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In this work, we express De Moivre’s formula for split quaternions and find roots of a split
quaternion using this formula.
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1. Introduction

The roots of a quaternion were given by Niven [7] and Brand [1]. Brand proved De Moivre’s theorem and used it to
find nth roots of a quaternion. Using De Moivre’s formula to find roots of a quaternion is more useful way. Euler’s and De
Moivre’s formulas are important for quaternions since every unit quaternion q can be written in the form q = cos θ+Eε0 sin θ
and represents a rotation of 2θ about the axis Eε0 in Euclidean 3-space. See [2–4] for information about these formulas for
quaternions. In this work, we express Euler and De Moivre’s formulas for split quaternions and examine roots of a split
quaternion with respect to the causal character of the split quaternion.

Split quaternion algebra is an associative, non-commutative non-division ring with four basic elements {1, i, j,k}
satisfying the equalities i2 = −1, j2 = k2

= i ∗ j ∗ k = 1. Rotations in Minkowski 3-space can be stated with split
quaternions, such as expressing Euclidean rotations using quaternions. For detailed information about split quaternions,
we refer the reader to Ref. [6,5,8,9]. Split quaternions Ĥ are identified with the semi-Euclidean space E4

2. Besides this, the
subspace of Ĥ consisting of pure split quaternions Ĥ0 is identified with the Minkowski 3-space [5]. Thus, it is possible to
do with split quaternions many of the things one ordinarily does in vector analysis by using Lorentzian inner and vector
products.

2. Preliminaries

It is recalled that a split quaternion q = (q1, q2, q3, q4) is spacelike, timelike or lightlike, if Iq < 0, Iq > 0 or Iq = 0
respectively where Iq = q2

1+ q2
2− q2

3− q2
4. The norm of the q is defined as Nq =

√∣∣q2
1 + q2

2 − q2
3 − q2

4
∣∣. If Nq = 1 then q is called

the unit split quaternion and q0 = q/Nq is a unit split quaternion for Nq 6= 0. Also, spacelike and timelike quaternions have
multiplicative inverses having the property q ∗ q−1

= q−1
∗ q = 1. Lightlike quaternions have no inverse. Polar forms of the

split quaternions are as follows:

(i) Every spacelike quaternion can be written in the form q = Nq (sinh θ+ Eε0 cosh θ) where Eε0 = is a spacelike unit vector
in E3

1.
(ii) Every timelike quaternion with spacelike vector part can be written in the form q = Nq (cosh θ+ Eε0 sinh θ) where Eε0 is

a spacelike unit vector in E3
1.
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(iii) Every timelike quaternion with timelike vector part can be written in the form q = Nq (cos θ+ Eε0 sin θ) where Eε0 is a
timelike unit vector in E3

1.

Scalar and vector parts of the split quaternion q are denoted by Sq = q1 and EVq = q2i + q3j + q4k respectively. Vector
parts of the split quaternions are identified with the Minkowski 3-space. The Minkowski space E3

1 is the Euclidean space E3

provided with the Lorentzian inner product
〈
Eu, Ev

〉
L = −u1v1 + u2v2 + u1v2 where Eu =

(
u1, u1 , u3

)
, Ev = (v1, v2, v3) ∈ E3. We

say that a vector Eu in E3
1 is spacelike, lightlike or timelike if

〈
Eu, Eu

〉
L > 0,

〈
Eu, Eu

〉
L = 0 or

〈
Eu, Eu

〉
L < 0 respectively. The norm of the

vector Eu ∈ E3
1 is defined by

∥∥Eu∥∥ = √∣∣〈Eu, Eu〉L∣∣.
The split quaternion product of two quaternions p = (p1, p2, p3, p4) and q = (q1, q2, q3, q4) is defined as

p ∗ q = p1q1+ < EVp, EVq>L+p1EVq+ q1EVp+ EVp×L EVq

where 〈, 〉L and×L are the Lorentzian inner product and vector product respectively. Also, we can express an nth power of a
split quaternion q = Sq+ EVq as follows:

(i) if n is an even number,

qn =

 n
2∑

r=0

(
n

2r

)
(S)n−2r Vr

+
 n

2−1∑
r=0

(
n

2r + 1

)
(S)n−2r−1 Vr

 EVq,
(ii) if n is an odd number,

qn =

 n−1
2∑

r=0

(
n

2r

)
(S)n−2r Vr

+
 n−1

2∑
r=0

(
n

2r + 1

)
(S)n−2r−1 Vr

 EVq
where S = Sq and V =

〈
EVq, EVq

〉
L
.

The set of timelike quaternions denoted by

TĤ =
{
q = (q1, q2, q3, q4) : q2, q3, q4, q1 ∈ R, Iq > 0

}
forms a group under the split quaternion product. Every rotation in the Minkowski 3-space can be expressed using unit
timelike quaternions. The set of unit timelike quaternions is represented as TĤ1. If q = (q1, q2, q3, q4) is a unit timelike
quaternion, using the transformation law (q ∗ EVr ∗ q−1)i =

∑3
j=1 Rij(EVr)j the corresponding rotation matrix can be found as

Rq =

q
2
1 + q2

2 + q2
3 + q2

4 2q1q4 − 2q2q3 −2q1q3 − 2q2q4
2q2q3 + 2q4q1 q2

1 − q2
2 − q2

3 + q2
4 −2q3q4 − 2q2q1

2q2q4 − 2q3q1 2q2q1 − 2q3q4 q2
1 − q2

2 + q2
3 − q2

4


where r = (Sr, EVr). These matrices form the three-dimensional special orthogonal group SO (1, 2). Moreover, the function
ϕ : S3

2 ' TĤ1 → SO (1, 2) which sends q = (q1, q2, q3, q4) to matrix R given in (EMPTY) is a homomorphism of group.
The kernel of ϕ is {±1} so that rotation matrix corresponds to pairs ±q of the unit quaternion. In particular, SO (1, 2) is
isomorphic to the quotient group TĤ1/{±1} from the first isomorphism theorem. In another words, for every rotation in
Minkowski 3-space E3

1, there are two unit timelike quaternions that determine this rotation. These timelike quaternions are
q and−q [9].

3. De Moivre’s formula for split quaternions

In this section we examine De Moivre’s formula for split quaternions. For this, we consider the causal character of the
split quaternion and we specify this formula with respect to timelike and spacelike quaternions separately. For the usual
quaternions this formula was given by [2].

3.1. Timelike quaternions with spacelike vector part (TSp)

Every timelike quaternion with spacelike vector part can be written in the form

q = Nq (cosh θ+ Eε0 sinh θ)

where cosh θ = |q1|
r

, sinh θ =
√
−q2

2+q
2
3+q

2
4

r
, Eε0 =

q2i+q3j+q4k√
−q2

2+q
2
3+q

2
4

is a spacelike unit vector in E3
1 and Eε0 ∗ Eε0 = 1. A unit timelike

quaternion q with spacelike vector part represents a rotation of a three-dimensional non-lightlike Lorentzian vector by a
hyperbolic angle 2θ about the axis of q [9].

Euler’s formula for a unit timelike quaternion with spacelike vector part holds. Since Eε2
= Eε ∗ Eε = 1, we have

eEεθ =
(

1+
θ2

2!
+
θ4

4!
+ · · ·

)
+ Eε

(
θ+

θ3

3!
+
θ5

5!
+ · · ·

)
= cosh θ+ Eε sinh θ.
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Moreover, this can be shown using another method. That is,

q = cosh θ+ Eε sinh θ⇒ dq = (sinh θ+ Eε cosh θ) dθ
⇒ dq = Eε (cosh θ+ Eε sinh θ) dθ = Eεqdθ.

Thus, we get
∫ dq

q
=
∫
Eεdθ ⇒ ln q = Eεθ ⇒ q = eEεθ = cosh θ + Eε sinh θ. Now, let’s prove De Moivre’s formula for a timelike

quaternion with spacelike vector part.

Theorem 1. Let q = Nq (cosh θ+ Eε sinh θ) be a unit timelike quaternion with spacelike vector part. Then,

qn =
(
Nq

)n
(cosh nθ+ Eε sinh nθ)

for n ∈ Z.

Proof. We use induction on positive integers n. Assume that qn =
(
Nq

)n
(cosh nθ+ Eε sinh nθ) holds. Then,

qn+1
=
(
Nq

)n
(cosh nθ+ Eε sinh nθ)Nq (cosh θ+ Eε sinh θ)

=
(
Nq

)n+1
(cosh nθ+ Eε sinh nθ) (cosh θ+ Eε sinh θ)

=
(
Nq

)n+1
(cosh nθ cosh θ+ sinh nθ sinh θ+ (cosh nθ sinh θ+ sinh nθ cosh θ) Eε)

=
(
Nq

)n+1
(cosh (n+ 1) θ+ Eε sinh (n+ 1) θ) .

Hence, the formula is true. Moreover, since

q−1
=
(
Nq

)−1
(cosh θ− Eε sinh θ) and

q−n =
(
Nq

)−n
(cosh nθ− Eε sinh nθ) =

(
Nq

)−n
(cosh (−nθ)+ Eε sinh (−nθ)) ,

the formula holds for all integers. �

3.2. Timelike quaternions with timelike vector part (Tt)

Every timelike quaternion with timelike vector part can be written in the form

q = Nq (cos θ+ Eε0 sin θ)

where cos θ = q1
r
, sin θ =

√
q2

2−q
2
3−q

2
4

r
, Eε0 =

q2i+q3j+q4k√
q2

2−q
2
3−q

2
4

is a timelike unit vector in E3
1 and Eε0 ∗ Eε0 = −1. Also, a unit timelike

quaternion q with timelike vector part represents a rotation of a three-dimensional non-lightlike Lorentzian vector by an
angle 2θ about the axis of q.

Euler’s formula for a timelike quaternion with timelike vector part also holds. Since Eε2
= Eε ∗ Eε = −1, we have

eEεθ =
(

1−
θ2

2!
+
θ4

4!
− · · ·

)
+ Eε

(
θ−

θ3

3!
+
θ5

5!
− · · ·

)
= cos θ+ Eε sin θ.

Theorem 2. Let q = Nq (cos θ+ Eε sin θ) be a unit timelike quaternion with timelike vector part. Then,

qn =
(
Nq

)n
(cos nθ+ Eε sin nθ)

for n ∈ N.

The proof of this theorem can be done using induction, similarly to the proof of the Theorem 1.

3.3. Timelike quaternion with lightlike vector part

Every unit timelike quaternion with null vector part can be written in the form q = 1 + Eε where Eε is a null vector. If
q = 1+ Eε is a unit timelike quaternion with null vector part, then qn = 1+ nEε and only root of the equation wn

= q is 1+ Eε
n

.

3.4. Spacelike quaternions

Every spacelike quaternion can be written in the form

q = Nq (sinh θ+ Eε0 cosh θ)

where sinh θ = q1
r
, cosh θ =

√
−q2

2+q
2
3+q

2
4

r
and Eε0 =

q2i+q3j+q4k√
−q2

2+q
2
3+q

2
4

is a spacelike unit vector in E3
1.

The product of two spacelike quaternions is timelike. That is, for a spacelike quaternion q = Nq (sinh θ+ Eε0 cosh θ) , q2
=

N2
q (cosh θ+ Eε0 sinh θ)
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Because of that we can give De Moivre’s formula for spacelike quaternions as follows.

Theorem 3. Let q = Nq (sinh θ+ Eε cosh θ) be a unit spacelike quaternion. Then,

qn =

{(
Nq

)n
(sinh nθ+ Eε cosh nθ) , n is odd(

Nq

)n
(cosh nθ+ Eε sinh nθ) , n is even.

4. The roots of a split quaternion

In this section we want to find roots of a split quaternion using De Moivre’s formula given above.

Theorem 4. Let q = Nq (cosh θ+ Eε sinh θ) be a timelike quaternion with spacelike vector part. Then the equation wn
= q has

only one root:

w = n
√
Nq

(
cosh

θ

n
+ Eε sinh

θ

n

)
in the set of timelike quaternions TĤ.

Proof. If wn
= q, q will have the same unit vector as w. So, assume that w = N (cosh x+ Eε sinh x) is a root of the equation

wn
= q. From Theorem 1, we have

wn
= Nn (cosh nx+ Eε sinh nx) .

Thus, Nn
= Nq and x = θ

n
. Therefore, w = n

√
Nq

(
cosh θ

n
+ Eε sinh θ

n

)
is a root of the equation wn

= q. If we suppose that
there are two roots satisfying the equality, we obtain that these roots must be equal to each other. �

Let’s find the roots of the equation w3
= q where q =

√
2+
√

2i+
√

2j− k. Since Iq = 1, q is a unit timelike quaternion
and its vector part is a spacelike vector. Then, we can write as q = cosh θ + ε sinh θ. Indeed, q =

√
2 +

(√
2,
√

2,−1
)

1 ⇒

cosh θ =
√

2 and sinh θ = 1.
From the last equalities, we find θ = ln

(√
2+ 1

)
. Thus,

q = cosh ln
(√

2+ 1
)
+ Eε sinh ln

(√
2+ 1

)
where Eε =

(√
2,
√

2,−1
)
. And using above lemma, we find the root as

w =

cosh
ln
(√

2+ 1
)

3
+ Eε sinh

ln
(√

2+ 1
)

3

 .

Theorem 5. Let q = Nq (cos θ+ Eε sin θ) be a timelike quaternion with timelike vector part. Then the equation wn
= q has n roots

in the timelike quaternions TĤ, and they are

wm =
n
√
Nq

(
cos

θ+ 2mπ
n

+ Eε sin
θ+ 2mn

n

)
where m = 0, 1, 2, . . . , n− 1.

Proof. We assume that w = N (cosϕ+ Eε sinϕ) is a root of the equation, since the vector parts of w and q are the same. So,
we find

Nq = Nn, cos nϕ = cos θ and sin nϕ = sin θ

using Theorem 2. Thus, the nth roots of q are

wm =
n
√
Nq

(
cos

θ+ 2mπ
n

+ Eε sin
θ+ 2mn

n

)
for m = 0, 1, 2, . . . , n− 1. �

Let’s find the roots of the equation w3
= −1+

√
3i. q = −1+

√
3i is a timelike quaternion with timelike part such that

Nq = 2. Then, q can be written as q = 2
(

cos
(

2π
3 + 2mπ

)
+ Eε sin

(
2π
3 + 2mπ

))
for m ∈ N+. From Theorem 5, the roots of the

equation w3
= q are

wm =
3√2

(
cos

2π
3 + 2mπ

3
+ Eε sin

2π
3 + 2mn

3

)

for m = 0, 1, 2. So, w0 =
3√2

(
cos 2π

9 + Eε sin 2π
9

)
,w1 =

3√2
(

cos 8π
9 + Eε sin 8π

9

)
,w3 =

3√2
(

cos 14π
9 + Eε sin 14π

9

)
are the roots

of the given equation.
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Now, we examine the solution of the equations in the form wn
= q such that q ∈ R. We consider q ∈ R regarded as a

timelike quaternion with timelike vector part.

Theorem 6. Let q ∈ R be a unit timelike quaternion with Eε = E0. Then there are infinitely many roots of the equation wn
= q in

the set of timelike quaternions TĤ.

Proof. We must choose w such its nth power of it must be a real number with zero vector part.
Since we consider q ∈ R regarded as a timelike quaternion with timelike vector part, we can write w as w = N(cos θ +

Eε sin θ), so wn
= Nn (cos nθ+ Eε sin nθ) = q and N = n

√
Nq, θ = 2mπ

n
for m = 0, 1, 2. Thus, we find roots as

wm =
n
√
Nq

(
cos

2mπ
n
+ Eε sin

2mπ
n

)
for m = 0, 1, 2, . . . , n− 1.

Here, if there are n roots of the equation, actually there are an infinite number of roots, because every quaternion in the form
wm =

n
√
Nq

(
cos 2mπ

n
+ Eε sin 2mπ

n

)
for m = 0, 1, 2, . . . with a timelike unit vector Eε is a root of the equation and we choose

infinite Eε. That is, for every timelike vector Eε, we find another timelike quaternion which satisfies the equation. �

Remark 7. All of the timelike quaternions satisfying the equation wn
= q represent a rotation through the same angle about

different axes in the Minkowski 3-space.

For example, the roots of the equation w4
= −4 are

wm =
4√4

(
cos

π+ 2kπ
4

+ Eε sin
π+ 2kπ

4

)
for k = 0, 1, 2, 3. But, for every timelike vector Eε, the equality

(
wm

)n
= −4 holds. That is, we can choose an infinitely

timelike quaternion satisfying the equation provided that its norm is 4 and the vector part is any timelike vector. w ∈
{(1, 3, 2, 2) , (1, 1, 0, 0) ,

(
1, 2, 1,

√
2
)
, . . .}.

Here, each of the quaternions (1, 3, 2, 2) , (1, 1, 0, 0) ,
(

1, 2, 1,
√

2
)
, . . . represents a rotation through 90 degrees about

the different axis Eε ∈ {(3, 2, 2) , (1, 0, 0) ,
(

2, 1,
√

2
)
, . . .}.

Remark 8. If n is an even number, then some of the roots of the equation wn
= q ∈ R+ can be spacelike quaternions. For

example, a spacelike quaternion w ∈ {(0, 0, 1, 0) , (0, 0, 0, 1) , (0, 2, 2, 1) , . . .} is a root of w4
= 1. But, observe that we

solve the equation wn
= q in the set of timelike quaternions in Theorem 6.

Now let’s state what the roots of a spacelike quaternion are in the set of spacelike quaternions. For this case, it is important
that n is odd or even, according to Theorem 3.

Theorem 9. Let q = Nq (sinh θ+ Eε cosh θ) be a spacelike quaternion. Then the solution of the equation wn
= q in the spacelike

quaternions

(i) doesn’t exist if n is an even number,
(ii) has only one spacelike quaternion root w = n

√
Nq

(
sinh θ

n
+ Eε cosh θ

n

)
if n is an odd number.

Proof. If n is an even number, the nth power of a spacelike quaternion will be a timelike quaternion and in this case there
is no solution.

So, let w = N (sinhϕ+ Eε coshϕ) be a root of the equation wn
= q such that n is an odd number. Then

wn
= Nn (sinh nϕ+ Eε cosh nϕ) = Nq (sinh θ+ Eε cosh θ)

and we have ϕ = θ
n

and N = n
√
Nq. �

Let’s find the roots of the equation x3
= 1+

√
2k. Since Iq = −1, q is a unit spacelike quaternion. Then, it can be written

in the form q = sinh θ+ Eε cosh θ where Eε = (0, 0, 1) , cosh θ =
√

2 and sinh θ = 1. So,

x = sinh
ln
(√

2+ 1
)

3
+ Eε cosh

ln
(√

2+ 1
)

3

is the only root of the equation x3
= 1+

√
2k.
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