-points y(a), y(b). This class of problems is
motivated by applications in the field of economics [29].
The paper is organized as follows. Section 2 presents the necessary definitions and concepts of the fractional calculus;

our results are formulated, proved, and illustrated through an example in Section 3. The main results of the paper include
necessary optimality conditions with the new natural boundary conditions (Theorem 3.1) that become sufficient under
appropriate convexity assumptions (Theorem 3.3).

2. Fractional calculus

In this section we review the necessary definitions and facts from fractional calculus. For more on the subject we refer
the reader to [30–33].
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Let f ∈ L1([a, b]) and 0 < α < 1. We begin with the left and the right Riemann–Liouville fractional integrals (RLFIs) of
order α of function f which are defined as follows. The left RLFI is

aIαx f (x) =
1

0(α)

∫ x

a
(x− t)α−1f (t)dt, x ∈ [a, b], (1)

and the right RLFI is

xIαb f (x) =
1

0(α)

∫ b

x
(t − x)α−1f (t)dt, x ∈ [a, b], (2)

where 0(·) represents the Gamma function. Moreover, aI0x f = xI0b f = f if f is a continuous function.
Let f ∈ AC([a, b]), where AC([a, b]) represents the space of absolutely continuous functions on [a, b]. Then, using Eqs. (1)

and (2), the left and the right Riemann–Liouville and Caputo derivatives are defined as follows. The left Riemann–Liouville
fractional derivative (RLFD) is

aDαx f (x) =
1

0(1− α)
d
dx

∫ x

a
(x− t)−α f (t)dt =

d
dx a
I1−αx f (x), x ∈ [a, b], (3)

the right RLFD is

xDαb f (x) =
−1

0(1− α)
d
dx

∫ b

x
(t − x)−α f (t)dt =

(
−
d
dx

)
xI1−αb f (x), x ∈ [a, b], (4)

the left Caputo fractional derivative (CFD) is

C
aD

α
x f (x) =

1
0(1− α)

∫ x

a
(x− t)−α

d
dt
f (t)dt = aI1−αx

d
dx
f (x), x ∈ [a, b], (5)

and the right CFD is

xDαb f (x) =
−1

0(1− α)

∫ b

x
(t − x)−α

d
dt
f (t)dt = xI1−αb

(
−
d
dx

)
f (x), x ∈ [a, b], (6)

where α is the order of the derivative.
The operators (1)–(6) are obviously linear. We now present the rule of fractional integration by parts for RLFIs (see for

instance [34]). Let 0 < α < 1, p ≥ 1, q ≥ 1, and 1/p+ 1/q ≤ 1+ α. If g ∈ Lp([a, b]) and f ∈ Lq([a, b]), then∫ b

a
g(x)aIαx f (x)dx =

∫ b

a
f (x)xIαb g(x)dx. (7)

In the discussion to follow, we will also need the following formulae for fractional integrations by parts:∫ b

a
g(x) CaD

α
x f (x)dx = f (x)xI

1−α
b g(x)

∣∣x=b
x=a +

∫ b

a
f (x)xDαb g(x)dx,∫ b

a
g(x) CxD

α
b f (x)dx = −f (x)aI

1−α
x g(x)

∣∣x=b
x=a +

∫ b

a
f (x)aDαx g(x)dx.

(8)

They can be derived using Eqs. (3)–(6), the identity (7) and performing integration by parts.

3. Main results

Let us consider the following problem:

J(y) =
∫ b

a
L(x, y(x), CaD

α
x y(x),

C
xD

β

b y(x), y(a), y(b)) dx −→ extr

(y(a) = ya), (y(b) = yb).
(9)

Using parentheses around the end-point conditionsmeans that the conditionsmay ormay not be present. We assume that:
(i) L(·, ·, ·, ·, ·, ·) ∈ C1([a, b] × R5;R);
(ii) x→ ∂3L(x, y(x), CaD

α
x y(x),

C
xD

β

b y(x), y(a), y(b)) has continuous right RLFI of order 1−α and right RLFD of orderα, where
α ∈ (0, 1);

(iii) x→ ∂4L(x, y(x), CaD
α
x y(x),

C
xD

β

b y(x), y(a), y(b)) has continuous left RLFI of order 1− β and left RLFD of order β , where
β ∈ (0, 1).

Remark 1. We are assuming that the admissible functions y are such that CaD
α
x y(x) and

C
xD

β

b y(x) exist on the closed interval
[a, b].

In this work we denote by ∂iL, i = 1, . . . , 6, the partial derivative of function L(·, ·, ·, ·, ·, ·)with respect to its ith argument.
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3.1. Necessary optimality conditions

The next theorem gives the necessary optimality conditions for the problem (9).

Theorem 3.1. Let y be a local extremizer to problem (9). Then, y satisfies the fractional Euler–Lagrange equation

∂2L(x, y(x), CaD
α
x y(x),

C
xD

β

b y(x), y(a), y(b))+ xD
α
b ∂3L(x, y(x),

C
aD

α
x y(x),

C
xD

β

b y(x), y(a), y(b))

+ aDβx ∂4L(x, y(x),
C
aD

α
x y(x),

C
xD

β

b y(x), y(a), y(b)) = 0 (10)

for all x ∈ [a, b]. Moreover, if y(a) is not specified, then∫ b

a
∂5L(x, y(x), CaD

α
x y(x),

C
xD

β

b y(x), y(a), y(b)) dx =
[
xI1−αb ∂3L(x, y(x), CaD

α
x y(x),

C
xD

β

b y(x), y(a), y(b))

− aI1−βx ∂4L(x, y(x), CaD
α
x y(x),

C
xD

β

b y(x), y(a), y(b))
]∣∣∣
x=a
; (11)

and if y(b) is not specified, then∫ b

a
∂6L(x, y(x), CaD

α
x y(x),

C
xD

β

b y(x), y(a), y(b)) dx =
[
aI1−βx ∂4L(x, y(x), CaD

α
x y(x),

C
xD

β

b y(x), y(a), y(b))

− xI1−αb ∂3L(x, y(x), CaD
α
x y(x),

C
xD

β

b y(x), y(a), y(b))
]∣∣∣
x=b
. (12)

Proof. Suppose that y is an extremizer of J. We can proceed as Lagrange did, by considering the value of J at a nearby
function ỹ = y + εh, where ε ∈ R is a small parameter, and h is an arbitrary admissible variation. We do not require
h(a) = 0 or h(b) = 0 in the case when y(a) or y(b), respectively, is free (it is possible that both are free). Let

ϕ(ε) =

∫ b

a
L(x, y(x)+ εh(x), CaD

α
x (y(x)+ εh(x)),

C
xD

β

b (y(x)+ εh(x)), y(a)+ εh(a), y(b)+ εh(b)) dx.

Since CaD
α
x and

C
xD

β

b are linear operators, it follows that
C
aD

α
x (y(x)+ εh(x)) =

C
aD

α
x y(x)+ ε

C
aD

α
x h(x)

C
xD

β

b (y(x)+ εh(x)) =
C
xD

β

b y(x)+ ε
C
xD

β

b h(x).

A necessary condition for y to be an extremizer is given by

dϕ
dε

∣∣∣∣
ε=0
= 0

⇔

∫ b

a

[
∂2L(· · ·)h(x)+ ∂3L(· · ·)CaD

α
x h(x)+ ∂4L(· · ·)

C
xD

β

b h(x)+ ∂5L(· · ·)h(a)+ ∂6L(· · ·)h(b)
]
dx = 0, (13)

where (· · ·) =
(
x, y(x), CaD

α
x y(x),

C
xD

β

b y(x), y(a), y(b)
)
. Using formulae (8) for integration by parts, the second and the third

integrals can be written as∫ b

a
∂3L(· · ·)CaD

α
x h(x)dx =

∫ b

a
h(x)xDαb ∂3L(· · ·)dx+ xI1−αb ∂3L(· · ·)h(x)

∣∣x=b
x=a,∫ b

a
∂4L(· · ·)CxD

β

b h(x)dx =
∫ b

a
h(x)aDβx ∂4L(· · ·)dx− aI1−βx ∂4L(· · ·)h(x)

∣∣x=b
x=a.

(14)

Substituting (14) into (13), we get∫ b

a

[
∂2L(· · ·)+ xDαb ∂3L(· · ·)+ aD

β
x ∂4L(· · ·)

]
h(x)+ xI1−αb ∂3L(· · ·)h(x)

∣∣x=b
x=a − aI1−βx ∂4L(· · ·)h(x)

∣∣x=b
x=a

+

∫ b

a
(∂5L(· · ·)h(a)+ ∂6L(· · ·)h(b)) dx = 0. (15)

We first consider functions h(t) such that h(a) = h(b) = 0. Then, by the fundamental lemma of the calculus of variations,
we deduce that

∂2L(· · ·)+ xDαb ∂3L(· · ·)+ aD
β
x ∂4L(· · ·) = 0 (16)
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for all x ∈ [a, b]. Therefore, in order for y to be an extremizer to the problem (9), y must be a solution of the fractional
Euler–Lagrange equation. But if y is a solution of (16), the first integral in expression (15) vanishes, and then the condition
(13) takes the form

h(b)
{∫ b

a
∂6L(· · ·)dx−

[
aI1−βx ∂4L(· · ·)− xI1−αb ∂3L(· · ·)

]∣∣
x=b

}
+ h(a)

{∫ b

a
∂5L(· · ·)dx−

[
xI1−αb ∂3L(· · ·)− aI1−βx ∂4L(· · ·)

]∣∣
x=a

}
= 0.

If y(a) = ya and y(b) = yb are given in the formulation of problem (9), then the latter equation is trivially satisfied since
h(a) = h(b) = 0. When y(a) is free, then∫ b

a
∂5L(· · ·)dx−

[
xI1−αb ∂3L(· · ·)− aI1−βx ∂4L(· · ·)

]∣∣
x=a = 0,

and when y(b) is free, then∫ b

a
∂6L(· · ·)dx−

[
aI1−βx ∂4L(· · ·)− xI1−αb ∂3L(· · ·)

]∣∣
x=b = 0,

since h(a) or h(b) is, respectively, arbitrary. �

Remark 2. Conditions (10)–(12) are only necessary for an extremum. The question of sufficient conditions for an extremum
is considered in Section 3.2.

In the case when L does not depend on y(a) and y(b), by Theorem 3.1 we obtain the following result.

Corollary 1 (Theorem 1 of [14]). If y is a local extremizer to problem

J(y) =
∫ b

a
L(x, y(x), CaD

α
x y(x),

C
xD

β

b y(x)) dx −→ extr,

then y satisfies the fractional Euler–Lagrange equation

∂2L(x, y(x), CaD
α
x y(x),

C
xD

β

b y(x))+ xD
α
b ∂3L(x, y(x),

C
aD

α
x y(x),

C
xD

β

b y(x))+ aD
β
x ∂4L(x, y(x),

C
aD

α
x y(x),

C
xD

β

b y(x)) = 0

for all x ∈ [a, b]. Moreover, if y(a) is not specified, then[
xI1−αb ∂3L(x, y(x), CaD

α
x y(x),

C
xD

β

b y(x)) −aI
1−β
x ∂4L(x, y(x), CaD

α
x y(x),

C
xD

β

b y(x))
]∣∣∣
x=a
= 0,

and if y(b) is not specified, then[
aI1−βx ∂4L(x, y(x), CaD

α
x y(x),

C
xD

β

b y(x)) −xI
1−α
b ∂3L(x, y(x), CaD

α
x y(x),

C
xD

β

b y(x))
]∣∣∣
x=b
= 0.

We note that the generalized Euler–Lagrange equation contains both the left and the right fractional derivatives.
The generalized natural conditions also contain the left and the right fractional integrals. Although the functional
has been written only in terms of the CFDs, the necessary conditions (10)–(12) contain Caputo fractional derivatives,
Riemann–Liouville fractional derivatives and Riemann–Liouville fractional integrals.
Observe that if α goes to 1, then the operators CaD

α
x and aD

α
x can be replaced with

d
dx and the operators

C
xD

α
b and xD

α
b can be

replaced with− d
dx (see [32]). Thus, if the

C
xD

β

b y term is not present in (9), then for α → 1 we obtain a corresponding result
in the classical context of the calculus of variations [29] (see also [35, Corollary 1]).

Corollary 2. If y is a local extremizer for

J(y) =
∫ b

a
L(x, y(x), y′(x), y(a), y(b)) dx −→ extr

(y(a) = ya), (y(b) = yb),

then
d
dx
∂3L(x, y(x), y′(x), y(a), y(b)) = ∂2L(x, y(x), y′(x), y(a), y(b))

for all x ∈ [a, b]. Moreover, if y(a) is free, then

∂3L(a, y(a), y′(a), y(a), y(b)) =
∫ b

a
∂5L(x, y(x), y′(x), y(a), y(b))dx;
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if y(b) is free, then

∂3L(b, y(b), y′(b), y(a), y(b)) = −
∫ b

a
∂6L(x, y(x), y′(x), y(a), y(b))dx.

3.2. Sufficient conditions

In this section we prove the sufficient conditions that ensure the existence of a minimum (maximum). Similarly to what
happens in the classical calculus of variations, some conditions of convexity (concavity) are in order.

Definition 3.2. Given a function L, we say that L(x, y, z, t, u, v) is jointly convex (concave) in (y, z, t, u, v), if ∂iL, i =
2, . . . , 6, exist and are continuous and verify the following condition:

L(x, y+ y1, z + z1, t + t1, u+ u1, v + v1)− L(x, y, z, t, u, v)
≥ (≤)∂2L(•)y1 + ∂3L(•)z1 + ∂4L(•)t1 + ∂5L(•)u1 + ∂6L(•)v1

for all (x, y, z, t, u, v), (x, y+ y1, z + z1, t + t1, u+ u1, v + v1) ∈ [a, b] × R5, where (•) = (x, y, z, t, u, v).

Theorem 3.3. Let L(x, y, z, t, u, v) be jointly convex (concave) in (y, z, t, u, v). If y0 satisfies conditions (10)–(12), then y0 is a
global minimizer (maximizer) to problem (9).

Proof. We shall give the proof for the convex case. Since L is jointly convex in (y, z, t, u, v) for any admissible function
y0 + h, we have

J(y0 + h)− J(y0) =
∫ b

a

[
L(x, y0(x)+ h(x), CaD

α
x (y0(x)+ h(x)),

C
xD

β

b (y0(x)+ h(x)), y0(a)+ h(a), y0(b)+ h(b))

− L(x, y0(x), CaD
α
x y0(x),

C
xD

β

b y0(x), y0(a), y0(b))
]
dx

≥

∫ b

a

[
∂2L(?)h(x)+ ∂3L(?)CaD

α
x h(x)+ ∂4L(?)

C
xD

β

b h(x)+ ∂5L(?)h(a)+ ∂6L(?)h(b)
]
dx,

where (?) =
(
x, y0(x), CaD

α
x y0(x),

C
xD

β

b y0(x), y0(a), y0(b)
)
. We can now proceed analogously to the proof of Theorem 3.1. As

the result we get

J(y0 + h)− J(y0) ≥
∫ b

a

[
∂2L(?)+ xDαb ∂3L(?)+ aD

β
x ∂4L(?)

]
h(x)

+ h(b)
{∫ b

a
∂6L(?)dx−

[
aI1−βx ∂4L(?)− xI1−αb ∂3L(?)

]∣∣
x=b

}
+ h(a)

{∫ b

a
∂5L(?)dx−

[
xI1−αb ∂3L(?)− aI1−βx ∂4L(?)

]∣∣
x=a

}
= 0.

Since y0 satisfies conditions (10)–(12), we obtain J(y0 + h)− J(y0) ≥ 0. �

3.3. Example

We shall provide an example in order to illustrate our main results.

Example 1. Consider the following problem:

J(y) =
1
2

∫ 1

0

[(C
0D

α
x y(x)

)2
+ γ y2(0)+ λ(y(1)− 1)2

]
dx −→ min (17)

where γ , λ ∈ R+. For this problem, the generalized Euler–Lagrange equation and the natural boundary conditions (see
Theorem 3.1) are given, respectively, as

xDα1
(C
0D

α
x y(x)

)
= 0, (18)∫ 1

0
γ y(0)dx = xI1−α1

(C
0D

α
x y(x)

)∣∣
x=0, (19)∫ 1

0
λ(y(1)− 1)dx = −xI1−α1

(C
0D

α
x y(x)

)∣∣
x=1. (20)
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Note that it is difficult to solve the above fractional equations. For 0 < α < 1, a numerical method should be used. When α
goes to 1, problem (17) tends to

J(y) =
1
2

∫ 1

0

[
(y′(x))2 + γ y2(0)+ λ(y(1)− 1)2

]
dx −→ min (21)

and Eqs. (18)–(20) could be replaced with

y′′(x) = 0, (22)

γ y(0) = y′(0), (23)

λ(y(1)− 1) = −y′(1). (24)

Solving Eqs. (22)–(24), we obtain that

ȳ(x) =
γ λ

γ λ+ λ+ γ
x+

λ

γλ+ λ+ γ

is a candidate for a minimizer. Observe that problem (17) satisfies the assumptions of Theorem 3.3. Therefore ȳ is a global
minimizer to problem (21).
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