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a b s t r a c t

In the paper ‘‘Extensional PERs’’ by P. Freyd, P. Mulry, G. Rosolini and D. Scott, a category
C of ‘‘pointed complete extensional PERs’’ and computable maps is introduced to provide
an instance of an algebraically compact category relative to a restricted class of functors.
Algebraic compactness is a synthetic condition on a category which ensures solutions
of recursive equations involving endofunctors of the category. We extend that result to
include all internal functors onC whenC is viewed as a full internal category of the effective
topos. This is done using two general results: one about internal functors in general, and
one about internal functors in the effective topos.

© 2010 Elsevier B.V. All rights reserved.

The paper ‘‘Extensional PERs’’ by Freyd, et al. [2] identifies a reflective subcategory of the category of PERs, namely the
category C of pointed CEPERs—complete extensional partial equivalence relations, implicitly over N—which is algebraically
compact. Algebraic compactness ensures the existence of solutions to recursive domain equations. In fact, for any functor
F : Cop

× C → C there is an object X with an invertible arrow F(X; X) → X (see [1]).
One restriction limits the compactness ofC: the functor F has to be realizable. The category of PERs and its subcategory of

pointed CEPERs exist inside the effective topos as internal categories. Any internal functor between these categories comes
with a realizer for its functorial properties. Hence the name ‘realizable functor’. Unfortunately, the definition in [2] seems
more restrictive. It demands that there is a realizer of the functor preserving an index of the identity function. We are not
convinced that all internal functors satisfy that property, but the algebraic compactness proof given depends on it.

In the research for mymaster thesis I found two ways to bypass this problem. First, weakly complete internal categories,
like the category of PERs and the category of pointed CEPERs, already satisfy the weaker property of algebraic completeness.
We can derive algebraic compactness from a combination of algebraic completeness with other properties of the category of
pointed CEPERs. Second, any internal functor is isomorphic to some other internal functor with a realizer that does preserve
indices of identity. Therefore, we can add the requirement without loss of generality.

1. The category of PERs: notation

In our discussion of PERs I will employ a more common notation and terminology than in [2].
Definition 1.1. A PER is a partial equivalence relation on the natural numbers. Spelled out, a PER R is a subset of N2 such that

• for all (n,m) ∈ R, (m, n) ∈ R (symmetry)
• for all (n,m) and (m, p) ∈ R, (n, p) ∈ R (transitivity).

Any PER R forms a total equivalence relation on its domain:
dom R := {n|(n, n) ∈ R}.

The quotients dom R/R are used to definemorphisms between PERs. Given n ∈ dom R, we use [n]R to denote the equivalence
class containing n in dom R/R.
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Definition 1.2. Amorphism of PERs f : R → S, is a function f : dom R/R → dom S/S, which is tracked by a partial recursive
function. Thismeans that there is a partial recursive functionφ such that for all n ∈ dom Rφn is defined and f ([n]R) = [φn]S .

These objects andmorphisms form the category of PERs P . This category is cartesian closed: by letting (n,m) ∈ [R → S]
if n and m are indices of partial recursive functions that track the same function f : R → S, we get a PER, which acts as
an internal homset. So any f : R → S can be identified with the set of those natural numbers that are indices of tracking
functions of f . Therefore, Iwill sometimes use [n]R→S to refer to the functionR → S that is tracked by thenth partial recursive
function. Finally, I write the application of the nth partial recursive function to somenumberm as a simple juxtaposition: nm.

2. Realizable and monotone functors

Inspired by the idea that realizable functors are internal functors of the effective topos, we define these as follows.
Definition 2.1. An endofunctor F of the category of PERs is realizable if there is a single partial recursive function φ that
tracks F . This means φx converges whenever x ∈ dom([R → S]) for every pair of PERs R and S, and

F([x]R→S) = [φx]FR→FS . (1)
The definition is slightly more general than the definition found in [2]. There, φ has to preserve an index of the identity

map of N, while we do not even require that φ maps indices of identity to each other here. Because F as functor has to
preserve identities, we know that for any PER R and any index i of the identity function:

F([i]R→R) = [φi]FR→FR = [i]FR→FR.

Therefore i ∈


R F([i]R→R) does hold, for any particular realizable functor. This still does not guarantee that φi = i′ for some
other index i′ of the identity function, however.

Let ψ i = i and ψx = φx if x ≠ i. ψ is a recursive function, and one might wonder if it can take the place of φ, saving the
original definition. (1) is satisfied when x ≠ i and in the case that S = R, the same equation holds when x = i. The difficult
case is x = i and S ≠ R. Note that [i] : R → S iff R ⊆ S. Therefore, if R ⊆ S and if F([i]R→S) = [ψ i]FR→FS = [i]FR→FS , then
FR ⊆ FS. This means that all functors which are tracked by an i preserving function are monotone mappings of PERs. On the
other hand for any monotone functor tracked by φ, the functionψ defined above is another tracking function of the functor
that preserves i. So the functors defined in [2] are a special kind of realizable functor.
Definition 2.2. A realizable endofunctor F of the category of PERs is monotone, if its object map is monotone with respect
to the inclusion ordering on PERs. In other words, if R ⊆ S, then FR ⊆ FS.

I could not prove (or refute, by the way) that all realizable functors are monotone, or find a proof in the literature. Sadly,
in [2] the least fixpoints, which monotone functors have, are used in the algebraic compactness proof: for any monotone
functor F we have a fixpoint X :=


{R|FR ⊆ R}, where FX = X .

3. Algebraic completeness

The category of pointed CEPERs is an internal CPO category of the effective topos, and with the theory developed in [3],
we can prove that it is algebraically compact if it is algebraically complete. The following lemma concerns the algebraic
completeness of internal categories.
Lemma 3.1. For any topos E , and any weakly complete internal category C in E , C is algebraically complete: for any internal
endofunctor F , there is an initial algebra.

Weak completeness of a category C means that for arbitrary internal categories D and each internal functor D → C a
limiting cone exists, but that the functor C → CD that maps objects to constant functors has no internal right adjoint.
Proof of Lemma 3.1. E allows the construction of the category of algebras of any endofunctor F of C internally, so both the
category of F-algebras F-alg, and the underlying object functor U : F-alg → C are internal to E . This underlying functor
creates limits, and since C is weakly complete (relative to E ), F-alg must be weakly complete too. Therefore it has an initial
object—the limit of the identity functor on F-alg—and this object is an initial algebra for F . �

The category of CEPERs is weakly complete as an internal category of the effective topos. It inherits that property from
the category of PERs (see [5,6]), of which it is a reflective subcategory (see [2], the proof does not depend on monotonicity
of endofunctors). We may conclude that the category of pointed CEPERs is algebraically compact indeed.

3.1. Constructing a fixmap

For an endofunctor F of a category C, an F-algebra is a pair (R, a : FR → R), where a : FR → R is the structure map
of the algebra. A morphism of F-algebras is a morphism of C that commutes with structure maps. The structure map of
an initial algebra is necessarily an isomorphism. Because of the similarity with fixpoints of monotone endofunctions on a
complete poset, I propose thatwe call the underlying objects of initial algebras fixobjects, and the structuremaps fixmaps. For
realizable endofunctors F of the category of pointed CEPERs C, initial algebras always exist, because of weak completeness.
We can even give a construction for such a fixmap.
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An intial algebra is a limit of the identity functor, and this limit is a pair (R0, a0)where R0 is a limit of the underlying PER
functor U : F-alg → C, and where a0 is the unique structure map that commutes with the limiting cone. As any limit, R0
can be constructed as a regular subobject of a product. In C we can use subsets of PERs to represent regular subobjects. The
product we need is an internal product of all PERs over all of the F-algebras. Therefore, given any such product

∏
U , we can

assume: R0 ⊆
∏

U .
If we fix a PER R, then [FR → R] is a PER of all algebras based on R. Every element x ∈ dom(

∏
U) restricts to a mapping

xR : [FR → R] → R:
xR(a) = x(R,a).

This is a morphism of PERs, because the category of PERs is a full subcategory of the effective topos. As a consequence xR
itself is an element of the PER [[FR → R] → R].

The object of pointed CEPERs C0 exists in the effective topos and is uniform. Among other things, this means that any
arrow C0 → N is constant. That makes


R∈C0

[[FR → R] → R], the intersection of this family of PERs, already its product
inside the category of pointed CEPERs (see [7]). Therefore, some limit R0 of U satisfies

R0 ⊆


R∈P

[[FR → R] → R]. (2)

To find R0, we only need to select those elements of


R∈C0
[[FR → R] → R] that commutewith all the algebramorphisms.

The results in the paper [4] seem to suggest that R0 =


R∈P [[FR → R] → R]. But in any case, (f , f ′) ∈ R0 if and only if
for any three algebras (R, a), (S, b) and (T , c) and any pair of morphisms m : (R, a) → (T , c) and m′

: (S, b) → (T , c),
(m(fa),m(′f ′b)) ∈ T :

R0
f →fa //

f ′ →f ′b

��

R

m

��
S

m′

// T

Note that I write fa for fR(a): fR(a) is constant in R because C0 is uniform. The projection maps π(R,a)f = fa taken together
form the limiting cone. Obviously, any structure map a0 on R0 has to make the following diagram commute for any algebra
(R, a):

FR0
Fπa //

a0
��

FR

a

��
R0

πa // R
Thatmeans that for all (x, y) ∈ FR0, (a0xa, a(Fπay)) ∈ R. Because R is reflexive, we can let a0 be any partial recursive function
that satisfies a0xa = a(φπax), where φ is some partial recursive function tracking F . The inverse of the initial algebra is a
terminal coalgebra of F , since the category of pointed CEPERs is algebraically compact.

This construction shows we can define a functor CC
→ C that maps each realizable endofunctors to one of its fixobjects.

The existence of such a functor does not follow fromweak completeness: it is a peculiar property of the category of pointed
CEPERs as an internal category of the effective topos. We need this functor to prove the algebraic completeness of products
of C and Cop, and in turn the existence of fixobjects and fixmaps for functors (Cop)m × Cn

→ C (for arbitrary m and n). All
of this is done in [1].

4. Yoneda

Before we can apply the Yoneda lemma to realizable functors, we need to knowwhat realizable natural transformations
are. We can define these transformations as follows.
Definition 4.1. A natural transformation η between two realizable endofunctors F andG of the category of PERs is realizable
if there is a single number e such that ηR = [e]FR→GR for all PERs R. Let [F ⇒ G] be the PER of natural transformations F to
G: the set of pairs (n,m)where n and m are indices for the same transformation.
Again, realizability makes the transformations internal to the effective topos. The definition given in [2] is correct in this
case.

Because natural transformations are represented by natural numbers—or because the category of PERs is weakly
complete and internal to the effective topos: it all depends on your perspective—we can construct a PER of natural
transformations between any pair of PER valued functors. In fact, categories of PER valued functors are enriched over the
category of PERs, as long as the domains are internal categories of the effective topos.
Theorem 4.2. Every endofunctor of P is naturally isomorphic to a monotone endofunctor.
Proof. We know because of Yoneda’s lemma that FX ∼= nat(hom(X,−), F) naturally in both F and X . Given a PER R let R∗ be
the functor that maps any PER S to [R → S] and let F∗ be the functor that maps S to [S∗ ⇒ F ]. F∗ happens to be monotone.
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If X ⊆ Y and (n,m) ∈ [Y → Z], then (n,m) ∈ [X → Z] because (nx,my) ∈ Z whenever (x, y) ∈ Y and (x, y) ∈ Y
whenever (x, y) ∈ X . Therefore Y∗ ⊆ X∗ point wise. Furthermore, if i is an index of the identity function, it determines a
natural transformation: (i, i) ∈ [Y∗ ⇒ X∗].

Let (i, i) ∈ [G ⇒ G′
] for any two functors G and G′, and let (n,m) ∈ [G′

⇒ F ]. (n,m) ∈ [G ⇒ F ], because n ◦ i and m ◦ i
represent the same partial recursive function as n andm. Therefore [G′

⇒ F ] ⊆ [G ⇒ F ].
We can see that if X ⊆ Y , then (i, i) ∈ [Y∗ ⇒ X∗] and therefore F∗X ⊆ F∗Y . Consequently, F∗ is a monotone functor. �

Although there may be non-monotone internal functors, there is no loss of generality if we assume that all realizable
functor aremonotone.With this information added the original proof suffices to show that the category of pointed complete
extensional PERs is indeed algebraically compact.

I thank the referees for the useful comments on the presentation of this paper.
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