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Let V' be an n-dimensional vector space over F,. Let @ be a Hermitian form with
respect to an automorphism ¢ with 6= 1. If ¢ = 1 assume that q is odd. Let </ be
the arrangement of hyperplanes of ¥ which are non-isotropic with respect to &, and
let L be the intersection lattice of /. We prove that the characteristic polynomial of
L has n—v roots 1, g,..., ¢" "~ ! where v is the Witt index of @. © 1985 Academic Press,

Inc.

1. INTRODUCTION

Let K be a field and let ¥ be a vector space of finite dimension » over K.
An arrangement in V is a finite set .o/ of hyperplanes, all containing the
origin, such that (\,. ., H=0. Let L= L(&/) be the set of intersections of
elements of «/. Partially order L by reverse inclusion so that L has V as its
minimal element and </ as its set of atoms. The poset L is a finite
geometric lattice with rank function r(X)=dim(V/X), Xe L. The charac-
teristic polynomial y(L, t) of L is defined by

L, )= wV,X) 4mx (1.1)

Xel

where u is the M&bius function of L. Suppose K=F is a finite field of ¢
elements. If o/ consists of all hyperplanes in ¥ and M = L(%/) then [1,
p. 155]

1M, 1) f[ o (1.2)

Let o be an automorphism of K with 6?=1. Let & be a non-degenerate
Hermitian form with respect to . Thus @(x, y) = &(y, x)°. We allow ¢ to
be the identity in which case @ is a symmetric bilinear form, but assume in
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218 ORLIK AND SOLOMON

this case that ¢ is odd. Let & be the set of all hyperplanes in V' which are
non-isotropic with respect to @ and let L= L(s&/). In this paper we com-
pute x(L, t) and show that it has n — v integer roots 1, g,..., ¢" "~ ' where v
is the Witt index of &.

(1.3) THEOREM. Let a, be the number of subspaces X of V such that
dim X =k and dim X+ dim rad X =n. Then

n

AL, )= Z d1—1)t—q) - (1—g""").

(1.4) COROLLARY. Let v be the Witt index of ®. Then

WL, )= —1)t—q)(t=q" " ()
where y(t)e Z[t] is a monic polynomial of degree v.

In the orthogonal case where 6 =1 and @ is a symmetric bilinear form
the values of a, are given by (2.12). In the unitary case where ¢ #1 it is
convenient to change notation so that K=F . and x° = x?. The values of a,
are given using this notation in (2.15). To calculate y(L, t) using these
values of @, one must remember to replace f — ¢’ by t — g% in formula (1.3).
The polynomials y(¢) do not in general have integer roots if v>2.

In [6] we studied the arrangement of reflecting hyperplanes for a finite
unitary reflection group G = GL(n, C) and found that the corresponding
characteristic polynomial has the form

x(Ly=T] (1—ny) (15)
i=1
where the n; are positive integers which occur in the invariant theory of G.
The proof of (1.5) was based on the equality x(L, 1) = P4(G, t) where

PG, )= Y 8(g) ", (16)

Fe

In this formula 6(g)=det g and k(g) is the dimension of the fixed point set
of g. Since the group G(®) of isometries of @ is generated by reflections in
non-isotropic hyperplanes, (1.4) may be viewed as an analog of (1.5).
Choose a monomorphism 6: K* — C* and let 4 be the linear character of
G(®) defined by 6(g) = 6(det g). We may ask whether y(L, t) = P,(G, t) for
the groups G = G(®) of this paper. In case K=F > and @ is Hermitian with
respect to the automorphism x — x? we showed in [7] that

n-1

Ps(G, )= T] (t—(—q)). (1.7)

i=0
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Thus y(L, t)# Ps(G, t) if n> 1. On the other hand we show in (3.5) that if
K=F,, qodd, and @ is a symmetric bilinear form with Witt index v=0 or
v=1 then y(L, t) = P4(G, t). Kusuoka [5] has shown for all v that

PG, t)=(t—1)t—q) (t—q" " ") B(r) (1.8)

where fB(tr)eZ[¢] is a monic polynomial of degree v. Thus y(L, r) and
Ps(G, t) have n—v roots in common. We give an example in Section 3
which shows that y(L, t) # Ps(G, t) in general.

2. PROOF OF THE THEOREM

We use the usual terminology for Hermitian forms. The finiteness of K is
not used in (2.1)—(2.3). Recall that if 6 =1 so @ is symmetric bilinear then
we assume char K#2. Thus we may use the Witt decomposition [3,
Sect. 4.27]. If X is a subspace of ¥ let X° be its orthogonal subspace and let
rad X=XnX° Say that X is non-isotropic if rad X=0 and totally
isotropic if rad X = X. In [7] we introduced a Witt decomposition adapted
to X. This is described as follows. Let Z=rad X. There exist subspaces
Y, Z', W such that

V=Y®(ZDZ)OW, X=YOZ (2.1)

where (i) Z" is totally isotropic with dim Z'=dim Z, and (ii) ¥, Z@ Z', W
are non-isotropic and pairwise orthogonal. If X = Z is totally isotropic this
is the usual Witt decomposition. We define p(X)=dim X + dim rad X.

(2.2) LeMMA. Let XS Y be subspaces of V. Then p(X) < p(Y).

Proof. We may assume that dim Y=1+dim X. Choose a basis
Uy,.., U, v for ¥ where the notation is chosen so that u,,..., u,, is a basis for
X and u,,..., u; is a basis for rad X. The matrix [®,] of @, in this basis is

0 0 *
[¢>y]=[0 % *]

* * *

where A is invertible of size m—j and the entries in the last column are
P(u;, v) and &(v, v). Thus rank[P,] <2+ rank 4 =2 +rank[P,]. Since
dim(Y/rad Y)=rank[®,] and dim(X/rad X)=rank[®,] we get
dimrad X<1+dimrad Y. |

Let o/ be the set of all hyperplanes in ¥ which are non-isotropic with
respect to @ and let L be the lattice of intersections of elements of of.
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(2.3) LeMMA. Let X # V be a subspace of V. Then X € L if and only if
pX)<n—1.

Proof. Suppose Xe L and X # V. Choose Ye ./ such that X< Y. By
Lemma 2.2 we have p(X)<p(Y). Since Y is non-isotropic p(Y)=n—1.
Conversely suppose p(X)<n—1. To show that Xe L we do two special
cases by explicit computation and then do the general case using the Witt
decomposition (2.1).

Case (i). X is non-isotropic. Let v,,..., v,, be an orthogonal basis for X°
[3, Sect. 6, Theorem 1]; if o =1 we use the assumption that K has odd
characteristic. Then H,=X®3 ., Kv;isin &/ and X=H,n - nH,,.

Case (ii). X is totally isotropic and 2 dim X = p(X)=n—1. Choose a
Witt decomposition V= (X@® X')@® Kv where X" is totally isotropic and v is
non-isotropic and orthogonal to X@® X". Choose bases ¢,,..., ¢,, for X and
€15y €, for X’ such that (e;, e/)=0;. Let Hy=X@® X' and for i= 1,..., m let
H,=X® {ey,...,e; +u,..,e,>. Clearly Hyeo/. Suppose 1<i<m and
werad H,. Write w=3 a,e;+3 . ;a/e;+a/(e;+v) where a,, a; € K. Since
D(v,e,)=D(v,e/)=0 for j=1,.,m we have O0=D(w,e.)=a;, and
0=d(w,e.)=a, for k=1,.,m Thus w=0 so rad H;=0 and H,e <.
Since X=HynH,n - nH, we have Xe L.

Now consider the general case. Let V=Y@(Z®Z')® W be a Witt
decomposition adapted to X. Then dim W=n—p(X)>0 by assumption.
Choose a non-isotropic vector we W and a subspace U orthogonal to Kw
such that W= Kw@® U. Apply case (ii) to the totally isotropic subspace Z
of (Z@®Z')® Kw. Thus there exist non-isotropic subspaces Z,,.., Z,, of
codimension one in (Z@®Z')® Kw such that Z=Z,n - nZ,,. Then
X,=Y®Z, is non-isotropic because Y and Z, are orthogonal, and
X=X,n - nX,,. Now the lemma follows from case (i) applied to each of
the spaces X;. 1

We assume now that K=F_ is finite and prove Theorem 1.3. If Xe L let
L¥={YeL|Y>X}. Let M be the lattice of all subspaces of V' partially
ordered by reverse inclusion. If Xe L and Ye M and Y> X then Ye L by
(2.2). Thus L* = M*. Since M* is isomorphic to the lattice of all subspaces
of X (1.2) gives

ALY, )=(t—1) - (t—g" H=x(M*, 1), k=dimX

for all XeL with X# V. By Mébius inversion "=3Y,., (L%, ¢) and
1"=3 yem x(M*, t). Since L¥ = M* whenever Xe L and X # V we get

X(L, )= Z X(MX, t)'

XeM
p(X)=n
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Since g, is the number of subspaces X of V with dim X =k and p(X)=n
this proves (1.3).

To prove (1.4) note that if a, # 0 then there exists X e M with dim X =k
and p(X)=n. Thus we have dimrad X<vso k=n—v. |

To compute the a, we use Witt’s theorem on extension of isometries. If X
is a subspace of V let @, denote the restriction of @ to X. We say the sub-
spaces X, X' are isometric and write X=X’ if there exists an invertible
linear map A: X - X’ such that @(hx, hy)=d(x, y) for all x,yeX. Let
G(®) be the group of isometries of V. Witt’s theorem [3, Sect. 4.3,
Theorem 1] states that every isometry #: X — X’ may be extended to an
element of G(®). Let A, be the set of all subspaces X of ¥ such that
dim X=4k and p(X)=n. Thus a,=]4,|.

(2.4) LEMMA. The set A, forms a single orbit in the action of G(P) on
the set of subspaces of V.

Proof. Suppose XeAd,. In the Witt decomposition (2.1) we have
n=dim X+ dim Z' 4+ dim W= p(X)+ dim W. Thus W =0 and

V=Y®(ZDZ) (2.5)

Suppose X;e 4, where i=1,2. Let ¥, Z,, Z; be the corresponding sub-
spaces in (2.5). Since Z, @ Z1x Z, @ Z; it {ollows from Witt’s theorem [3,
Sect. 4.3, Corollary 1] that Y,~Y,. Thus X,~X,. The lemma follows
using Witt’s theorem again. |

Let G(®y) be the group of isometries of @,; the form &, may be
degenerate. Let G=G(®). Let Gy={ge G| gx=x for all xe X} be the
fixer of X. Let O be the orbit of X. As in [7] it follows from (2.5) that

|Ox] G x| = 1G: G(P)| (2:6)
|G(® )| = [Hom(Y, Z)[{G(® )| IGL(Z). (27)

Since Y is non-isotropic the |G(®,)| are known and are given in (2.10),
(2.11) and (2.14). Thus if X'e 4, then (2.6) and (2.7) determine a, = | (]
provided we can calculate |Gy|. Choose a basis for V' adapted to the
decomposition (2.5) so that the matrix for @ is

B 0O
[¢]=]0 O [ (2.8)
0 70

where B° =BT is Hermitian and I is the identity matrix. If g€ G, then,
since Y< X, g fixes Y. Since Z@® Z’ is the orthogonal complement of Y in
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V we have g(Z@Z')cZ@®Z'. Since Z< X we have geG,. If ze Z and
Z’eZ then &(z,(g—1)2)=D(g 'z2,z)—P(z,2')=0 so (g— 1)z’ €Z.
Thus the matrix for g has the form

[g]= (29)

S O~
S~ O
~ 0 o

The condition [g]"[®][g]° = [@] amounts to C°+ C" =0. Thus |G| is
the number of square matrices C of size dim Z=n—k such that
C°+ C"=0. At this stage we must separate the cases g =1 where G is
orthogonal and ¢ # 1 where G is unitary.

The orthogonal groups. There exists a basis e,,.., e, for V such that
P(e;, e,)=0for i#j, Ple;, e;)=1for 1<i<n—1 and D(e,, e,) =4 where
4=A(P)=det P(e,, ¢;) is the discriminant of @ with respect to e...., e,.
Since | K™ : (K*)?| =2 there are, up to isometry, two spaces (V, @) in each
dimension. If n is odd then v=(n—1)/2, the two groups G(®) are
isomorphic and

(n—1)/2
IG(®)| =10(n, ¢)| =2¢"~ " T (¢¥—1), nx=l (210)

i=1

If n=2m is even let g=¢(®)=1 if (—1)"4 is in (K*)* and let
e=¢(®)= —1 otherwise. Then v=mife=1, v=m—1ife= —1 and

(n—2)/2
|G(®)| =10%(n, )| =2¢""""*g" —¢) [] (¢¥=1), n=2 (211)

i=1

Here and in what follows, products indexed by the empty set are
understood to be 1. For these facts see [2, pp. 144-147] and [3, Exer-
cises 6.4 and 6.12]. The entries ¢, in (2.9) satisfy ¢, =0s0 [Gy| = q("Ek). If
n is odd then since Y is non-isotropic and dim Y =2k —n is also odd we
have |G(®,)| = |0(2k — n, q)|. Suppose n=2m is even. Choose a basis for
V as in (2.8). Since A(®)=A(Py) A(D e, )=(—1)"""*A(®,) and
dim Y=2(k —m) we have e&(®,)=(—1)*""(—1)*""* A(P)=¢(P). Thus
IG(® )| =10°(2k —n, q)| where &=g¢(P). Furthermore |Hom(Y, Z)| =
q(Zk—n)(n-k) and

n—k
IGL(Z)| = |GL(n—k, g)| =g~ ¥+~ 2 [T (¢'—1).
i=1

This gives us all the information necessary to determine the number a, of
k-dimensional subspaces X of V with dim X + dim rad X =n.
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(2.12) ProPOSITION. Let K=F, where q is odd and suppose 6 =1. Let v
be the index of the symmeiric bilinear form ®. Let [ ] denote the Gaussian
binomial coefficient in base q.

(i) Ifnis even and ¢=1 then

v—1
ayta= |:;:| l—l (ql+ 1), (X=0,..., V.

(ii)) If n is even and e = —1 then

v v 1 )
[T (@+1), a=1, v+1

L di=a+1

(i) If n is odd then

Ay yo+1=

I[T@+1, a=t.,v+1

L i

ay,oq=

Proof. Suppose n=2m is even. If e=1 then k=m,.., n. If e= —1 then
k=m+1,.., n. Suppose first that k>m+ 1. It follows from the known
values in (2.6) and (2.7) after performing all the obvious cancellations and
setting k =m + o that

(¢"—e) 175" (g7 — 1)

U= —— - s o=1,.,m
g =) TIn (g 1)

If e=1 then m=v and the result follows by multiplying numerator and
denominator by []*_, (¢'—1). If e= —1 then m=v+1 and we multiply
numerator and denominator by []*Z! (¢'—1). If k=m then ¢=1 and
dim Y=0s50 |G(®,)| = 1. Here (2.6) and (2.7) give a,=2 ]!} (¢’ + 1) so
(i) holds for « =0 as well. This proves (i) and (ii). Formula (iii) is proved
in the same way; here n=2v+1 and k=v+1,.,n |

If v=0 then y(t)=1 in (1.4). If v=1 then y(¢) has degree one. Thus if
v=0, 1 then x(L, t) has integer roots. The roots of y(L, t) in these cases
are:

n=1 1

n=2 (¢=-1) 1,¢q

n=2 (g=1) 1,g-—2 (2.13)
n=3 1,q,g*°—q—1

n=4 (¢=-1) 1,9,¢%¢*—q*—1.

582a/38/2-8
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The unitary groups. Here it is convenient to change notation and let F,
be the fixed field of the involutory automorphism ¢: x —» x? of K=F ». If n
is even then n=2v; if n is odd then n=2v+ 1. The entries of C (c;)
satisfy c;+cf=0 so |Gyl =¢"~ ¥’ Furthermore [3, Exercises 6.3 and
6.13] any two spaces (V, @) of the same dimension are isometric and

|G(®) =1U(n, g*)| =g""~ " In] ‘—(—1)) (2.14)

Since Y is non-isotropic and dim Y=2k—#n we have |G(®,) =
|U(2k —n, ¢*)|. Furthermore {Hom(Y, Z)| =¢** ~""~% and |GL(Z)| =
|GL(n—k, ¢*)|. Now arguing as in (2.12) we get

(2.15) PropPoSITION. Let K=F ; and let 6: x —» x?. Let v be the index of
the Hermitian form ®. Let [ 7 denote the Gaussian binomial coefficient in
base q*.

(i) If n=2v is even then

ayya= [ :| n (‘12’+1+1) (X=0,..., V.

Jj==
(i) Ifn=2v+1 is odd then

v

av+a+1=|:v] l—[ (qu+l+1), o=0,.., v.

« J=o+1

As in the orthogonal case if v=0, 1 then y(L, ¢) has integer roots. The
roots of y(L, t) in these cases are:

n=1:. 1
=2 1,¢°—¢q—1 (2.16)
n=3 1,¢°¢*—¢ -1

3. Fixep PoOINT SETS

Let K be a field and let ¥ be a vector space of dimension n over K. If
g€ GL(V)=GL(n, K) let Fix(g) denote the fixed point set of g and let
k(g)=dim Fix(g). For each finite subgroup G of GL(V) define a
polynomial P(G, t) by

PG, 1)=Y "%, (3.1)

geCG
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We say that g is a reflection if it is semisimple and k(g)=n— 1. Suppose
K=C and G GL(V) is a finite group generated by reflections. Shephard
and Todd [9] proved the formula

P(G, 1 =1"] (t+m,) (3.2)

where the m; are non-negative integers, called the exponents, which occur
in the invariant theory of G. Suppose now that K is a finite field. If K=F,
and g is odd then the orthogonal groups O%(n, q) are generated by reflec-
tions. If K=F , then the unitary groups U(n, ¢°) are generated by reflec-
tions unless n=g =2 [4, p. 41]. This fact ieads one to consider the sum on
the left-hand side of (3.2) in case G = 0°(n, q) or G = U(n, ¢°). It was shown
in [10] that if the index v of the corresponding form & is O or 1 then there
exist positive integers mq) such that

n

P(G,t =H (t+mlq)), v=0,1. (3.3)

Suppose G = 0%n, g). If we compare the table of m(q) given in [10,
p. 440] with the roots of x(L, ¢) given in (2.13) we see that for G = O%(n, q)
and v=0, 1 we have

WL ty=Y (=1)y"=k8 k&)= (_1 )" P(G, —1). (34)

g€l

Our first aim in this section is to explain the coincidence (3.4). Let
o(g)=det g. Scherk’s theorem [8] on the decomposition of orthogonal
transformations into reflections shows that §(g)=(—1)""*¢., We may
view d{g)e C. Since ¢ is odd ¢ is still a non-trivial character of G. Thus
(3.4) is explained by

(3.5) THEOREM. Let G = O%n, q) where q is odd. Suppose the index of
the corresponding symmetric bilinear form is 0 or 1. Then

WL, 1)=) d(g)*®.

geG

To prove (3.5) we prove some geometric lemmas which lead to a charac-
terization (3.11) of L in case v=0, 1. If X is an isotropic hyperplane and
£2€G fixes X then g=1 [2, Theorem 3.17]. Thus there is no ge G with
X =Fix(g). The following lemma asserts the converse.

(3.6) LeMMA. If & is symmetric and X is a subspace of 'V which is not an
isotropic hyperplane then there exists g € G such that X = Fix(g).
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Proof. Suppose first that X is totally isotropic. The Witt decomposition
(2.1) is thus V=(X®X')® W. Choose a basis for V adapted to this
decomposition so that the matrix for @ is

[(®]= (37)

o~ O
o O ~
e

where 4= A" is symmetric. In this basis the elements of G, have the form
g =us where

I P Q4 I 00
[ulJ=]10 1[I 0 , [s]=}0 I O (3.8)
0 ¢ 1 0 0 S
are subject to the restrictions
P+PT4+ Q740 =0 and STAS=A. {3.9)

If dim X' =0 choose S= —I. Then Fix(g)= X. Suppose dim X = 1. Since X
is not an isotropic hyperplane we have dim V2= 3. If dim =3 then
dim W=1 so we have A =ae K*. Choose Q =te K™ and let P= —at?/2.
Let S=1. Then (3.9) is satisfied and X =Fix(g). If dim V>3 choose a
non-isotropic vector we W. Let T=X® X’ ® Kw. By the case dim V=3
there exists # e G(@;) with Fix(h)= X. Choose ge G to agree with hon T
and so that g= —1 on the orthogonal complement 7° of 7 in V. Then
Fix(g)=X If dim X > 2 choose @ =0, S= —1, and let P be any invertible
skew symmetric matrix. Then (3.9) is satisfied and the fact that P is inver-
tible implies Fix(g)=X. This completes the proof in case X is totally
isotropic.

In general we use the Witt decomposition (2.1). If Z=0 let g=1 on
X=7Yandlet g= —1 on W. Suppose dim Z > 1. If Z is an isotropic hyper-
plane in Y°=Z® Z'@® W then dim Z=dim Y°—-1=2dim Z + dim W1
so W=0 and dim Z=1. Then V=X@® Z' shows that X is an isotropic
hyperplane in ¥V, a contradiction. Thus Z is not an isotropic hyperplane of
Y° so we may apply the first part of the argument to conclude that there
exists h e G(® o) with Fix(h) = Z. Choose g e G to agree with 4 on Y° and
so that g=1 on Y. Then Fix(g)=X. ||

(3.10) CorOLLARY. If @ is symmetric then L < {Fix(g)|ge G}.

(3.11) LEMMA. Suppose & is symmetric. Then L= {Fix(g)| g€ G} if and
only if v=0, 1.
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Proof. Suppose v=0,1. Suppose geG and let X=Fix(g) If
dim X=n-—1 then X is non-isotropic, by the remark preceding (3.6), so
XeL Ifdim X<n—2then p(X)<n—2+v<n—1s0 XeL by (2.3). Thus
{Fix(g)| g G} < L. Equality follows from (3.10). Now suppose v >2. Let
Z be a totally isotropic subspace of V of dimension v. Choose a Witt
decomposition V=(Z@Z)YOW. Let T=Z@® W. Then dim T=n—v<
n— 2 so by Lemma 3.6 there exists g € G such that T'=Fix(g). On the other
hand p(T)=(n—v)+v=nso T¢ L by Lemma 2.3. |

(3.12) LevMA. If Xe L and X#V then Y., 6(g)=0.

Proof. Lemma 2.3 shows that p(X)<»n—1. The argument given in [7,
Lemma 2.6] shows for any subspace Y of V that G, < SL(¥V) if and only if
p(Yy=n. Thus the restriction of 6 to G, is a non-trivial character
of Gy. 1

Now we prove Theorem 3.4. Recall that M is the lattice of all subspaces
of V. If YeM let Fy={geG|Fix(g)=Y}. If Xe M then without any
assumption on v we have

Gy= |J) Fy disjoint union.
YeM

r<X
If F, is non-empty then there exists g e G with Fix(g)=Y. Since v=0, 1 we
conclude from Lemma 3.11 that Ye L. Thus for Xe L we have

Gy=|J Fy. (3.13)

YelL
Y<Xx

For Xe L let MX)=3%,.r d(g). Then (3.12) and (3.13) imply

Y A¥)= Y 5(g)=0 if X£V
YelL geGy =1 if X=V.

Ys<Xx

(3.14)

Since p(V, X) satisfies the same recurrence (3.14) we have p(¥V, X)= A(X).
Thus

uV, X)= Y o(g), XelL (3.15)

geFy

It follows from (3.13) that G=\)x., Fy. This completes the proof of
34). 1

We have seen in Theorem 1.4 that if @ is symmetric then y(L, ¢) has
roots 1, g,.., ¢~ "~ ! for all v. Kusuoka [5] has shown for G= G(®) that
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P(G,t) has roots —1,—gq,.,—q" *~' for all v. Although y(L,?)=
(—1)" P(G, —t) for v=0, 1 equality does not hold for v>2. For example, if
n=4, v=2 then it follows from (2.12) after some calculation and from
Kusuoka’s recursion formula that

WL == 1)t—g) = (¢’ 29— 1)t
+q¢°—q*—-2¢°—q*+29+2)
P(G,—t)=(1—1)(t—gq)(’— (¢’ — 29— 1)1
+¢°~q* =24’ + ¢+ 29).

Thus letting by(G) denote the number of ge G with k(g)=0 we have an
inequality

bo(g)— u(V,0)| =29(¢>—1)>0

which replaces the equality bo(g) = |u(V, 0)] in case v=0, 1.

Suppose now that @ is Hermitian with respect to the automorphism
x—>x? of K=F, and G=G(®)=U(n,¢°). If v=0,1 the polynomial
P(G, —t) again has integer roots. These are given in [ 10, p. 435] by

n=1 ¢
n=2 ¢q,¢—qg—1 (3.16)
n=3 qq¢,¢-q¢~1

Recall that if G is orthogonal then y(L, t)=(—1)" P(G,—t) if v=0, 1. If we
compare the roots of P(G,—) in (3.16) with the roots of y(L, ¢) in (2.16)
we see that y(L, 1) # (—1)" P(G, —1) in the unitary case. On the other hand
Kusuoka has shown in the unitary case that P(G,—t) has n—v roots ¢’
where i=1, 3,..., 2(n —v) — 1 while we have shown in (1.4) that (L, ¢) has
n—yv roots g' where i=0,2,..,2(n—v)—2. We cannot explain this. coin-
cidence.
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