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Let V be an n-dimensional vector space over F,. Let @ be a Hermitian form with 
respect to an automorphism u with u2 = 1. If  u = 1 assume that q is odd. Let I be 
the arrangement of hyperplanes of V which are non-isotropic with respect to Cp, and 
let L be the intersection lattice of d. We prove that the characteristic polynomial of 
L has n - v  roots 1, q,.... qnmv-’ where v  is the Witt index of @. (0 1985 Academic PESS, 

Inc. 

1. INTRODUCTION 

Let K be a field and let V be a vector space of finite dimension n over K. 
An arrangement in V is a finite set d of hyperplanes, all containing the 
origin, such that nH E d H = 0. Let L = L(d) be the set of intersections of 
elements of d. Partially order L by reverse inclusion so that L has V as its 
minimal element and d as its set of atoms. The poset L is a finite 
geometric lattice with rank function r(X) = dim( V/X), XE L. The charac- 
teristic polynomial x-L, t) of L is defined by 

x(L, t) = c p( v, X) tdimX (1.1) 
XEL 

where /J is the Mobius function of L. Suppose K= F, is a finite field of q 
elements. If d consists of all hyperplanes in V and M = L(d) then [ 1, 
p. 1551 

n-l 
x(M f)= n (r-47. 

i=O 
(l-2) 

Let CJ be an automorphism of K with a2 = 1. Let @ be a non-degenerate 
Hermitian form with respect to 0. Thus @(x, y) = @(y, x)O. We allow CJ to 
be the identity in which case @ is a symmetric bilinear form, but assume in 
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this case that q is odd. Let d be the set of all hyperplanes in V which are 
non-isotropic with respect to @ and let L = L(d). In this paper we com- 
pute x(L, t) and show that it has n - v integer roots 1, q,..., q”- “- ’ where v 
is the Witt index of @. 

(1.3) THEOREM. Let ak be the number of subspaces X of V such that 
dim X = k and dim X + dim rad X = n. Then 

x(L, t)= i ak(t- l)(t-q)...(t-qk-l). 
k=O 

,(1.4) COROLLARY. Let v be the Witt index of @. Then 

x(L, t)=(t- l)(t-q)...(t-q”P”P1)Y(t) 

where y(t) E Z[t] is a manic polynomial of degree v. 

In the orthogonal case where 0 = 1 and @ is a symmetric bilinear form 
the values of ak are given by (2.12). In the unitary case where o # 1 it is 
convenient to change notation so that K = Fq2 and x” = x4. The values of ak 
are given using this notation in (2.15). To calculate x(L, t) using these 
VdUeS of ak one must remember to replace t - qi by t - q2’ iII fOrIIIUki (1.3). 
The polynomials y(t) do not in general have integer roots if v 2 2. 

In [6] we studied the arrangement of reflecting hyperplanes for a finite 
unitary reflection group G c GL(n, C) and found that the corresponding 
characteristic polynomial has the form 

x(L t)= fi (f-4) 
,=l 

(1.5) 

where the ni are positive integers which occur in the invariant theory of G. 
The proof of (1.5) was based on the equality x(L, t) = P,(G, t) where 

P,(G, t) = 1 6(g) tktg’. (1.6) 

In this formula 6(g) = det g and k(g) is the dimension of the fixed point set 
of g. Since the group G(Q) of isometries of Q, is generated by reflections in 
non-isotropic hyperplanes, (1.4) may be viewed as an analog of (1.5). 
Choose a monomorphism 0: K” -+ C x and let 6 be the linear character of 
G(@) defined by 6(g) = B(det g). We may ask whether x(L, t) = P,(G, t) for 
the groups G = G( @) of this paper. In case K = F$ and @ is Hermitian with 
respect to the automorphism x + xq we showed in [7] that 

n-1 

P,(G, t) = fl (t - (-qli). 
i=O 

(1.7) 



ARRANGEMENTSOVER FINITEFIELDS 219 

Thus x(L, t)#P,(G, t) if n> 1. On the other hand we show in (3.5) that if 
K = F,, q odd, and @ is a symmetric bilinear form with Witt index v = 0 or 
v = 1 then x(L, t) = P,(G, t). Kusuoka [S] has shown for all v that 

P,(G,t)=(t-l)(t-q).+-q”-“-‘)/I(t) (1.8) 

where /I(t) E Z[t] is a manic polynomial of degree v. Thus x(L, t) and 
P,(G, t) have n - v roots in common. We give an example in Section 3 
which shows that x(L, t) # P,(G, t) in general. 

2. PROOF OF THE THEOREM 

We use the usual terminology for Hermitian forms. The finiteness of K is 
not used in (2.1)-(2.3). Recall that if g = 1 so @ is symmetric bilinear then 
we assume char K # 2. Thus we may use the Witt decomposition [3, 
Sect. 4.21. If X is a subspace of V let J? be its orthogonal subspace and let 
rad X= Xn x0. Say that X is non-isotropic if rad X=0 and totally 
isotropic if rad X= X. In [7] we introduced a Witt decomposition adapted 
to X. This is described as follows. Let Z = rad A’. There exist subspaces 
Y, Z’, W such that 

v= Y@(.z@Z’)@ w, x= rgz (2.1) 

where (i) Z’ is totally isotropic with dim Z’ = dim Z, and (ii) Y, Z@ Z’, W 
are non-isotropic and pairwise orthogonal. If X= Z is totally isotropic this 
is the usual Witt decomposition. We define p(X) = dim X+ dim rad X. 

(2.2) LEMMA. Let XG Y be subspaces of V. Then p(X) d p( Y). 

Proof: We may assume that dim Y= 1 + dim X. Choose a basis 
Ul ,..., u,, u for Y where the notation is chosen so that u1 ,..., U, is a basis for 
X and u1 ,..., uj is a basis for rad X. The matrix [Gy] of @ ,, in this basis is 0 0 * 

[Qy]= 0 A * [ 1 * * * 

where A is invertible of size m-j and the entries in the last column are 
@(ui, u) and @(v, u). Thus rank[@,,] < 2 + rank A = 2 + rank[@,]. Since 
dim( Y/rad Y) = rank [ @ y] and dim(X/rad X) = rank[@,] we get 
dimradX<l+dimrad Y. 1 

Let .J&’ be the set of all hyperplanes in V which are non-isotropic with 
respect to @ and let L be the lattice of intersections of elements of &. 
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(2.3) LEMMA. Let X # V be a subspace of V. Then XE L if and only if 
p(X)<n- 1. 

Proof. Suppose XE L and X # V. Choose YE d such that Xc Y. By 
Lemma 2.2 we have p(X) < p( Y). Since Y is non-isotropic p(Y) = n - 1. 
Conversely suppose p(X) 6 n - 1. To show that XE L we do two special 
cases by explicit computation and then do the general case using the Witt 
decomposition (2.1). 

Case (i). X is non-isotropic. Let U, ,..., u, be an orthogonal basis for x0 
[3, Sect. 6, Theorem 11; if CJ = 1 we use the assumption that K has odd 
characteristic. Then Hi = X 0 cj + i Kvj is in d and X = H, n ’ ’ . n H,. 

Case (ii). X is totally isotropic and 2 dim X = p(X) = n - 1. Choose a 
Witt decomposition V= (X0X’) @ Ku where X’ is totally isotropic and u is 
non-isotropic and orthogonal to X0X’. Choose bases e,,..., e, for X and 
e; ,..., eh for X’ such that (e,, ei) = 6,. Let H, = X@ X’ and for i = l,..., m let 
Hi= X@ (e; ,..., e,! + v ,..., e;). Clearly HO~ d. Suppose 1 < i<m and 
w  E rad Hi. Write w  = C a,ei + &zi a.le,’ + aj(e: + u) where a.,, a; E K. Since 
@(u,ej)=@(u,e~)=O for j=l,..., m we have O=@(w,e,)=a; and 
0 = @(w, e;) = ak for k = l,..., m. Thus ut=O so radH,=O and H,EJ&‘. 
Since X=H,nH,n ... n H, we have XE L. 

Now consider the general case. Let V = Y@ (20 2’) 0 W be a Witt 
decomposition adapted to X. Then dim W = n - p(X) > 0 by assumption. 
Choose a non-isotropic vector w  E W and a subspace U orthogonal to Kw 
such that W = Kw 0 U. Apply case (ii) to the totally isotropic subspace Z 
of (Z@Z’)@ Kw. Thus there exist non-isotropic subspaces Zr,..., Z, of 
codimension one in (Z@ Z’) @ Ku> such that Z = Z, n . . . n Z,. Then 
X, = Y@ Zi is non-isotropic because Y and Zi are orthogonal, and 
X=X,n ... n X,. Now the lemma follows from case (i) applied to each of 
the spaces Xi. 1 

We assume now that K= F, is finite and prove Theorem 1.3. If XE L let 
Lx = { YE L 1 Y 3 X}. Let M be the lattice of all subspaces of V partially 
ordered by reverse inclusion. If X E L and YE A4 and Y > X then YE L by 
(2.2). Thus Lx = MX. Since MX is isomorphic to the lattice of all subspaces 
of X (1.2) gives 

x(LX, t)=(t-l)...(t-qkpl)=X(MX, t), k=dim X 

for all XE L with X # V. By Mobius inversion t” = CXEL x(Lx, t) and 
t” = Cxs M x( MX, t). Since Lx = MX whenever X E L and X # V we get 

xv9 t) = 1 XWX> t). 
XEM 

P(X) = n 
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Since uk is the number of subspaces X of I/ with dim X= k and p(X) = n 
this proves (1.3). 

To prove (1.4) note that if uk # 0 then there exists XE M with dim X= k 
and p(X) = n. Thus we have dim rad X< v so k 2 n - v. 1 

To compute the ak we use Witt’s theorem on extension of isometries. If X 
is a subspace of V let QX denote the restriction of @ to X. We say the sub- 
spaces X, x’ are isometric and write X%X’ if there exists an invertible 
linear map h: X+ X’ such that @(hx, hy) = 0(x, y) for all x, y E X. Let 
G(Q) be the group of isometries of V. Witt’s theorem [3, Sect. 4.3, 
Theorem 11 states that every isometry h: X -+ x’ may be extended to an 
element of G(Q). Let A, be the set of all subspaces X of F’ such that 
dim X= k and p(X) = n. Thus uk = 1 A, 1. 

(2.4) LEMMA. The set A, forms a single orbit in the action of G(Q) on 
the set of subspaces of V. 

Proof Suppose XE A,. In the Witt decomposition (2.1) we have 
n=dimX+dimZ’+dim W=p(X)+dim IV. Thus W=O and 

v= Y@ (ZOZ’). (2.5) 

Suppose X;E Ak where i= 1,2. Let Y;, Zi, Z( be the corresponding sub- 
spaces in (2.5). Since Z, 0 Z; z Z, @ Z; it follows from Witt’s theorem [3, 
Sect. 4.3, Corollary l] that Y, z Y,. Thus X, wX,. The lemma follows 
using Witt’s theorem again. 1 

Let G(@,) be the group of isometries of QX; the form QX may be 
degenerate. Let G = G(Q). Let G, = { g E G I gx = x for all x E X} be the 
fixer of X..Let OX be the orbit of X. As in [7] it follows from (2.5) that 

l&l IGxl = IG: G(@,)I (2.6) 

IG(@,)l = lHom(Y, Z)l IG(@.)I IGWX (2.7) 

Since Y is non-isotropic the JG(@ ,,)I are known and are given in (2.10), 
(2.11) and (2.14). Thus if XEA, then (2.6) and (2.7) determine ak= IOx\ 
provided we can calculate IG,I. Choose a basis for V adapted to the 
decomposition (2.5) so that the matrix for @ is 

B 0 0 

[@I= 0 0 z [ 1 (2.8) 
0 IO 

where B” = BT is Hermitian and Z is the identity matrix. If g E Gx then, 
since Y C_ X, g fixes Y. Since Z @ Z’ is the orthogonal complement of Y in 
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V we have g(Z@Z’)sZ@Z’. Since Z&X we have gEG=. If ZEZ and 
-‘EZ’ then @(z,(g-l)z’)=@(g-‘z,z’)-@(z,z’)=O so (g-1)z’EZ. 
khus the matrix for g has the form z 0 0 [g]= 0 z c . I 1 001 (2.9) 

The condition [glT[@][g]“= [ai] amounts to C” + CT = 0. Thus ]Gxj is 
the number of square matrices C of size dim Z= n - k such that 
C” + CT = 0. At this stage we must separate the cases 0 = 1 where G is 
orthogonal and e # 1 where G is unitary. 

The orthogonal groups. There exists a basis e, ,,.., e, for I/ such that 
@(ej,ei)=O for i#j, @(ei,ei)=l for 1 <i<n-1 and @(e,,e,)=A where 
A = A(@) = det @(e,, e,) is the discriminant of @ with respect to e,,..., e,. 
Since IK” : (K” )21 = 2 there are, up to isometry, two spaces ( V, @) in each 
dimension. If n is odd then v = (n - 1)/2, the two groups G(Q) are 
isomorphic and 

[G(Q)] = IO(n, q)/ = 2q’“- ‘jV4 
(n - 1 )I2 

n (q2’- I), n > 1. (2.10) 
i=l 

If n = 2m is even let E = E(Q) = 1 if ( - 1)” A is in (K” )2 and let 
s=&(Q)= -1 otherwise. Then v=m ifs= 1, v=m- 1 if .s= -1 and 

(n-2)/2 
IG(@)l = I@@, 411 = 2q e-2114(~m-~) fl tq2i- I), n>2. (2.11) 

i=l 

Here and in what follows, products indexed by the empty set are 
understood to be 1. For these facts see [2, pp. 144-1473 and [3, Exer- 

cises 6.4 and 6.121. The entries cii in (2.9) satisfy cii=O so lGxl = q(“lk). If 
n is odd then since Y is non-isotropic and dim Y = 2k - n is also odd we 
have 1 G( @ r)l = 1 O(2k - n, q)l. Suppose n = 2m is even. Choose a basis for 
V as in (2.8). Since A(@)= A(@,,) A(@,@,.) = ( -1)2”Pk A(@,,) and 
dim Y=2(k-m) we have E(@~)=(-~)~~~(-~)~“-~A(~)=E(@). Thus 
[G(@J~)] = jO”(2k - n, q)( where E = s(Q). Furthermore ) Hom( Y, Z)l = 

9 
(2k - nNn - k) and 

n-k 

IGL(Z)I = (GL(n-k, q)l =q(n-k’(nPkP”‘2 fl (qi- 1). 
i= 1 

This gives us all the information necessary to determine the number ak of 
k-dimensional subspaces X of I/ with dim X + dim rad X = n. 
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(2.12) PROPOSITION. Let K = F, where q is odd and suppose CT = 1. Let v 
be the index of the symmetric bilinear form @. Let [ ] denote the Gaussian 
binomial coefficient in base q. 

(i) Zf n is even and E = 1 then 

a v+Or= 11 ; “fj’ (qi+ I), 
i=z 

(ii) Zf n is even and E = -1 then 

a \,+a+1 = [ 1 oLyl ,‘ir’ (qi+lL ,=a+ I 
(iii) Zf n is odd then 

a v+Or= F 1 all1 fi (qi+lL ,=oL 

a = o,..., v. 

c( = l,..., v + 1. 

c! = l,..., v + 1. 

Proof Suppose n = 2m is even. If E = 1 then k = m,..., n. If E = -1 then 
k = m + l,..., n. Suppose first that k 2 m + 1. It follows from the known 
values in (2.6) and (2.7) after performing all the obvious cancellations and 
setting k = m + CI that 

(4’” -&) ny=-* (q2i- 1) 
am+a= (q~-&)nycpl~ (qi- 1) ’ a = l,..., m. 

If E = 1 then m = v and the result follows by multiplying numerator and 
denominator by n:, I (q’ - 1). If E = - 1 then m = v + 1 and we multiply 
numerator and denominator by n;=,’ (qi- 1). If k = m then E = 1 and 
dim Y = 0 so 1 G(Qj,)l = 1. Here (2.6) and (2.7) give a, = 2 n;:: (qi + 1) so 
(i) holds for CI = 0 as well. This proves (i) and (ii). Formula (iii) is proved 
in the same way; here n = 2v + 1 and k = v + I,..., n. 1 

If v = 0 then y(t) = 1 in (1.4). If v = 1 then y(t) has degree one. Thus if 
v = 0, 1 then x(L, t) has integer roots. The roots of x(L, t) in these cases 
are: 

n=l : 1 

n=2 (E= -1): 1,q 

n=2 (s=l) : l,q-2 

n=3 : l,q,q2-q-l 

n=4 (.z= -1): 1, 4, q23 q3 - q2 - 1. 

(2.13) 

582af3812.8 
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The unitary groups. Here it is convenient to change notation and let F, 
be the fixed field of the involutory automorphism 6: x -+ x4 of K= F,z. If n 
is even then n = 2v; if n is odd then n = 2v + 1. The entries of C = (cii) 
satisfy cji+cY,=O so IG,I =qCnek)*. Furthermore [ 3, Exercises 6.3 and 
6.131 any two spaces ( V, @) of the same dimension are isometric and 

IG(cD)l = IU(n, q*)l =q+‘)” fi (qi-(-1)‘). (2.14) 
i=l 

Since Y is non-isotropic and dim Y = 2k - n we have IG(@ y)I = 
IU(Zk-n, q*)[. Furthermore IHom(Y, Z)l =q2(2kpn)(npk) and IGL(Z)l = 
IGL(n-k, q2)l. Now arguing as in (2.12) we get 

(2.15) PROPOSITION. Let K= Fy2 and let O: x +x4. Let v be the index of 
the Hermitian form @. Let [ ] denote the Gaussian binomial coefficient in 
base q2. 

(i) Zf II = 2v is euen then 

a LJ+CZ= [I 1 ;!I (cl"+ l+ 11, ci = o,..., v. 
(ii) Zf n=Zv+l is odd then 

a v+a+1= [I 1 j=$+l (q”+‘+l), or=0 )...) v. 

As in the orthogonal case if v = 0, 1 then x(L, t) has integer roots. The 
roots of x(L, t) in these cases are: 

n=l: 1 

n=2: l,q’-q-1 

n=3: 1,qz,q4-q3- 1. 

(2.16) 

3. FIXED POINT SETS 

Let K be a field and let V be a vector space of dimension n over K. If 
gE GL( V) = GL(n, K) let Fix(g) denote the fixed point set of g and let 
k(g) = dim Fix(g). For each finite subgroup G of GL( V) define a 
polynomial P(G, t) by 

P(G, t) = 1 tkcg’. (3.1) 



ARRANGEMENTSOVERFINITEFIELDS 225 

We say that g is a reflection if it is semisimple and k(g) = n - 1. Suppose 
K= C and G c GL( V) is a finite group generated by reflections. Shephard 
and Todd [9] proved the formula 

P(G, t)= fi (r+mi) (3.2) 
i=l 

where the mi are non-negative integers, called the exponents, which occur 
in the invariant theory of G. Suppose now that K is a finite field. If K= F, 
and q is odd then the orthogonal groups O”(n, q) are generated by reflec- 
tions. If K= Fy2 then the unitary groups U(n, q*) are generated by reflec- 
tions unless n = q = 2 [4, p. 411. This fact leads one to consider the sum on 
the left-hand side of (3.2) in case G = O’(n, q) or G = U(n, q2). It was shown 
in [ 10 J that if the index v of the corresponding form @ is 0 or 1 then there 
exist positive integers m,(q) such that 

P(G t) = fi (f + mj(q)), v=o, 1. (3.3) 
r=l 

Suppose G = O’(n, q). If we compare the table of mi(q) given in [lo, 
p. 4401 with the roots of x(L, t) given in (2.13) we see that for G = OE(n, q) 
and v = 0,l we have 

idLt)= 1 (-l)“- k’g) fk’g’ = (-1)” f’(G, -t). (3.4) 
XEG 

Our first aim in this section is to explain the coincidence (3.4). Let 
6(g) = det g. Scherk’s theorem [8] on the decomposition of orthogonal 
transformations into reflections shows that 6(g) = ( -1 )n-k(g). We may 
view 6(g) E C. Since q is odd 6 is still a non-trivial character of G. Thus 
(3.4) is explained by 

(3.5) THEOREM. Let G = O’(n, q) where q is odd. Suppose the index of 
the corresponding symmetric bilinear form is 0 or 1. Then 

x( L, t) = c 6(g) tk(g). 
REG 

To prove (3.5) we prove some geometric lemmas which lead to a charac- 
terization (3.11) of L in case v = 0, 1. If X is an isotropic hyperplane and 
ge G fixes X then g= 1 [2, Theorem 3.171. Thus there is no gE G with 
X = Fix(g). The following lemma asserts the converse. 

(3.6) LEMMA. If @ is symmetric and X is a subspace of V which is not an 
isotropic hyperplane then there exists g E G such that X = Fix(g). 
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Proof. Suppose first that X is totally isotropic. The Witt decomposition 
(2.1) is thus I/= (X@x’)@ W. Choose a basis for V adapted to this 
decomposition so that the matrix for Q, is 0 I 0 [@I= I 0 0 i 1 (3.7) 

0 0 A 

where A = AT is symmetric. In this basis the elements of G, have the form 
g = us where 

[ 

I P -QTA 

[u]= 0 I 0 

OQ 1 

are subject to the restrictions 

P+PT+QTAQ=O 

I ? [s]= 

[ 

0 0 I 0 0 I s 0 0 

and STAS= A. 

1 (3.8) 

(3.9) 

If dim X= 0 choose S= -I. Then Fix(g) = X. Suppose dim X= 1. Since X 
is not an isotropic hyperplane we have dim V> 3. If dim V= 3 then 
dim W=l so we have A=aeK”. Choose Q=tEKX and let P= -at2/2. 
Let S= 1. Then (3.9) is satisfied and X= Fix(g). If dim V> 3 choose a 
non-isotropic vector w  E W. Let T= X@ X’ @ KJV. By the case dim V = 3 
there exists h E G(oT) with Fix(h) = X. Choose g E G to agree with h on T 
and so that g = -1 on the orthogonal complement P of T in V. Then 
Fix(g) = X If dim X3 2 choose Q = 0, S = -Z, and let P be any invertible 
skew symmetric matrix. Then (3.9) is satisfied and the fact that P is inver- 
tible implies Fix(g) = A’. This completes the proof in case X is totally 
isotropic. 

In general we use the Witt decomposition (2.1). If Z= 0 let g= 1 on 
X= Y and let g = -1 on W. Suppose dim Z > 1. If Z is an isotropic hyper- 
planein P=Z@Z’@WthendimZ=dimP-1=2dimZ+dim W-l 
so W= 0 and dim Z = 1. Then V= A’@ Z’ shows that X is an isotropic 
hyperplane in V, a contradiction. Thus Z is not an isotropic hyperplane of 
P so we may apply the first part of the argument to conclude that there 
exists h E G(@ e) with Fix(h) = Z. Choose g E G to agree with h on p and 
so that g = 1 on Y. Then Fix(g) = X. 1 

(3.10) COROLLARY. If CD is symmetric then L c {Fix(g) 1 g E G}. 

(3.11) LEMMA. Suppose (D is symmetric. Then L = { Fix(g) 1 g E G > if and 
only ifv=o, 1. 
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Proof: Suppose v = 0, 1. Suppose g E G and let X= Fix(g). If 
dim X= n - 1 then X is non-isotropic, by the remark preceding (3.6), so 
X~L.IfdimX~n-2thenp(X)~n-2+v~n-lsoX~Lby(2.3).Thus 
(Fix(g) 1 g E G} c L. Equality follows from (3.10). Now suppose v > 2. Let 
Z be a totally isotropic subspace of V of dimension v. Choose a Witt 
decomposition I’=(Z@Z’)@ W. Let T=Z@ W. Then dim T=n-v< 
12 - 2 so by Lemma 3.6 there exists g E G such that T = Fix(g). On the other 
hand p(T)=(n-v)+v=n so T$L by Lemma2.3. 1 

(3.12) LEMMA. I~XEL and X# V then &Ec,6(g)=0. 

Proof. Lemma 2.3 shows that p(X) d n - 1. The argument given in [7, 
Lemma 2.61 shows for any subspace Y of V that G y E SL( V) if and only if 
p(Y) = n. Thus the restriction of 6 to G, is a non-trivial character 
ofG,. 1 

Now we prove Theorem 3.4. Recall that A4 is the lattice of all subspaces 
of V. If YEM let F,= {gEGIFix(g)= Y}. If XEM then without any 
assumption on v we have 

Gx= u F, disjoint union. 
YEM 
YCX 

If F, is non-empty then there exists g E G with Fix(g) = Y. Since v = 0, 1 we 
conclude from Lemma 3.11 that YE L. Thus for XE L we have 

Gx= u F,. (3.13) 
YtL 
YSX 

For XE L let A(X) = CREFX 6(g). Then (3.12) and (3.13) imply 

1 /l(Y)= 1 d(g)=0 if X#V 
YEL gEG.Y = 1 if X= V. 
YCX 

(3.14) 

Since p( I’, X) satisfies the same recurrence (3.14) we have p( V, X) = A(X). 
Thus 

AK X) = 1 %)3 XEL. (3.15) 
geFx 

It follows from (3.13) that G= UXEL F,. This completes the proof of 
(3.4). I 

We have seen in Theorem 1.4 that if Q, is symmetric then x(L, t) has 
roots 1, q,..., q”-“- * for all v. Kusuoka [S] has shown for G = G(Q) that 
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P(G, t) has roots -1, -q,..., -qnp”-’ for all v. Although x(,5, t) = 
( -1)” P(G, -t) for v = 0, 1 equality does not hold for v 2 2. For example, if 
n =4, v=2 then it follows from (2.12) after some calculation and from 
Kusuoka’s recursion formula that 

X(L,t)=(t-l)(t-q)(t2-(q3-2q-l)t 

+q5-q4-2q3-q2+2q+2) 

P(G,-t)=(t-l)(t-q)(t2-(q3-2q-1)t 

+q5-q4-2q3+q2+2q). 

Thus letting b,(G) denote the number of gE G with k(g) = 0 we have an 
inequality 

h(g) - I/4 c 011 = Ml* - 1) > 0 

which replaces the equality b,(g) = lp( V, O)l in case v = 0, 1. 
Suppose now that @ is Hermitian with respect to the automorphism 

x+x4 of K=Fyz and G=G(@)= U(n, q’). If v=O, 1 the polynomial 
P(G, -t) again has integer roots. These are given in [ 10, p. 4351 by 

n=l: q 

n=2: 4,43-q-l 

n=3: q,q3,q5-q3-1. 

(3.16) 

Recall that if G is orthogonal then x(L, t) = ( -1)” P(G, -t) if v = 0, 1. If we 
compare the roots of P(G, -t) in (3.16) with the roots of x(L, t) in (2.16) 
we see that x(L, t) # (-1)” P(G, -t) in the unitary case. On the other hand 
Kusuoka has shown in the unitary case that P(G, -t) has n - v roots qi 
where i = 1, 3,..., 2(n - v) - 1 while we have shown in (1.4) that x(L, t) has 
n - v roots qi where i = 0,2,..., 2(n - v) - 2. We cannot explain this. coin- 
cidence. 
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