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a b s t r a c t

ReproducingKernelHilbert Spaces (RKHSs) are a very useful andpowerful tool of functional
analysis with application in many diverse paradigms, such as multivariate statistics and
machine learning. Fractal interpolation, on the other hand, is a relatively recent technique
that generalizes traditional interpolation through the introduction of self-similarity. In this
work we show that the functional space of any family of (recurrent) fractal interpolation
functions ((R)FIFs) constitutes an RKHS with a specific associated kernel function, thus,
extending considerably the toolbox of known kernel functions and introducing fractals to
the RKHSworld.We also provide themeans for the computation of the kernel function that
corresponds to any specific fractal RKHS and give several examples.

© 2011 Elsevier B.V. All rights reserved.

1. Introduction

Fractal interpolation, as introduced by Barnsley in [1] (see also [2]), is an alternative to traditional interpolation
techniques, which gives a broader set of interpolants. In fact, many traditional interpolation techniques (splines, Hermite
polynomials, etc.) are included as special cases. Its main differences include: (a) the definition of a functional relation
(see (5)), which implies a self-similarity in small scales, (b) the constructive way (through iterations), which is used to
compute the interpolant, instead of the descriptive one (usually a formula) provided by the classical methods and (c) the
usage of some parameters, which are usually called vertical scaling factors, that are strongly related to the fractal dimension
of the interpolant. Fractal interpolation is used inmany scientific fields such as image compression,multiwavelets, computer
graphics, etc. (See for example [3,4].)

A Reproducing Kernel Hilbert Space (RKHS) on the other hand, introduced in [5–7], is a rich construct (roughly, a smooth
space with a generalized inner product), which has been proved to be a very powerful tool, e.g., in functional analysis and
integral equations, information theory and statistical learning [8–12]. To every RKHS, an input space and a kernel function
can be associated, such that the inner products of any pair of elements of the input space are mapped through the kernel
function to the inner product of elements of the RKHS. In this way, problems that are nonlinear in the input space, can be
transformed to linear ones in an RKHS, if they can be expressed in terms of inner products, through a suitable kernel function.
The main concepts of this procedure can be summarized in the following two steps: (1) map the finite dimensionality
input data from the input space F (usually F ⊂ Rν) into a higher dimensionality (possibly infinite) RKHS H using the
kernel function and (2) perform a linear processing on the mapped data in H . The procedure is equivalent with a nonlinear
processing in F (the interested reader may dig more on this subject in [13,14]).

The notion of the RKHS is a major mathematical tool involved in many paradigms of Machine Learning (ML). The
theoretical perspective of these specificmethods ismainly the Statistical Learning Theory (SLT) [12], which provides a sound
background for the development of learning tools exhibiting guaranteed generalization properties. Amain offspring of SLT is
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the Support VectorMachines (SVMs). SVMs are able to handle classification and regression tasks involvingmultidimensional,
nonlinear data [13,12]. A variety of kernels with respective RKHS are used in practice (e.g., Gaussian kernel, polynomial
kernel, etc.). However, most of these kernel spaces exhibit a common characteristic: they consist of smooth functions.

A major challenge is that, in many real-life situations (e.g., biomedical, environmental, and financial systems), the data
involved are highly nonlinear (i.e., not even locally linear). Although the existing ML theory is valuable and provides the
tools (i.e., kernel-based classifiers such as SVMs) to handle simple, binary nonlinear cases, there is still an unbridged gap
to complex real-life dynamical systems, which obey chaos rules and are accurately modeled by fractals. For example, in
regression tasks involving highly nonlinear data, the use of smooth kernel spaces will probably lead to false conclusions.

This work aims to bridge the gap between the two fields (i.e., fractal interpolation and RKHS theory), thus providing the
benefits of the one to the other. Specifically, we prove that the spaces of recurrent fractal interpolation functions (RFIFs) of
any given order, constitute a Reproducing Kernel Hilbert Space and provide the means for the computation of the specific
kernel functions. Our primary goal is to provide a way to create fractal Reproducing Kernel Hilbert Spaces (RKHSs) and we
devised the Fractal Interpolation Functions (FIFs) as the suitable ‘‘vehicle’’ for this purpose. Therefore, the aim of the paper
is not to deal with fractal interpolation (as there are not any specific interpolation points given), but, rather, to exploit the
mathematical structure of FIFs and construct corresponding RKHSs through them. In particular, we consider three different
fractal spaces, i.e., the space of all RFIFs of order r , denoted by FP ,u,s,r , the space of all Hermitian RFIFs of order 2r + 1,
denoted by HP ,u,s,2r+1, and the space of spline RFIFs of order 2r + 1, denoted by SP ,u,s,2r+1, which we prove that each one
is actually an RKHS. Moreover, the corresponding spaces of the simple (non-recurrent) fractal interpolation functions are
also RKHSs, as specific cases. Furthermore, we compute the dimension of these spaces, which is related to the order of the
belonging functions and the number of interpolation points. Finally, we provide the elements for calculating the respective
kernel functions κ for these RKHSs as well as the corresponding induced mappings Φ . Thus, we pave the way to the use of
new, very broad and rich families of kernel functions, i.e., those related to the (R)FIFs of any kind and order, in very diverse
fields like multivariate statistics (e.g., kernel PCA [15]), machine learning (e.g., kernel machines [16,13]), etc. We should
emphasize that all kernel-based methods can directly employ the fractal kernels presented in this paper.

The rest of the material of this paper is organized as follows: the following two sections are of introductory nature, as
they present the fundamental notions of RKHSs and fractal interpolation, thus, providing the necessary background for the
development of the results of this work. Most of thematerial included in these sectionsmay be found in other papers as well
([17–21], etc.). In Sections 4 and 5, the main theoretical results of this work are being deduced. In particular, in Section 4,
we show that any functional space of (R)FIFs can be viewed as an RKHS, as it is a finite linear space. Although this result
seems rather trivial, we should emphasize that (a) to the best of our knowledge, fractals have not been considered before as
a tool for kernel learning and (b) several important issues need to be addressed for the computation of the fractal kernels.
These issues have been considered in Section 5, where all the necessary steps needed to compute the corresponding kernel
functions are described.

2. Reproducing kernel Hilbert spaces

We start with some basic definitions regarding the property of positive definite matrices and functions, which play a
very important role in the study of RKHS.

Definition 2.1 (Gram Matrix). Given a function κ : X × X → R and x1, . . . , xN ∈ X , the matrix1 K = (Ki,j)
N with elements

Ki,j = κ(xi, xj), for i, j = 1, . . . ,N , is called the Gram matrix (or kernel matrix) of κ with respect to x1, . . . , xN .

Definition 2.2 (Positive Definite Matrix). A real symmetric matrix K = (Ki,j)
N satisfying

cT · K · c =

N,N−
i=1,j=1

cicjKi,j ≥ 0,

for all ci ∈ R, i = 1, . . . ,N , is called Positive Definite.

In matrix analysis literature, this is the definition of the positive semidefinite matrix, but since this is a rather cumbersome
term and the distinction between positive definite and positive semidefinite matrices is not important in this paper, we
employ the term positive definite in the way introduced here.

Definition 2.3 (Positive Definite Kernel). Let X be a nonempty set. Then a function κ : X × X → R, which for every
specific N ∈ N and all x1, . . . , xN ∈ X gives rise to a positive definite Gram matrix K = (Ki,j)

N , where Ki,j = κ(xi, xj)
for i, j = 1, . . . ,N , is called a Positive Definite Kernel.

1 The term (Ki,j)
N denotes a square N × N matrix.
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Table 1
Several kernels that are used in practice. Note that the term I

−
1
2 ,

1
2

 that appears in the

spline Kernel and the term Ii which is used in the following sections are not the same. For
a detailed description of the term I

−
1
2 ,

1
2

 , see [13].

Kernel Function

Gaussian κ(x, y) = exp

−

‖x−y‖2

2σ 2


, σ > 0

(Inhomogeneous) polynomial κ(x, y) = (⟨x, y⟩ + c)d

Bn-spline of odd order κ(x, y) = B2r+1(‖x − y‖), with Bn =
n

i=1 I

−

1
2 ,

1
2



In the following we will refer to a positive definite kernel simply as kernel. The reason that kernels are so popular is
that they can be regarded as a generalized dot product. In fact, any dot product is a kernel (of course the opposite is not
true). Several properties of dot products (such as the Cauchy–Schwarz inequality) do have natural generalizations to kernels
(see [22,13]).

Having dealt with the definitions of positivity, we are ready to discuss the main subject of this section. Consider a linear
class H of real valued functions f defined on a set X . Suppose further, that in H we can define an inner product ⟨·, ·⟩H

with corresponding norm ‖ · ‖H and that H is complete with respect to that norm, i.e., H is a Hilbert space. We call H a
Reproducing Kernel Hilbert Space (RKHS), if for all x ∈ X the evaluation functional Tx : H → R : Tx(f ) = f (x) is a continuous
(or, equivalently, bounded) operator. If this is true, then by Riesz’s representation theorem, for all x ∈ X there is a function
gx ∈ H such that Tx(f ) = f (x) = ⟨f , gx⟩H . The function κ : X × X → R : κ(x, y) = gx(y) is called a reproducing kernel of H .
It can be easily proved that the function κ is a positive definite kernel.

Alternatively, we can define an RKHS as a Hilbert space H for which there exists a function κ : X × X → R with the
following two properties:

1. For every x ∈ X, κ(x, ·) belongs to H .
2. κ has the so-called reproducing property, i.e.

f (x) = ⟨f , κ(x, ·)⟩H , for all f ∈ H, (1)

in particular κ(x, y) = ⟨κ(x, ·), κ(y, ·)⟩H .

It has been proved (see [6,22]) that to every positive definite kernel κ there corresponds one and only one class of
functions F with a uniquely determined inner product in it, forming a Hilbert space and admitting κ as a reproducing
kernel. In fact the kernel κ produces the entire space H , i.e.,

H = span{κ(x, ·)|x ∈ X}.

We note that it is possible to define several different inner products in the same class of functions H , so that H is complete
with respect to each one of the corresponding norms. To each one of the Hilbert spaces (H, ⟨·, ·⟩) there corresponds one
and only one kernel function κ . That is to say κ depends not only on the class of functions H , but also on the choice of the
inner product that H admits. Table 1 shows several well-known positive definite kernels that are often used in practice.
Below we give an important result concerning RKHSs (proved in [7,22]) which will be used in our study.

Theorem 2.1 ([22]). A function κ(x, y) is the reproducing kernel of a finite-dimensional class of functions H if and only if it
has the form κ(x, y) =

∑l
i,j=1 βi,jei(x)ej(y), where B = {βi,j} is a positive definite matrix, l > 0 and e1, . . . , el are linearly

independent. The corresponding class H is then generated by the functions e1, . . . , el (i.e., the functions ei form a basis of H) and
the corresponding inner product of two functions f =

∑l
i=1 ζiei and f̃ =

∑l
i=1 ζ̃iei is given by ⟨f , f̃ ⟩ =

∑l
i,j=1 αi,jζiζ̃j, where

A = {αi,j} is the inverse of the matrix B and αi,j = ⟨ei, ej⟩. The converse is also true.

3. Fractal interpolation

3.1. Iterated Function System (IFS)—Recurrent IFS (RIFS)

An Iterated Function System {X;w1−N} (IFS for short, see [23–25,27]) is defined as a pair consisting of a complete metric
space (X, ρ) together with a finite set of continuous contractive mappingswi : X → X , with respective contraction factors
si for i = 1, 2, . . . ,N(N ≥ 2). The attractor of an IFS is the unique set E for which E = limk→∞ W k(A0) for every starting
compact set A0, where

W (A) =

N
i=1

wi(A) for all A ∈ H(X),

is the so-called Hutchinson operator [23] and H(X) is the complete metric space of all nonempty compact subsets of X with
respect to the Hausdorff metric h (for the definition of the Hausdorff metric and properties of (H(X), h), see [25]).
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A more general concept, that allows the construction of even more complicated sets, is that of the Recurrent Iterated
Function System, or RIFS for short (see [2,25]), which consists of the IFS {X;w1−N} togetherwith an irreducible row-stochastic
matrix P = (pν,µ)N , (pν,µ ∈ [0, 1] : ν, µ = 1, . . . ,N), such that

∑N
µ=1 pν,µ = 1, ν = 1, . . . ,N . The recurrent structure is

given by the (irreducible) connection matrix C = (cν,µ)N which is defined by

cν,µ =


1, if pµ,ν > 0
0, if pµ,ν = 0 ,

where ν, µ = 1, 2, . . . ,N . The transition probability for a certain discrete time Markov process is pν,µ, which gives the
probability of transition into state µ given that the process is in state ν.

In this case the contractive mapping W acts on N-tuples of l-dimensional sets: A = (A1, . . . , AN). In order to define it, a
little more effort is needed. The interested reader may found more details on this subject in [2,25,26].

3.2. Fractal interpolation functions of order r

In this section we briefly describe the construction of fractal interpolation functions based on RIFSs (for details, see
[25,26]). The main idea, which will be presented in detail hereafter, is to define an RIFS that acts on the subsets of the
input domain that are produced by the partitioning induced by the interpolation points. Let X = [0, 1] × R, r > 0 and
∆ = {(xi, yi) : i = 0, 1, . . . ,N} be an interpolation set with N + 1 interpolation points such that 0 = x0 < x1 < · · · <
xN = 1. The interpolation points divide [0, 1] into N intervals Ii = [xi−1, xi], i = 1, . . . ,N , which we call domains. In
addition, let ∆̂ = {(x̂j, ŷj) : j = 0, 1, . . . ,M} be a subset of ∆ such that 0 = x̂0 < x̂1 < · · · < x̂M = 1. We also assume
that for every j = 0, 1, . . . ,M − 1 there is at least one i such that x̂j < xi < x̂j+1. Thus, the points of ∆̂ divide [0, 1] into M
intervals Jj = [x̂j−1, x̂j], j = 1, . . . ,M , whichwe call regions. Finally, let J be a labelingmapping such that J: {1, 2, . . . ,N} →

{1, 2, . . . ,M} with J(i) = j and I : {0, 1, 2, . . . ,M} → {0, 1, 2, . . . ,N} a mapping with the property that I(j) = i, if x̂j = xi,
for j = 0, . . . ,M . Since ∆̂ ⊂ ∆, each one of the values x̂j will be identical with one xi. For example x̂0 = x0, x̂1 = x2, x̂2 = x4,
etc. Themapping I is used to change the notation from x̂j to the corresponding xi in this manner: x̂j = xI(j). In the special case
where the interpolation points are equidistant (that is xi − xi−1 = δ, i = 1, 2, . . . ,N , and x̂j − x̂j−1 = ψ, j = 1, 2, . . . ,M),
each region contains exactly α = ψ/δ ∈ N domains.

Next, we define N mappings of the form:

wi


x
y


=


Li(x)

Fi(x, y)


, for i = 1, 2, . . . ,N, (2)

where Li(x) = aix+ bi, Fi(x, y) = siy+ pi(x) and pi(x) is a polynomial of order r . Each mappingwi is constrained to map the
endpoints of the region JJ(i) to the endpoints of the domain Ii. That is,

wi


x̂J(i)−1
ŷJ(i)−1


=


xi−1
yi−1


, wi


x̂J(i)
ŷJ(i)


=


xi
yi


, for i = 1, 2, . . . ,N. (3)

In this manner, vertical segments are mapped to vertical segments scaled by the factor si. The parameter si is called the
vertical scaling factor of themappingwi. It is easy to show that if |si| < 1, then there is a metric d equivalent to the Euclidean
metric, such that wi is a contraction (i.e., there is ŝi : 0 ≤ ŝi < 1 such that d(wi(x), wi(y)) ≤ ŝid(x, y), x, y ∈ R2, see [25]).
Eq. (3) can be recast as

pi(x̂J(i)−1) = yi−1 − siŷJ(i)−1, pi(x̂J(i)) = yi − siŷJ(i). (4)

The N × N stochastic matrix (pn,m)N is defined by the labeling function J as follows:

pn,m =


1
γn
, if In ⊆ JJ(m)

0, otherwise,

where γn is the number of positive entries of the line2 n, n = 1, 2, . . . ,N . This means that pn,m is positive, if the
transformation Lm, maps a region containing the nth domain (i.e., In) to the mth domain (i.e., Im). If we take a point in
In × R, n = 1, . . . ,N , we say that we are in state n. The number pn,m shows the probability of applying the mapping
wm to that point, so that the system transits to state m. Sometimes, it is more convenient to describe the matrix P through
the connection matrix C or the connection vector v, which are defined as follows:

cn,m =


1, pm,n > 0
0, otherwise,

v = (J(1), J(2), . . . , J(N)).

2 Note that this leads to an equiprobable transition matrix.
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Next, we consider3 (C([x0, xN ]), ‖ · ‖∞), where ‖ψ‖∞ = max{|ψ(x)|, x ∈ [x0, xN ]} for any ψ ∈ C([x0, xN ]) and the
complete metric subspace F∆ = {g ∈ C([x0, xN ]) : g(xi) = yi, for i = 0, 1, . . . ,N}. The Read–Bajraktarevic operator
T∆,∆̂ : F∆ → F∆ is defined as follows:

(T∆,∆̂g)(x) = Fi(L−1
i (x), g(L

−1
i (x))), for x ∈ Ii, i = 1, 2, . . . ,N.

It is easy to verify that T∆,∆̂g is well defined and that T∆,∆̂ is a contraction with respect to the ‖ · ‖∞ metric. According
to the Banach fixed-point theorem, there exists a unique f ∈ F∆ such that T∆,∆̂f = f . If f0 is any interpolation function and
fn = T n

∆,∆̂
f0, where T n

∆,∆̂
= T∆,∆̂ ◦ T∆,∆̂ ◦ · · · ◦ T∆,∆̂, then (fn)n∈N converges uniformly to f . The graph of the function f is the

attractor of the RIFS {X, w1−N , (pi,j)N} associated with the interpolation points (see [25]). Note that f interpolates the points
of∆ for any selection of the parameters of the polynomials pi that satisfies (3). We will refer to a function of this nature as
Recurrent Fractal Interpolation Function (RFIF) of order r. In the case where all the elements of the stochastic matrix are equal
to 1 (i.e., we have an IFS instead of an RIFS), the function will be simply referred to as Fractal Interpolation Function (FIF). We
emphasize that an RFIF is the only function which satisfies the functional relation

f (Li(x)) = sif (x)+ pi(x) (5)

for all x ∈ JJ(i), i = 1, 2, . . . ,N .
For the following we assume that the polynomials pi take the form:

pi(x) = ci,0 + ci,1x +

r−
k=2

ci,kxk, (6)

for i = 1, 2, . . . ,N . From the join-up conditions (4) one can easily deduce that

ci,0 = yi−1 − siŷj−1 − ci,1x̂j−1 −

r−
k=2

ci,kx̂kj−1, (7)

ci,1 =
yi − yi−1

x̂j − x̂j−1
−

r−
k=2

ci,k
x̂kj − x̂kj−1

x̂j − x̂j−1
− si

ŷj − ŷj−1

x̂j − x̂j−1
, (8)

where ci,2, . . . , ci,r are free parameters.

3.3. Differentiable fractal interpolation functions

In Section 3.2, we have dealt with general (continuous) FIFs. Now, we shall restrict the previous results to the
differentiable FIFs, which have some interesting properties. In [20] it is shown that the integral of an FIF defined from an
IFS is also an FIF defined from a different IFS. A similar result can be proved for the case of the RFIFs (see [21]). This implies
that one can construct RFIFs which are differentiable. In this specific case the term ‘‘fractal’’ is somewhat eccentric, since by
definition a fractal object has a non-integer dimension, while a differentiable function has always dimension 1. It is used
however as a reminder that this function is a product of an RIFS. The following theorem is an extension of the one presented
in [20] (for the proof see [21]). For a function g we symbolize g(0) = g, g(1) = g ′ and g(k) as its kth order derivative. In
addition, we consider Cn([0, 1]) as the space of the functions that have continuous nth order derivative, equipped with the
norm ‖f ‖ = ‖f ‖∞ + ‖f ′

‖∞ + · · · + ‖f (n)‖∞.

Theorem 3.1 ([21]). Consider the RIFS {R2, w1−N , P}, whose attractor is the graph of an RFIF associated with the data points
∆, ∆̂ and the labeling mapping J, where

wi


x
y


=


Li(x)

siy + pi(x)


,

|si| < ani , pi ∈ Cn([0, 1]), for i = 1, 2, . . . ,N. We define Fk,i(x, y) =
siy+p(k)i (x)

aki
. If for any k = 0, 1, . . . , n, each one of the

2N × 2N linear systems

yk,i−1 = Fk,i(x̂j−1, ŷk,j−1) =
siŷk,j−1 + p(k)i (x̂j−1)

aki
,

yk,i = Fk,i(x̂j, ŷk,j) =
siŷk,j + p(k)i (x̂j)

aki
,

3 Throughout the paper,C([x0, xN ])denotes the space of all continuous functions andC r ([x0, xN ])denotes the space of all r-times differentiable functions.
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with ŷk,j = yk,I(j), I(j) = i iff x̂j = xi, j = J(i)i = 1, 2, . . . ,N, has a unique solution for yk,i, then the RFIF f ∈ Cn([0, 1]) and
f (k) is the RFIF defined by the RIFS {R2

;wk,1−N , P}, where

wk,i


x
y


=


Li(x)

Fk,i(x, y)


, k = 1, . . . , n.

The above theorem provides the means for the construction of differentiable fractal interpolation functions. In [17] the
authors, based on the results of [20], introduced the so-called Hermite FIFs. This construction was extended in [21] to make
use of RIFS instead of IFSs, based on the aforementioned theorems. It is also possible to generalize splines using FIFs. Chand
and Kapoor in [18] gave a detailed description of the subject using IFSs. In the following, we shall make use of both these
constructions. However, we chose to omit the details of the specific theorems to shorten this introduction. The interested
reader can find all the details in the given references.

4. The space of FIFs and RFIFs as an RKHS

In this sectionwe focus our attention on the construction of several Reproducing Kernel Hilbert Spaces (RKHSs) consisting
of specific types of FIFs, which is the main result or contribution of this work. For the space of all FIFs of order r we present
the following interesting general result.

Theorem 4.1. Consider P = {x0, . . . , xN},N ≥ 2, s = (s1, . . . , sN), r ≥ 2, v ∈ RN be fixed. The space FP ,v,s,r of all RFIFs of
order r defined on knots of P with contraction factors s and corresponding connection vector v (v actually defines the function
J) is a Reproducing Kernel Hilbert Space (RKHS).

Proof. The proof is based on the fact that FP ,v,s,r is a finite-dimensional linear space. Consider f , f̃ ∈ FP ,v,s,r two FIFs of

order r with corresponding interpolation points ∆, ∆̃ (where ∆̂, ˆ̃
∆ are the corresponding subsets that define the regions)

and λ1, λ2 ∈ R. Then there are polynomials pi, p̃i of order r (the polynomials of the corresponding RIFSs) such that
f (Li(x)) = sif (x) + pi(x) and f̃ (Li(x)) = si f̃ (x) + p̃i(x) for i = 1, . . . ,N (see relation (5)). In addition pi, p̃i satisfy the
join-up conditions (4). It is a matter of elementary algebra to deduce that

(λ1f + λ2 f̃ )(Li(x)) = si(λ1f + λ2 f̃ )(x)+ (λ1pi + λ2p̃i)(x),

where λ1pi + λ2p̃i are polynomials of order r that satisfy the join-up conditions:

(λ1pi + λ2p̃i)(x̂J(i)−1) = (λ1yi−1 + λ2ỹi−1)− si(λ1ŷJ(i)−1 + λ2 ˆ̃yJ(i)−1),

(λ1pi + λ2p̃i)(x̂J(i)) = (λ1yi + λ2ỹi)− si(λ1ŷJ(i) + λ2 ˆ̃yJ(i)),

for i = 1, . . . ,N . Hence, g = λ1f + λ2 f̃ is an RFIF of order r that interpolates the points of the set∆g = {(xi, λ1yi + λ2ỹi),
i = 0, . . . ,N}. The coefficients of the polynomials of the corresponding RIFSs are given by the relations di,k = λ1ci,k +λ2c̃i,k,
for i = 1, . . . ,N, k = 0, . . . , r , where ci,k, c̃i,k are the coefficients of the polynomials of the RIFSs of f and f̃ respectively.
Moreover, it is easy to deduce that dim(FP ,v,s,r) = r · N + 1, since each f ∈ FP ,v,s,r can be associated with a vector of
Rr·N+1 containing the y-coordinates of the interpolation points and the coefficients of the polynomials of the corresponding
RIFS:

Ψ (f ) = (y0, . . . , yN , c1,2, . . . , c1,r , c2,2, . . . , c2,r , . . . , cN,2, . . . , cN,r).

Evidently Ψ is a one to one and onto mapping. The corresponding kernel depends on the selection of the inner product on
FP ,v,s,r as described in Theorem 2.1. A basis for FP ,v,s,r is the set of functions {ei = Ψ−1(ei), i = 1, . . . ,N · r + 1}, where
{e1, . . . , eN·r+1} is the standard basis of RN·r+1. If we choose the simple inner product defined by

⟨f , f̃ ⟩ =

N·r+1−
k=1,l=1

(Ψ (f ))k · (Ψ (f̃ ))l, (9)

where for u ∈ RN·r+1, (u)k is the kth coordinate of u, then the corresponding kernel is defined by

κ(x, y) =

N·r+1−
k=1,l=1

ek(x)el(y). (10)

Choosing the inner product that induces the L2-norm:

⟨f , f̃ ⟩ =

∫ xN

x0
f (x)f̃ (x)dx, (11)
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we obtain the kernel:

κ(x, y) =

N·r+1−
k=1,l=1

βk,lek(x)el(y),

where B = {βk,l} is the inverse of A = {αk,l}, αk,l =
 1
0 ek(x)el(x)dx. �

Remark 4.2. The computation of integrals of products of FIFs is not an elementary task. There are, however, formulas which
can be used to compute integrals of this type through the r-order moments as it will be shown in Section 5. More on the
subject can be found in [1,3,19].

Accordingly, the following useful theorem can be deduced (the proof of which is similar to the previous one).

Theorem 4.3. Consider P = {x0, . . . , xN},N ≥ 2, s = (s1, . . . , sN), r ≥ 2, v ∈ RN be fixed. The space HP ,v,s,2r+1 ⊂ C r

of all Hermite RFIFs of order 2r + 1 defined on knots of P with contraction factors s and corresponding connection vector v is
a Reproducing Kernel Hilbert Space (RKHS). The same is true for the space SP ,v,s,2r+1 ⊂ C2r of all spline RFIFs of order 2r + 1
(whenever this is well defined).

Remark 4.4. HP ,v,s,2r+1 is a linear space with dimension (N + 1) · (r + 1). The corresponding mapping Ψ : HP ,v,s,2r+1 →

R(N+1)·(r+1) is defined as follows:

Ψ (f ) = (y0,0, y0,1, . . . , y0,N , y1,0, y1,1, . . . , y1,N , . . . , yr,0, yr,1, . . . , yr,N),

where yk,i = f (k)(xi), for k = 0, . . . , r, i = 0, . . . ,N .

Remark 4.5. Similarly, SP ,v,s,2r+1 is a linear space with dimension (N +1)+2r . The correspondingmappingΨ : SP ,v,s,2r+1
→ R(N+1)+2r is defined as follows:

Ψ (f ) = (y0, y1, . . . , yN , y1,0, . . . , yr,0, y1,N , . . . , yr,N),

where yk,0 = f (k)(x0), yk,N = f (k)(xN), k = 1, . . . , r .

Remark 4.6. Consider the RKHS FP ,v,s,r with the inner product ⟨·, ·⟩. The corresponding mappingΦ which maps any point
of the original space (in our case R) to the feature space FP ,v,s,r (see the discussion in Section 2) is

Φ(x) =

N·r+1−
k=1,l=1

βk,lek(x)el(·),

where B = {βk,l} is the inverse of A = {αk,l}, αk,l = ⟨ek, el⟩, for k, l = 1, . . . ,N · r + 1. Similar relations hold for the other
cases, i.e., HP ,v,s,r and SP ,v,s,r .

Remark 4.7. Consider the RKHSsFP ,v,s,2r+1,HP ,v,s,2r+1, SP ,v,s,2r+1 with the inner product that induces the L2-norm ⟨·, ·⟩L2
and their respective kernels κF , κH , κS . In general, κF is a fractal function (i.e., its graph has box-counting dimension greater
than 2, except in the degenerative case where s = 0), whereas κH is always a C r function and κS is a C2r function. Moreover,
since HP ,v,s,r ⊂ FP ,v,s,r and ‖f ‖H ≥ ‖f ‖F (they are actually equal) for all f ∈ HP ,v,s,r , from a known result, proved in [22]
it can be stated that κH ≪ κF (i.e., κF − κH is a positive definite kernel). Likewise we have that κS ≪ κH and, hence,
κS ≪ κH ≪ κF .

5. Computation of the kernel functions

To compute the kernel κ (corresponding to any of the respective spaces FP ,v,s,2r+1,HP ,v,s,2r+1, SP ,v,s,2r+1) at any point
(x, y) one need to consider two basic steps: (1) the computation of the inner product ⟨ek, el⟩ for any pair ek, el in the
corresponding basis, and (2) the computation of the values ek(x) and ek(y) for any ek. For the latter the Deterministic Iteration
Algorithm—DIA or the Random Iteration Algorithm—RIA can be applied (see [25] for more information on these well-known
algorithms). On the other hand, the treatment of the former step depends on the selection of the inner product of the
corresponding space. For the simple inner product of the form (9) the computation is straightforward. However, if one selects
the inner product that induces the L2-norm (i.e., Eq. (11)) more effort is needed. The computation of integrals of products of
affine FIFs was firstly addressed by Hardin et al. in [3], based on results provided by Barnsley in [1], since it plays a crucial
role in the construction of wavelets. Again, the main idea is to use the functional relation (5). Here we generalize this result
for recurrent FIFs (RFIFs) of order r . We consider the case where the interpolation points are equidistant, i.e., all sections Ii
have the same diameter δ = xi−xi−1, i = 1, . . . ,N and all intervals Jj have the same diameterψ = x̂j− x̂j−1, j = 1, . . . ,M .
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The first thingwe need to do is to compute themth ordermoments of an arbitrary RFIF, form ∈ N. To this end, consider an
RFIF f as defined in Section 3.2 and define Pm,i =

 xi
xi−1

xmf (x)dx, P̂m,j =
 x̂j
x̂j−1

xmf (x)dx and Pm =
 xN
x0

xmf (x)dx =
∑N

i=1 Pm,i.
In the following we denote Jj = {i : Ii ⊂ Jj}:

Pm,i =

∫ xi

xi−1

xmf (x)dx =

∫ xi

xi−1

xm(sif (L−1
i (x))+ pi(L−1

i (x)))dx

= ai

∫ x̂J(i)

x̂J(i)−1

(aix + bi)m(sif (x)+ pi(x))dx

=

m−
k=0


m
k


ak+1
i bm−k

i

∫ x̂J(i)

x̂J(i)−1

xk(sif (x)+ pi(x))dx

=

m−
k=0


m
k


ak+1
i bm−k

i siP̂k,J(i) +
m−

k=0


m
k


ak+1
i bm−k

i

∫ x̂J(i)

x̂J(i)−1

xkpi(x)dx

= am+1
i siP̂m,J(i) +

m−1−
k=0


m
k


ak+1
i bm−k

i siP̂k,J(i) +
m−

k=0


m
k


ak+1
i bm−k

i

∫ x̂J(i)

x̂J(i)−1

xkpi(x)dx

= am+1
i si

−
i′∈JJ(i)

Pm,i′ +

m−1−
k=0


m
k


ak+1
i bm−k

i siP̂k,J(i) +
m−

k=0


m
k


ak+1
i bm−k

i

∫ x̂J(i)

x̂J(i)−1

xkpi(x)dx.

Assuming that all Pk,i, for i = 1, . . . ,N and k = 1, . . . ,m − 1 are known, this is a linear system of the form:

(I − diag(am+1
i si) · C) · x = u, (12)

where C is the connection matrix of the respective RIFS, x = (Pm,1, . . . , Pm,i, . . . , Pm,n)T and

u =


. . . ,

m−1−
k=0


m
k


ak+1
i bm−k

i siP̂k,J(i) +
m−

k=0


m
k


ak+1
i bm−k

i

∫ x̂J(i)

x̂J(i)−1

xkpi(x)dx, . . .

T

.

Following a similar procedure for the 0th order moments we obtain the linear system:

(I − diag(aisi) · C) · x = u, (13)

where x = (P0,1, . . . , P0,n)T and

u =


. . . , ai

∫ x̂J(i)

x̂J(i)−1

pi(x)dx, . . .

T

.

Proposition 5.1. Each one of the linear systems (12) admits a unique solution, i.e.

det(I − diag(am+1
i si) · C) ≠ 0,

for all m ∈ N.

Proof. To prove this claim we will use some properties of square matrices, which we state in the following for the reader’s
convenience (see [28] for more details). Consider two N × N matrices A, B, then

• ρ(A) ≤ ‖A‖, where ρ(A) is the spectral radius of A (i.e., ρ(A) = max{|λi|}, where λi is the eigenvalues of A and ‖ · ‖ any
matrix-norm).

• ‖A · B‖ ≤ ‖A‖ · ‖B‖, for any matrix-norm.
• ‖A‖p = sup{‖Ax‖p/‖x‖p}, for 1 ≤ p < ∞.

• ‖A‖∞ = max1≤i≤N

∑N
j=1 |Ai,j|


.

In our case we take

ρ(diag(am+1
i si) · C) ≤ ‖diag(am+1

i si) · C‖∞ ≤ ‖diag(am+1
i si)‖∞ · ‖C‖∞,

with ‖diag(am+1
i si)‖∞ = max1≤i≤N{|ai|m+1

|si|} and ‖C‖∞ = max1≤i≤N{r(i)}, where r(i) = N (JJ(i)) (i.e., the number
of elements of the set JJ(i)). Clearly, in the case of equidistant interpolation points r(i) = ψ/δ, ai = δ/ψ , thus
ρ(diag(am+1

i si)·C) ≤ 1 for allm ∈ N. Therefore, since the number 1 is greater than the greatest eigenvalue of diag(am+1
i si)·C ,

we conclude that det(I − (diag(am+1
i si)) · C) ≠ 0, for all m ∈ N. �
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Fig. 1. The kernel function of the space FP ,v,s,r for (a) r = 1,N = 2,P =

0, 1

2 , 1

, v = (1, 1), s = (0.5, 0.5), (b) r = 1,N = 2,P =


0, 1

2 , 1

, v =

(1, 1), s = (0.5,−0.5), (c) r = 5,N = 3,P =

0, 1

3 ,
2
3 , 1


, v = (1, 1, 1), s = (0.4,−0.4, 0.3). In all cases the space consists of self-similar

FIFs.

The above equations describe an inductive procedure. We first solve the initial linear system and compute P0,j,
j = 1, . . . ,M . Then we use these values to solve the next linear system (for m = 1) and compute P1,i, i = 1, . . . ,N
and continue until we reachm = 2r + 1. To evaluate Pm we simply sum Pm,i for all i = 1, . . . ,N .

Now, we turn our efforts to the computation of the inner product of the form (11). Consider f , f̃ ∈ FP ,v,s,2r+1, where Pm,i
and P̃m,i for m = 0, . . . , 2r + 1, i = 1, . . . ,N , are the corresponding moments as defined above and Ri =

 xi
xi−1

f (x)f̃ (x)dx.
Working similarly, we take

Ri =

∫ xi

xi−1

f (x)f̃ (x)dx

=

∫ xi

xi−1

(sif (L−1
i (x))+ pi(L−1

i (x)))(si f̃ (L
−1
i (x))+ p̃i(L−1

i (x)))dx

= ai

∫ x̂J(i)

x̂J(i)−1

(sif (x)+ pi(x))(si f̃ (x)+ p̃i(x))dx

= ais2i

∫ x̂J(i)

x̂J(i)−1

f (x)f̃ (x)dx + aisi

∫ x̂J(i)

x̂J(i)−1

f (x)p̃i(x)dx +

+ aisi

∫ x̂J(i)

x̂J(i)−1

f̃ (x)pi(x)dx + ai

∫ x̂J(i)

x̂J(i)−1

pi(x)p̃i(x)dx

= ais2i
−

i′∈JJ(i)

Ri′ + aisi
−

i′∈JJ(i)

2r+1−
k=0

c̃i′,kPk,i′ + aisi
−

i′∈JJ(i)

2r+1−
l=0

ci′,lR̃l,i′ + ai

∫ x̂J(i)

x̂J(i)−1

pi(x)p̃i(x)dx,

for i = 1, . . . ,N (where ci,k, c̃i,l are the coefficients of the polynomials pi and p̃i respectively). Once more, we obtain a N ×N
linear system (similar with the one defined for the moments) which has to be solved for Ri, i = 1, . . . ,N:

(I − diag(ais2i ) · C) · x = u, (14)

where C is the connection matrix of the respective RIFS, x = (R1, . . . , Ri, . . . , Rn)
T and

u =

. . . , aisi −
i′∈JJ(i)

2r+1−
k=0

c̃i′,kPk,i′ + aisi
−

i′∈JJ(i)

2r+1−
l=0

ci′,lR̃l,i′ + ai

∫ x̂J(i)

x̂J(i)−1

pi(x)p̃i(x)dx, . . .

 .
The following proposition can be proved similarly to Proposition 5.1.

Proposition 5.2. The linear system (14) admits a unique solution, i.e.

det(I − diag(ais2i ) · C) ≠ 0.

Remark 5.1. The inner product (11) is given as the sum of Ri for all i.

To demonstrate the results of the procedure we included some examples. Figs. 1 and 2 show the kernel function that
corresponds to several spaces of fractal interpolation functions.
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Fig. 2. The kernel function of the space FP ,v,s,r for (a) r = 1,N = 4,P =

0, 1

4 ,
2
4 ,

3
4 , 1


, v = (1, 2, 1, 2), s = (0.6,−0.4,−0.6, 0.4), (b) r = 2,

N = 4,P =

0, 1

4 ,
2
4 ,

3
4 , 1


, v = (2, 1, 1, 2), s = (−0.4, 0.6,−0.4, 0.5). In both cases the space consists of RFIFs.

6. Conclusions

In this work we consider the spaces of simple and recurrent FIFs of arbitrary order r , denoted by FP ,v,s,r , and prove
that they constitute RKHSs. Moreover, we specifically prove that several spaces of differentiable (R)FIFs (spline, denoted
by SP ,v,s,2r+1, and Hermitian, denoted by HP ,v,s,2r+1), which are special cases of (R)FIFs, are also RKHSs. We calculate the
dimensions of these spaces, i.e.,

dim(FP ,v,s,r) = N · r + 1,
dim(HP ,v,s,2r+1) = (N + 1) · (r + 1),
dim(SP ,v,s,2r+1) = N + 1 + 2r,

where N + 1 is the number of the interpolation points and r (or 2r + 1 respectively) the order of the corresponding space,
and provide the tools for the calculation of the respective kernel functions κ and the corresponding induced functions Φ .
Moreover, we prove that the relation SP ,v,s,2r+1 ⊂ HP ,v,s,2r+1 ⊂ FP ,v,s,r holds and thus κS ≤ κH ≤ κF . Therefore, new,
broad and rich families of kernel functions are introduced to the powerful tool of RKHSs and, besides, the methods and
results of RKHSs can be applied directly to the spaces of (R)FIFs.
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