Arrangements in Unitary and Orthogonal Geometry over Finite Fields*

Peter Orlik and Louis Solomon
Department of Mathematics, University of Wisconsin, Madison, Wisconsin 53706

Communicated by F. Buekenhout
Received February 28, 1983

Abstract

Let V be an n-dimensional vector space over \mathbf{F}_{4}. Let Φ be a Hermitian form with respect to an automorphism σ with $\sigma^{2}=1$. If $\sigma=1$ assume that q is odd. Let \mathscr{A} be the arrangement of hyperplanes of V which are non-isotropic with respect to Φ, and let L be the intersection lattice of \mathscr{A}. We prove that the characteristic polynomial of L has $n-v$ roots $1, q, \ldots, q^{n-v-1}$ where v is the Witt index of Φ.(1) 1985 Academic Press, Inc.

1. Introduction

Let K be a field and let V be a vector space of finite dimension n over K. An arrangement in V is a finite set \mathscr{A} of hyperplanes, all containing the origin, such that $\bigcap_{H \in \mathscr{A}} H=0$. Let $L=L(\mathscr{A})$ be the set of intersections of elements of \mathscr{A}. Partially order L by reverse inclusion so that L has V as its minimal element and \mathscr{A} as its set of atoms. The poset L is a finite geometric lattice with rank function $r(X)=\operatorname{dim}(V / X), X \in L$. The characteristic polynomial $\chi(L, t)$ of L is defined by

$$
\begin{equation*}
\chi(L, t)=\sum_{X \in L} \mu(V, X) t^{\mathrm{dim} X} \tag{1.1}
\end{equation*}
$$

where μ is the Möbius function of L. Suppose $K=\mathbf{F}_{q}$ is a finite field of q elements. If \mathscr{A} consists of all hyperplanes in V and $M=L(\mathscr{A})$ then [1, p. 155]

$$
\begin{equation*}
\chi(M, t)=\prod_{i=0}^{n-1}\left(t-q^{i}\right) \tag{1.2}
\end{equation*}
$$

Let σ be an automorphism of K with $\sigma^{2}=1$. Let Φ be a non-degenerate Hermitian form with respect to σ. Thus $\Phi(x, y)=\Phi(y, x)^{\sigma}$. We allow σ to be the identity in which case Φ is a symmetric bilinear form, but assume in

[^0]this case that q is odd. Let \mathscr{A} be the set of all hyperplanes in V which are non-isotropic with respect to Φ and let $L=L(\mathscr{A})$. In this paper we compute $\chi(L, t)$ and show that it has $n-v$ integer roots $1, q, \ldots, q^{n-v-1}$ where v is the Witt index of Φ.
(1.3) Theorem. Let a_{k} be the number of subspaces X of V such that $\operatorname{dim} X=k$ and $\operatorname{dim} X+\operatorname{dim} \operatorname{rad} X=n$. Then
$$
\chi(L, t)=\sum_{k=0}^{n} a_{k}(t-1)(t-q) \cdots\left(t-q^{k-1}\right)
$$
(1.4) Corollary. Let v be the Witt index of Φ. Then
$$
\chi(L, t)=(t-1)(t-q) \cdots\left(t-q^{n-v-1}\right) \gamma(t)
$$
where $\gamma(t) \in \mathbf{Z}[t]$ is a monic polynomial of degrec v.
In the orthogonal case where $\sigma=1$ and Φ is a symmetric bilinear form the values of a_{k} are given by (2.12). In the unitary case where $\sigma \neq 1$ it is convenient to change notation so that $K=\mathbf{F}_{q^{2}}$ and $x^{\sigma}=x^{q}$. The values of a_{k} are given using this notation in (2.15). To calculate $\chi(L, t)$ using these values of a_{k} one must remember to replace $t-q^{i}$ by $t-q^{2 i}$ in formula (1.3). The polynomials $\gamma(t)$ do not in general have integer roots if $v \geqslant 2$.

In [6] we studied the arrangement of reflecting hyperplanes for a finite unitary reflection group $G \subset G L(n, \mathbf{C})$ and found that the corresponding characteristic polynomial has the form

$$
\begin{equation*}
\chi(L, t)=\prod_{i=1}^{n}\left(t-n_{i}\right) \tag{1.5}
\end{equation*}
$$

where the n_{i} are positive integers which occur in the invariant theory of G. The proof of (1.5) was based on the equality $\chi(L, t)=P_{\delta}(G, t)$ where

$$
\begin{equation*}
P_{\delta}(G, t)=\sum_{g \in G} \delta(g) i^{k(g)} \tag{1.6}
\end{equation*}
$$

In this formula $\delta(g)=\operatorname{det} g$ and $k(g)$ is the dimension of the fixed point set of g. Since the group $G(\Phi)$ of isometries of Φ is generated by reflections in non-isotropic hyperplanes, (1.4) may be viewed as an analog of (1.5). Choose a monomorphism $\theta: K^{\times} \rightarrow \mathbf{C}^{\times}$and let δ be the linear character of $G(\Phi)$ defined by $\delta(g)=\theta(\operatorname{det} g)$. We may ask whether $\chi(L, t)=P_{\delta}(G, t)$ for the groups $G=G(\Phi)$ of this paper. In case $K=\mathbf{F}_{q^{2}}$ and Φ is Hermitian with respect to the automorphism $x \rightarrow x^{q}$ we showed in [7] that

$$
\begin{equation*}
P_{\delta}(G, t)=\prod_{i=0}^{n-1}\left(t-(-q)^{i}\right) \tag{1.7}
\end{equation*}
$$

Thus $\chi(L, t) \neq P_{\delta}(G, t)$ if $n>1$. On the other hand we show in (3.5) that if $K=\mathbf{F}_{q}, q$ odd, and Φ is a symmetric bilinear form with Witt index $v=0$ or $v=1$ then $\chi(L, t)=P_{\delta}(G, t)$. Kusuoka [5] has shown for all v that

$$
\begin{equation*}
P_{\delta}(G, t)=(t-1)(t-q) \cdots\left(t-q^{n-v-1}\right) \beta(t) \tag{1.8}
\end{equation*}
$$

where $\beta(t) \in \mathbf{Z}[t]$ is a monic polynomial of degree v. Thus $\chi(L, t)$ and $P_{\delta}(G, t)$ have $n-v$ roots in common. We give an example in Section 3 which shows that $\chi(L, t) \neq P_{\delta}(G, t)$ in general.

2. Proof of the Theorem

We use the usual terminology for Hermitian forms. The finiteness of K is not used in (2.1)-(2.3). Recall that if $\sigma=1$ so Φ is symmetric bilinear then we assume char $K \neq 2$. Thus we may use the Witt decomposition [3, Sect. 4.2]. If X is a subspace of V let X^{0} be its orthogonal subspace and let $\operatorname{rad} X=X \cap X^{0}$. Say that X is non-isotropic if $\operatorname{rad} X=0$ and totally isotropic if $\operatorname{rad} X=X$. In [7] we introduced a Witt decomposition adapted to X. This is described as follows. Let $Z=\operatorname{rad} X$. There exist subspaces Y, Z^{\prime}, W such that

$$
\begin{equation*}
V=Y \oplus\left(Z \oplus Z^{\prime}\right) \oplus W, \quad X=Y \oplus Z \tag{2.1}
\end{equation*}
$$

where (i) Z^{\prime} is totally isotropic with $\operatorname{dim} Z^{\prime}=\operatorname{dim} Z$, and (ii) $Y, Z \oplus Z^{\prime}, W$ are non-isotropic and pairwise orthogonal. If $X=Z$ is totally isotropic this is the usual Witt decomposition. We define $\rho(X)=\operatorname{dim} X+\operatorname{dim} \operatorname{rad} X$.
(2.2) Lemma. Let $X \subseteq Y$ be subspaces of V. Then $\rho(X) \leqslant \rho(Y)$.

Proof. We may assume that $\operatorname{dim} Y=1+\operatorname{dim} X$. Choose a basis u_{1}, \ldots, u_{m}, v for Y where the notation is chosen so that u_{1}, \ldots, u_{m} is a basis for X and u_{1}, \ldots, u_{j} is a basis for $\operatorname{rad} X$. The matrix [Φ_{Y}] of Φ_{Y} in this basis is

$$
\left[\Phi_{Y}\right]=\left[\begin{array}{ccc}
0 & 0 & * \\
0 & A & * \\
* & * & *
\end{array}\right]
$$

where A is invertible of size $m-j$ and the entries in the last column are $\Phi\left(u_{i}, v\right)$ and $\Phi(v, v)$. Thus $\operatorname{rank}\left[\Phi_{Y}\right] \leqslant 2+\operatorname{rank} A=2+\operatorname{rank}\left[\Phi_{X}\right]$. Since $\operatorname{dim}(Y / \operatorname{rad} Y)=\operatorname{rank}\left[\Phi_{Y}\right] \quad$ and $\quad \operatorname{dim}(X / \operatorname{rad} X)=\operatorname{rank}\left[\Phi_{X}\right] \quad$ we get $\operatorname{dim} \operatorname{rad} X \leqslant 1+\operatorname{dim} \operatorname{rad} Y$.

Let \mathscr{A} be the set of all hyperplanes in V which are non-isotropic with respect to Φ and let L be the lattice of intersections of elements of \mathscr{A}.
(2.3) Lemma. Let $X \neq V$ be a subspace of V. Then $X \in L$ if and only if $\rho(X) \leqslant n-1$.

Proof. Suppose $X \in L$ and $X \neq V$. Choose $Y \in \mathscr{A}$ such that $X \subseteq Y$. By Lemma 2.2 we have $\rho(X) \leqslant \rho(Y)$. Since Y is non-isotropic $\rho(Y)=n-1$. Conversely suppose $\rho(X) \leqslant n-1$. To show that $X \in L$ we do two special cases by explicit computation and then do the general case using the Witt decomposition (2.1).

Case (i). X is non-isotropic. Let v_{1}, \ldots, v_{m} be an orthogonal basis for X^{0} [3, Sect. 6, Theorem 1]; if $\sigma=1$ we use the assumption that K has odd characteristic. Then $H_{i}=X \oplus \sum_{j \neq i} K v_{j}$ is in \mathscr{A} and $X=H_{1} \cap \cdots \cap H_{m}$.

Case (ii). X is totally isotropic and $2 \operatorname{dim} X=\rho(X)=n-1$. Choose a Witt decomposition $V=\left(X \oplus X^{\prime}\right) \oplus K v$ where X^{\prime} is totally isotropic and v is non-isotropic and orthogonal to $X \oplus X^{\prime}$. Choose bases e_{1}, \ldots, e_{m} for X and $e_{1}^{\prime}, \ldots, e_{m}^{\prime}$ for X^{\prime} such that $\left(e_{i}, e_{j}^{\prime}\right)=\delta_{i j}$. Let $H_{0}=X \oplus X^{\prime}$ and for $i=1, \ldots, m$ let $H_{i}=X \oplus\left\langle e_{1}^{\prime}, \ldots, e_{i}^{\prime}+v, \ldots, e_{m}^{\prime}\right\rangle$. Clearly $H_{0} \in \mathscr{A}$. Suppose $1 \leqslant i \leqslant m$ and $w \in \operatorname{rad} H_{i}$. Write $w=\sum a_{j} e_{j}+\sum_{j \neq i} a_{j}^{\prime} e_{j}^{\prime}+a_{i}^{\prime}\left(e_{i}^{\prime}+v\right)$ where $a_{j}, a_{j}^{\prime} \in K$. Since $\Phi\left(v, e_{j}\right)=\Phi\left(v, e_{j}^{\prime}\right)=0$ for $j=1, \ldots, m$ we have $0=\Phi\left(w, e_{k}\right)=a_{k}^{\prime}$ and $0=\Phi\left(w, e_{k}^{\prime}\right)=a_{k}$ for $k=1, \ldots, m$. Thus $w=0$ so $\operatorname{rad} H_{i}=0$ and $H_{i} \in \mathscr{A}$. Since $X=H_{0} \cap H_{1} \cap \cdots \cap H_{m}$ we have $X \in L$.

Now consider the general case. Let $V=Y \oplus\left(Z \oplus Z^{\prime}\right) \oplus W$ be a Witt decomposition adapted to X. Then $\operatorname{dim} W=n-\rho(X)>0$ by assumption. Choose a non-isotropic vector $w \in W$ and a subspace U orthogonal to $K w$ such that $W=K w \oplus U$. Apply case (ii) to the totally isotropic subspace Z of $\left(Z \oplus Z^{\prime}\right) \oplus K w$. Thus there exist non-isotropic subspaces Z_{1}, \ldots, Z_{m} of codimension one in $\left(Z \oplus Z^{\prime}\right) \oplus K w$ such that $Z=Z_{1} \cap \cdots \cap Z_{m}$. Then $X_{i}=Y \oplus Z_{i}$ is non-isotropic because Y and Z_{i} are orthogonal, and $X=X_{1} \cap \cdots \cap X_{m}$. Now the lemma follows from case (i) applied to each of the spaces X_{i}.

We assume now that $K=\mathbf{F}_{q}$ is finite and prove Theorem 1.3. If $X \in L$ let $L^{X}=\{Y \in L \mid Y \geqslant X\}$. Let M be the lattice of all subspaces of V partially ordered by reverse inclusion. If $X \in L$ and $Y \in M$ and $Y \geqslant X$ then $Y \in L$ by (2.2). Thus $L^{X}=M^{X}$. Since M^{X} is isomorphic to the lattice of all subspaces of $X(1.2)$ gives

$$
\chi\left(L^{x}, t\right)=(t-1) \cdots\left(t-q^{k-1}\right)=\chi\left(M^{X}, t\right), \quad k=\operatorname{dim} X
$$

for all $X \in L$ with $X \neq V$. By Möbius inversion $t^{n}=\sum_{X \in L} \chi\left(L^{X}, t\right)$ and $t^{n}=\sum_{X \in M} \chi\left(M^{X}, t\right)$. Since $L^{X}=M^{X}$ whenever $X \in L$ and $X \neq V$ we get

$$
\chi(L, t)=\sum_{\substack{X \in M \\ \rho(X)=n}} \chi\left(M^{X}, t\right)
$$

Since a_{k} is the number of subspaces X of V with $\operatorname{dim} X=k$ and $\rho(X)=n$ this proves (1.3).

To prove (1.4) note that if $a_{k} \neq 0$ then there exists $X \in M$ with $\operatorname{dim} X=k$ and $\rho(X)=n$. Thus we have $\operatorname{dim} \operatorname{rad} X \leqslant v$ so $k \geqslant n-v$.

To compute the a_{k} we use Witt's theorem on extension of isometries. If X is a subspace of V let Φ_{X} denote the restriction of Φ to X. We say the subspaces X, X^{\prime} are isometric and write $X \approx X^{\prime}$ if there exists an invertible linear map $h: X \rightarrow X^{\prime}$ such that $\Phi(h x, h y)=\Phi(x, y)$ for all $x, y \in X$. Let $G(\Phi)$ be the group of isometries of V. Witt's theorem [3, Sect. 4.3, Theorem 1] states that every isometry $h: X \rightarrow X^{\prime}$ may be extended to an element of $G(\Phi)$. Let A_{k} be the set of all subspaces X of V such that $\operatorname{dim} X=k$ and $\rho(X)=n$. Thus $a_{k}=\left|A_{k}\right|$.
(2.4) Lemma. The set A_{k} forms a single orbit in the action of $G(\Phi)$ on the set of subspaces of V.

Proof. Suppose $X \in A_{k}$. In the Witt decomposition (2.1) we have $n=\operatorname{dim} X+\operatorname{dim} Z^{\prime}+\operatorname{dim} W=\rho(X)+\operatorname{dim} W$. Thus $W=0$ and

$$
\begin{equation*}
V=Y \oplus\left(Z \oplus Z^{\prime}\right) \tag{2.5}
\end{equation*}
$$

Suppose $X_{i} \in A_{k}$ where $i=1,2$. Let $Y_{i}, Z_{i}, Z_{i}^{\prime}$ be the corresponding subspaces in (2.5). Since $Z_{1} \oplus Z_{1}^{\prime} \approx Z_{2} \oplus Z_{2}^{\prime}$ it follows from Witt's theorem [3, Sect. 4.3, Corollary 1] that $Y_{1} \approx Y_{2}$. Thus $X_{1} \approx X_{2}$. The lemma follows using Witt's theorem again.

Let $G\left(\Phi_{X}\right)$ be the group of isometries of Φ_{X}; the form Φ_{X} may be degenerate. Let $G=G(\Phi)$. Let $G_{X}=\{g \in G \mid g x=x$ for all $x \in X\}$ be the fixer of X. Let \mathcal{O}_{X} be the orbit of X. As in [7] it follows from (2.5) that

$$
\begin{align*}
\left|\mathcal{O}_{X}\right|\left|G_{X}\right| & =\left|G: G\left(\Phi_{X}\right)\right| \tag{2.6}\\
\left|G\left(\Phi_{X}\right)\right| & =|\operatorname{Hom}(Y, Z)|\left|G\left(\Phi_{Y}\right)\right||G L(Z)| . \tag{2.7}
\end{align*}
$$

Since Y is non-isotropic the $\left|G\left(\Phi_{Y}\right)\right|$ are known and are given in (2.10), (2.11) and (2.14). Thus if $X \in A_{k}$ then (2.6) and (2.7) determine $a_{k}=\left|\mathcal{O}_{X}\right|$ provided we can calculate $\left|G_{X}\right|$. Choose a basis for V adapted to the decomposition (2.5) so that the matrix for Φ is

$$
[\Phi]=\left[\begin{array}{lll}
B & 0 & 0 \tag{2.8}\\
0 & 0 & I \\
0 & I & 0
\end{array}\right]
$$

where $B^{\sigma}=B^{\top}$ is Hermitian and I is the identity matrix. If $g \in G_{X}$ then, since $Y \subseteq X$, g fixes Y. Since $Z \oplus Z^{\prime}$ is the orthogonal complement of Y in
V we have $g\left(Z \oplus Z^{\prime}\right) \subseteq Z \oplus Z^{\prime}$. Since $Z \subseteq X$ we have $g \in G_{Z}$. If $z \in Z$ and $z^{\prime} \in Z^{\prime}$ then $\Phi\left(z,(g-1) z^{\prime}\right)=\Phi\left(g^{-1} z, z^{\prime}\right)-\Phi\left(z, z^{\prime}\right)=0$ so $(g-1) z^{\prime} \in Z$. Thus the matrix for g has the form

$$
[g]=\left[\begin{array}{lll}
I & 0 & 0 \tag{2.9}\\
0 & I & C \\
0 & 0 & I
\end{array}\right]
$$

The condition $[g]^{\top}[\Phi][g]^{\sigma}=[\Phi]$ amounts to $C^{\sigma}+C^{\top}=0$. Thus $\left|G_{X}\right|$ is the number of square matrices C of size $\operatorname{dim} Z=n-k$ such that $C^{\sigma}+C^{\top}=0$. At this stage we must separate the cases $\sigma=1$ where G is orthogonal and $\sigma \neq 1$ where G is unitary.

The orthogonal groups. There exists a basis e_{1}, \ldots, e_{n} for V such that $\Phi\left(e_{i}, e_{j}\right)=0$ for $i \neq j, \Phi\left(e_{i}, e_{i}\right)=1$ for $1 \leqslant i \leqslant n-1$ and $\Phi\left(e_{n}, e_{n}\right)=\Delta$ where $\Delta=\Delta(\Phi)=\operatorname{det} \Phi\left(e_{i}, e_{j}\right)$ is the discriminant of Φ with respect to e_{1}, \ldots, e_{n}. Since $\left|K^{\times}:\left(K^{\times}\right)^{2}\right|=2$ there are, up to isometry, two spaces (V, Φ) in each dimension. If n is odd then $v=(n-1) / 2$, the two groups $G(\Phi)$ are isomorphic and

$$
\begin{equation*}
|G(\Phi)|=|O(n, q)|=2 q^{(n-1)^{2 / 4}} \prod_{i=1}^{(n-1) / 2}\left(q^{2 i}-1\right), \quad n \geqslant 1 \tag{2.10}
\end{equation*}
$$

If $n=2 m$ is even let $\varepsilon=\varepsilon(\Phi)=1$ if $(-1)^{m} A$ is in $\left(K^{\times}\right)^{2}$ and let $\varepsilon=\varepsilon(\Phi)=-1$ otherwise. Then $v=m$ if $\varepsilon=1, v=m-1$ if $\varepsilon=-1$ and

$$
\begin{equation*}
|G(\Phi)|=\left|O^{\varepsilon}(n, q)\right|=2 q^{n(n-2) / 4}\left(q^{m}-\varepsilon\right) \prod_{i=1}^{(n-2) / 2}\left(q^{2 i}-1\right), \quad n \geqslant 2 \tag{2.11}
\end{equation*}
$$

Here and in what follows, products indexcd by the empty set are understood to be 1. For these facts see [2, pp. 144-147] and [3, Exercises 6.4 and 6.12]. The entries $c_{i j}$ in (2.9) satisfy $c_{i i}=0$ so $\left|G_{X}\right|=q\left({ }^{(n-k}\right)$. If n is odd then since Y is non-isotropic and $\operatorname{dim} Y=2 k-n$ is also odd we have $\left|G\left(\Phi_{Y}\right)\right|=|O(2 k-n, q)|$. Suppose $n=2 m$ is even. Choose a basis for V as in (2.8). Since $\Delta(\Phi)=\Delta\left(\Phi_{Y}\right) \Delta\left(\Phi_{7 \oplus 7^{\prime}}\right)=(-1)^{2 m-k} \Delta\left(\Phi_{Y}\right)$ and $\operatorname{dim} Y=2(k-m)$ we have $\varepsilon\left(\Phi_{Y}\right)=(-1)^{k-m}(-1)^{2 m-k} \Delta(\Phi)=\varepsilon(\Phi)$. Thus $\left|G\left(\Phi_{Y}\right)\right|=\left|O^{\varepsilon}(2 k-n, q)\right| \quad$ where $\varepsilon=\varepsilon(\Phi)$. Furthermore $|\operatorname{Hom}(Y, Z)|=$ $q^{(2 k-n)(n-k)}$ and

$$
|G L(Z)|=|G L(n-k, q)|=q^{(n-k)(n-k-1) / 2} \prod_{i=1}^{n-k}\left(q^{i}-1\right)
$$

This gives us all the information necessary to determine the number a_{k} of k-dimensional subspaces X of V with $\operatorname{dim} X+\operatorname{dim} \operatorname{rad} X=n$.
(2.12) Proposition. Let $K=\mathbf{F}_{q}$ where q is odd and suppose $\sigma=1$. Let v be the index of the symmetric bilinear form Φ. Let [] denote the Gaussian binomial coefficient in base q.
(i) If n is even and $\varepsilon=1$ then

$$
a_{v+\alpha}=\left[\begin{array}{l}
v \\
\alpha
\end{array}\right] \prod_{i=\alpha}^{v-1}\left(q^{i}+1\right), \quad \alpha=0, \ldots, v
$$

(ii) If n is even and $\varepsilon=-1$ then

$$
a_{v+\alpha+1}=\left[\begin{array}{c}
v \\
\alpha-1
\end{array}\right] \prod_{i=\alpha+1}^{v+1}\left(q^{i}+1\right), \quad \alpha=1, \ldots, v+1 .
$$

(iii) If n is odd then

$$
a_{v+\alpha}=\left[\begin{array}{c}
v \\
\alpha-1
\end{array}\right] \prod_{i=\alpha}^{v}\left(q^{i}+1\right), \quad \alpha=1, \ldots, v+1 .
$$

Proof. Suppose $n=2 m$ is even. If $\varepsilon=1$ then $k=m, \ldots, n$. If $\varepsilon=-1$ then $k=m+1, \ldots, n$. Suppose first that $k \geqslant m+1$. It follows from the known values in (2.6) and (2.7) after performing all the obvious cancellations and setting $k=m+\alpha$ that

$$
a_{m+\alpha}=\frac{\left(q^{m}-\varepsilon\right) \prod_{i=\alpha}^{m-1}\left(q^{2 i}-1\right)}{\left(q^{\alpha}-\varepsilon\right) \prod_{i=1}^{m-\alpha}\left(q^{i}-1\right)}, \quad \alpha=1, \ldots, m
$$

If $\varepsilon=1$ then $m=v$ and the result follows by multiplying numerator and denominator by $\prod_{i=1}^{\alpha}\left(q^{i}-1\right)$. If $\varepsilon=-1$ then $m=v+1$ and we multiply numerator and denominator by $\prod_{i=1}^{\alpha-1}\left(q^{i}-1\right)$. If $k=m$ then $\varepsilon=1$ and $\operatorname{dim} Y=0$ so $\left|G\left(\Phi_{Y}\right)\right|=1$. Here (2.6) and (2.7) give $a_{v}=2 \prod_{i=1}^{v-1}\left(q^{i}+1\right)$ so (i) holds for $\alpha=0$ as well. This proves (i) and (ii). Formula (iii) is proved in the same way; here $n=2 v+1$ and $k=v+1, \ldots, n$.

If $v=0$ then $\gamma(t)=1$ in (1.4). If $v=1$ then $\gamma(t)$ has degree one. Thus if $v=0,1$ then $\chi(L, t)$ has integer roots. The roots of $\chi(L, t)$ in these cases are:

$$
\begin{array}{rrl}
n=1 & : & 1 \\
n=2 & (\varepsilon=-1): & 1, q \\
n=2 & (\varepsilon=1): & 1, q-2 \tag{2.13}\\
n=3 & : & 1, q, q^{2}-q-1 \\
n=4 & (\varepsilon=-1): & 1, q, q^{2}, q^{3}-q^{2}-1 .
\end{array}
$$

The unitary groups. Here it is convenient to change notation and let \mathbf{F}_{q} be the fixed field of the involutory automorphism $\sigma: x \rightarrow x^{q}$ of $K=\mathbf{F}_{q^{2}}$. If n is even then $n=2 v$; if n is odd then $n=2 v+1$. The entries of $C=\left(c_{i j}\right)$ satisfy $c_{j i}+c_{i j}^{q}=0$ so $\left|G_{X}\right|=q^{(n-k)^{2}}$. Furthermore [3, Exercises 6.3 and 6.13] any two spaces (V, Φ) of the same dimension are isometric and

$$
\begin{equation*}
|G(\Phi)|=\left|U\left(n, q^{2}\right)\right|=q^{n(n-1) / 2} \prod_{i=1}^{n}\left(q^{i}-(-1)^{i}\right) . \tag{2.14}
\end{equation*}
$$

Since Y is non-isotropic and $\operatorname{dim} Y=2 k-n$ we have $\left|G\left(\Phi_{Y}\right)\right|=$ $\left|U\left(2 k-n, q^{2}\right)\right|$. Furthermore $|\operatorname{Hom}(Y, Z)|=q^{2(2 k-n)(n-k)}$ and $|G L(Z)|=$ $\left|G L\left(n-k, q^{2}\right)\right|$. Now arguing as in (2.12) we get
(2.15) Proposition. Let $K=\mathbf{F}_{q^{2}}$ and let $\sigma: x \rightarrow x^{q}$. Let v be the index of the Hermitian form Φ. Let [] denote the Gaussian binomial coefficient in base q^{2}.
(i) If $n=2 v$ is even then

$$
a_{v+\alpha}=\left[\begin{array}{l}
v \\
\alpha
\end{array}\right] \prod_{j=\alpha}^{v-1}\left(q^{2 j+1}+1\right), \quad \alpha=0, \ldots, v
$$

(ii) If $n=2 v+1$ is odd then

$$
a_{v+\alpha+1}=\left[\begin{array}{c}
v \\
\alpha
\end{array}\right] \prod_{j-\alpha+1}^{v}\left(q^{2 j+1}+1\right), \quad \alpha=0, \ldots, v
$$

As in the orthogonal case if $v=0,1$ then $\chi(L, t)$ has integer roots. The roots of $\chi(L, t)$ in these cases are:

$$
\begin{array}{ll}
n=1: & 1 \\
n=2: & 1, q^{2}-q-1 \tag{2.16}\\
n=3: & 1, q^{2}, q^{4}-q^{3}-1 .
\end{array}
$$

3. Fixed Point Sets

Let K be a field and let V be a vector space of dimension n over K. If $g \in G L(V)=G L(n, K)$ let $\operatorname{Fix}(g)$ denote the fixed point set of g and let $k(g)=\operatorname{dim} \operatorname{Fix}(g)$. For each finite subgroup G of $G L(V)$ define a polynomial $P(G, t)$ by

$$
\begin{equation*}
P(G, t)=\sum_{g \in G} t^{k(g)} . \tag{3.1}
\end{equation*}
$$

We say that g is a reflection if it is semisimple and $k(g)=n-1$. Suppose $K=\mathbf{C}$ and $G \subset G L(V)$ is a finite group generated by reflections. Shephard and Todd [9] proved the formula

$$
\begin{equation*}
P(G, t)=\prod_{i=1}^{n}\left(t+m_{i}\right) \tag{3.2}
\end{equation*}
$$

where the m_{i} are non-negative integers, called the exponents, which occur in the invariant theory of G. Suppose now that K is a finite field. If $K=\mathbf{F}_{q}$ and q is odd then the orthogonal groups $O^{\varepsilon}(n, q)$ are generated by reflections. If $K=\mathbf{F}_{q^{2}}$ then the unitary groups $U\left(n, q^{2}\right)$ are generated by reflections unless $n=q=2$ [4, p. 41]. This fact leads one to consider the sum on the left-hand side of (3.2) in case $G=O^{x}(n, q)$ or $G=U\left(n, q^{2}\right)$. It was shown in [10] that if the index v of the corresponding form Φ is 0 or 1 then there exist positive integers $m_{i}(q)$ such that

$$
\begin{equation*}
P(G, t)=\prod_{i=1}^{n}\left(t+m_{i}(q)\right), \quad v=0,1 \tag{3.3}
\end{equation*}
$$

Suppose $G=O^{\varepsilon}(n, q)$. If we compare the table of $m_{i}(q)$ given in [10, p. 440] with the roots of $\chi(L, t)$ given in (2.13) we see that for $G=O^{\varepsilon}(n, q)$ and $v=0,1$ we have

$$
\begin{equation*}
\chi(L, t)=\sum_{g \in G}(-1)^{n-k(g)} t^{k(g)}=(-1)^{n} P(G,-t) \tag{3.4}
\end{equation*}
$$

Our first aim in this section is to explain the coincidence (3.4). Let $\delta(g)=\operatorname{det} g$. Scherk's theorem [8] on the decomposition of orthogonal transformations into reflections shows that $\delta(g)=(-1)^{n-k(g)}$. We may view $\delta(g) \in \mathbf{C}$. Since q is odd δ is still a non-trivial character of G. Thus (3.4) is explained by
(3.5) Theorem. Let $G=O^{R}(n, q)$ where q is odd. Suppose the index of the corresponding symmetric bilinear form is 0 or 1 . Then

$$
\chi(L, t)=\sum_{g \in G} \delta(g) t^{k(g)}
$$

To prove (3.5) we prove some geometric lemmas which lead to a characterization (3.11) of L in case $\nu=0,1$. If X is an isotropic hyperplane and $g \in G$ fixes X then $g=1$ [2, Theorem 3.17]. Thus there is no $g \in G$ with $X=\operatorname{Fix}(g)$. The following lemma asserts the converse.
(3.6) Lemma. If Φ is symmetric and X is a subspace of V which is not an isotropic hyperplane then there exists $g \in G$ such that $X=\operatorname{Fix}(g)$.

Proof. Suppose first that X is totally isotropic. The Witt decomposition (2.1) is thus $V=\left(X \oplus X^{\prime}\right) \oplus W$. Choose a basis for V adapted to this decomposition so that the matrix for Φ is

$$
[\Phi]=\left[\begin{array}{lll}
0 & I & 0 \tag{3.7}\\
I & 0 & 0 \\
0 & 0 & A
\end{array}\right]
$$

where $A=A^{\top}$ is symmetric. In this basis the elements of G_{X} have the form $g=u s$ where

$$
[u]=\left[\begin{array}{ccc}
I & P & -Q^{\top} A \tag{3.8}\\
0 & I & 0 \\
0 & Q & I
\end{array}\right], \quad[s]=\left[\begin{array}{ccc}
I & 0 & 0 \\
0 & I & 0 \\
0 & 0 & S
\end{array}\right]
$$

are subject to the restrictions

$$
\begin{equation*}
P+P^{\top}+Q^{\top} A Q=0 \quad \text { and } \quad S^{\top} A S=A \tag{3.9}
\end{equation*}
$$

If $\operatorname{dim} X=0$ choose $S=-I$. Then $\operatorname{Fix}(g)=X$. Suppose $\operatorname{dim} X=1$. Since X is not an isotropic hyperplane we have $\operatorname{dim} V \geqslant 3$. If $\operatorname{dim} V=3$ then $\operatorname{dim} W=1$ so we have $A=a \in K^{\times}$. Choose $Q=t \in K^{\times}$and let $P=-a t^{2} / 2$. Let $S=1$. Then (3.9) is satisfied and $X=\operatorname{Fix}(g)$. If $\operatorname{dim} V>3$ choose a non-isotropic vector $w \in W$. Let $T=X \oplus X^{\prime} \oplus K w$. By the case $\operatorname{dim} V=3$ there exists $h \in G\left(\Phi_{T}\right)$ with $\operatorname{Fix}(h)=X$. Choose $g \in G$ to agree with h on T and so that $g=-1$ on the orthogonal complement T^{0} of T in V. Then Fix $(g)=X$ If $\operatorname{dim} X \geqslant 2$ choose $Q=0, S=-I$, and let P be any invertible skew symmetric matrix. Then (3.9) is satisfied and the fact that P is invertible implies $\operatorname{Fix}(g)=X$. This completes the proof in case X is totally isotropic.

In general we use the Witt decomposition (2.1). If $Z=0$ let $g=1$ on $X=Y$ and let $g=-1$ on W. Suppose $\operatorname{dim} Z \geqslant 1$. If Z is an isotropic hyperplane in $Y^{0}=Z \oplus Z^{\prime} \oplus W$ then $\operatorname{dim} Z=\operatorname{dim} Y^{0}-1=2 \operatorname{dim} Z+\operatorname{dim} W-1$ so $W=0$ and $\operatorname{dim} Z=1$. Then $V=X \oplus Z^{\prime}$ shows that X is an isotropic hyperplane in V, a contradiction. Thus Z is not an isotropic hyperplane of Y^{0} so we may apply the first part of the argument to conclude that there exists $h \in G\left(\Phi_{r^{0}}\right)$ with $\operatorname{Fix}(h)=Z$. Choose $g \in G$ to agree with h on Y^{0} and so that $g=1$ on Y. Then $\operatorname{Fix}(g)=X$.
(3.10) Corollary. If Φ is symmetric then $L \subseteq\{\operatorname{Fix}(g) \mid g \in G\}$.
(3.11) Lemma. Suppose Φ is symmetric. Then $L=\{\operatorname{Fix}(g) \mid g \in G\}$ if and only if $v=0,1$.

Proof. Suppose $v=0,1$. Suppose $g \in G$ and let $X=\operatorname{Fix}(g)$. If $\operatorname{dim} X=n-1$ then X is non-isotropic, by the remark preceding (3.6), so $X \in L$. If $\operatorname{dim} X \leqslant n-2$ then $\rho(X) \leqslant n-2+v \leqslant n-1$ so $X \in L$ by (2.3). Thus $\{\operatorname{Fix}(g) \mid g \in G\} \subseteq L$. Equality follows from (3.10). Now suppose $v \geqslant 2$. Let Z be a totally isotropic subspace of V of dimension v. Choose a Witt decomposition $V=\left(Z \oplus Z^{\prime}\right) \oplus W$. Let $T=Z \oplus W$. Then $\operatorname{dim} T=n-v \leqslant$ $n-2$ so by Lemma 3.6 there exists $g \in G$ such that $T=\operatorname{Fix}(g)$. On the other hand $\rho(T)=(n-v)+v=n$ so $T \notin L$ by Lemma 2.3.
(3.12) Lemma. If $X \in L$ and $X \neq V$ then $\sum_{g \in G_{X}} \delta(g)=0$.

Proof. Lemma 2.3 shows that $\rho(X) \leqslant n-1$. The argument given in [7, Lemma 2.6] shows for any subspace Y of V that $G_{Y} \subseteq S L(V)$ if and only if $\rho(Y)=n$. Thus the restriction of δ to G_{X} is a non-trivial character of G_{X}.
Now we prove Theorem 3.4. Recall that M is the lattice of all subspaces of V. If $Y \in M$ let $F_{Y}=\{g \in G \mid \operatorname{Fix}(g)=Y\}$. If $X \in M$ then without any assumption on v we have

$$
G_{X}=\bigcup_{\substack{Y \in M \\ Y \leqslant X}} F_{Y} \quad \text { disjoint union. }
$$

If F_{Y} is non-empty then there exists $g \in G$ with $\operatorname{Fix}(g)=Y$. Since $v=0,1$ we conclude from Lemma 3.11 that $Y \in L$. Thus for $X \in L$ we have

$$
\begin{equation*}
G_{X}=\bigcup_{\substack{Y \in L \\ Y \leqslant X}} F_{Y} . \tag{3.13}
\end{equation*}
$$

For $X \in L$ let $\lambda(X)=\sum_{g \in F_{X}} \delta(g)$. Then (3.12) and (3.13) imply

$$
\sum_{\substack{Y \in L \tag{3.14}\\
Y \leqslant X}} \lambda(Y)=\sum_{g \in G_{X}} \delta(g)=0 \quad \begin{array}{ll}
\text { if } & X \neq V \\
=1 & \text { if }
\end{array} \quad X=V .
$$

Since $\mu(V, X)$ satisfies the same recurrence (3.14) we have $\mu(V, X)=\lambda(X)$. Thus

$$
\begin{equation*}
\mu(V, X)=\sum_{g \in F_{X}} \delta(g), \quad X \in L . \tag{3.15}
\end{equation*}
$$

It follows from (3.13) that $G=\bigcup_{X \in L} F_{X}$. This completes the proof of (3.4).

We have seen in Theorem 1.4 that if Φ is symmetric then $\chi(L, t)$ has roots $1, q, \ldots, q^{n-v-1}$ for all v. Kusuoka [5] has shown for $G=G(\Phi)$ that
$P(G, t)$ has roots $-1,-q, \ldots,-q^{n-v-1}$ for all v. Although $\chi(L, t)=$ $(-1)^{n} P(G,-t)$ for $v=0,1$ equality does not hold for $v \geqslant 2$. For example, if $n=4, v=2$ then it follows from (2.12) after some calculation and from Kusuoka's recursion formula that

$$
\begin{aligned}
\chi(L, t)= & (t-1)(t-q)\left(t^{2}-\left(q^{3}-2 q-1\right) t\right. \\
& \left.+q^{5}-q^{4}-2 q^{3}-q^{2}+2 q+2\right) \\
P(G,-t)= & (t-1)(t-q)\left(t^{2}-\left(q^{3}-2 q-1\right) t\right. \\
& \left.+q^{5}-q^{4}-2 q^{3}+q^{2}+2 q\right) .
\end{aligned}
$$

Thus letting $b_{0}(G)$ denote the number of $g \in G$ with $k(g)=0$ we have an inequality

$$
b_{0}(g)-|\mu(V, 0)|=2 q\left(q^{2}-1\right)>0
$$

which replaces the equality $b_{0}(g)=|\mu(V, 0)|$ in case $v=0,1$.
Suppose now that Φ is Hermitian with respect to the automorphism $x \rightarrow x^{4}$ of $K=\mathbf{F}_{q^{2}}$ and $G=G(\Phi)=U\left(n, q^{2}\right)$. If $v=0,1$ the polynomial $P(G,-t)$ again has integer roots. These are given in [10, p. 435] by

$$
\begin{array}{ll}
n=1: & q \\
n=2: & q, q^{3}-q-1 \tag{3.16}\\
n=3: & q, q^{3}, q^{5}-q^{3}-1 .
\end{array}
$$

Recall that if G is orthogonal then $\chi(L, t)=(-1)^{n} P(G,-t)$ if $v=0$, 1 . If we compare the roots of $P(G,-t)$ in (3.16) with the roots of $\chi(L, t)$ in (2.16) we see that $\chi(L, t) \neq(-1)^{n} P(G,-t)$ in the unitary case. On the other hand Kusuoka has shown in the unitary case that $P(G,-t)$ has $n-v$ roots q^{i} where $i=1,3, \ldots, 2(n-v)-1$ while we have shown in (1.4) that $\chi(L, t)$ has $n-v$ roots q^{i} where $i=0,2, \ldots, 2(n-v)-2$. We cannot explain this coincidence.

References

1. M. Algner, "Combinatorial Theory," Springer-Verlag, Berlin, 1979.
2. E. Artin, "Geometric Algebra," Interscience, New York, 1957.
3. N. Bourbaki, "Algèbre," Chap. 9, Hermann, Paris, 1959.
4. J. Dieudonné, "La Géométrie des Groupes Classiques," 2nd ed., Springer-Verlag, Berlin, 1963.
5. S. Kusuoka, On a conjecture of L. Solomon, J. Fac. Sci. Univ. Tokyo 24 (1977), 645-655.
6. P. Orlik and L. Solomon, Unitary reflection groups and cohomology, Invent. Math. 59 (1980), 77-94.
7. P. Orlik and L. Solomon, A character formula for the unitary group over a finite field, J. Algebra 84 (1983), 136-141.
8. P. Scherk, On the decomposition of orthogonalities into symmetries, Proc. Amer. Math. Soc. 1 (1950), 481-491.
9. G. C. Shephard and J. A. Todd, Finite unitary reflection groups, Canad. J. Math. 6 (1954), 274-304.
10. L. Solomon, A fixed point formula for the classical groups over a finite field, Trans. Amer. Math. Soc. 117 (1965), 423-440.

[^0]: * This work was supported in part by the National Science Foundation.

