Global dimension of the endomorphism ring and $*^n$-modules

Jiaqun Wei

Department of Mathematics, Nanjing Normal University, Nanjing 210097, PR China

Received 4 August 2004
Available online 28 June 2005

Communicated by Kent R. Fuller

Abstract

We show that, if T is a selfsmall and selforthogonal module over a noetherian ring R of finite global dimension with the endomorphism ring A, then $\text{fd}_A T \leq \text{gd}_A \leq \text{id}_R T + \text{fd}_A$. Applying the result we give answers to two questions left in [J. Wei et al., J. Algebra 168 (2) (2003) 404–418] concerning basic properties of $*^n$-modules, by showing that the flat dimension of a $*^n$-module with $n \geq 3$ over its endomorphism ring can even be arbitrarily far from the integer n while the flat dimension of a $*^2$-module over its endomorphism ring is always bounded by the integer 2 and showing that $*^n$-modules are not finitely generated in general, even in case $n = 2$.

© 2005 Elsevier Inc. All rights reserved.

Keywords: Global dimension; Selforthogonal module; $*^n$-Module

1. Introduction and preliminaries

The tilting theory plays an important role in the representation of Artin algebra. Let R be an Artin algebra and T a tilting R-module with $A = \text{End}_R T$ (by a tilting module we mean the tilting module in sense of [9] throughout the paper). The purpose of the tilting theory is to compare R-mod (the category of finitely generated R-modules) with A-mod. One aspect of these is on the estimate of the global dimension of the endomorphism algebra A.
A well-known result is that \(gd_R - \text{pd}_R T \leq gd A \leq gd_R + \text{pd}_R T \), see for instance [8,9].

The result was improved in [7] where it was shown that \(\text{id}_R T \leq gd A \leq \text{pd}_R T + \text{id}_R T \).

In the first part of this paper, we will study some more general case in the sense that we only assume that \(T \) is selfsmall and selforthogonal and that \(T \) is over any associated ring with identity, not only Artin algebras. A special case of our results shows that, if \(T \) is a selfsmall and selforthogonal module over a noetherian ring \(R \) of finite global dimension with the endomorphism ring \(A \), then \(\text{fd}_R T \leq gd A \leq \text{pd}_R T + \text{id}_R T \) (Corollary 2.6). Note that, for a tilting module \(T \) over an Artin algebra \(R \) with \(A = \text{End}_R T \), it always holds that \(\text{pd}_R T = \text{pd}_R T = \text{fd}_R T \), so our result extends the upper-bound-part of the corresponding one in [7].

The important tool for our investigation is the theory of \(*_n\)-modules. Recall that a \(R \)-module \(T \) is a \(*_n\)-module provided that \(T \) is selfsmall, \((n + 1)\)-quasi-projective and that \(\text{Pres}^n(T) = \text{Pres}^{n+1}(T) \) [16]. The notion of \(*_n\)-modules is a natural generalization of both \(*\)-modules (see for instance [3,4,10] etc.) and tilting modules of projective dimension \(\leq n \).

In fact, \(*\)-modules are just \(*_1\)-modules while tilting modules of projective dimension \(\leq n \) are just \(*_n\)-modules which admit finitely generated projective resolutions and \(n \)-present all injective modules [2,16].

In [16], some questions on basic properties of \(*_n\)-modules were left. The following are two questions among them.

Question 1. Is the flat dimension of a \(*_n\)-module over its endomorphism ring is always bounded by \(n \)?

Question 2. Are all \(*_n\)-modules finitely generated?

We recall that all \(*\)-modules are finitely generated [13] and that the flat dimension of a \(*\)-module over its endomorphism ring is always bounded by 1 [14]. Note that it was also proved that, for a \(*_n\)-module \(T \) with the endomorphism ring \(A \), it always holds that \(\text{Ker} \text{Tor}^A_{\geq 1}(T, -) = \text{Ker} \text{Tor}^A_{1\leq i \leq n}(T, -) \) [15].

Our investigation of the estimate of global dimensions of endomorphism rings of self-orthogonal modules turns out to be very useful to answer questions mentioned above. Indeed, it is shown, in the second part of this paper, that the flat dimension of a \(*_n\)-module with \(n \geq 3 \) over its endomorphism ring can even be arbitrarily far from the integer \(n \) (Proposition 3.3). However, the flat dimension of a \(*_2\)-module over its endomorphism ring is always bounded by the integer 2 (Proposition 3.5). In particular, we obtain that, if \(T \) is a \(w - \Sigma\)-quasi-projective \(*_2\)-module over the ring \(R \) and \(Q \) is any injective cogenerator of \(R\text{-Mod} \), then the “dual” module \(T^* = \text{Hom}_R(T, Q) \) is a cotilting module over the endomorphism ring of \(T \) (Corollary 3.6). Finally, we give an example to show that a \(*_n\)-module is not finitely generated in general, even in case \(n = 2 \) (Example 3.10). In fact, the rational \(Q \), as a \(\mathbb{Z}\)-module (\(\mathbb{Z} \) denotes the ring of all integers), is just such a module.

Throughout this paper, all rings will be associated with non-zero identity and modules will be left modules without explicit mentions. For a ring \(R \), \(R\text{-Mod} \) (\(\text{Mod-}R \)) denotes the category of all left (right) \(R\)-modules. By a subcategory, we mean a full subcategory closed under isomorphisms.
An R-module T is selfsmall if the canonical morphism

$$\text{Hom}_R(T, T)^{(X)} \to \text{Hom}_R(T, T^{(X)})$$

is an isomorphism.

From now on, we fix T a selfsmall R-module with the endomorphism ring A and denote that $H_T = \text{Hom}_R(T, -)$. Note that T is also a right A-module. Let Q be any injective cogenerator of R-Mod. We fix $T^* = \text{Hom}_R(T, Q)$. Then T^* is an A-module.

We denote that

$$T^\perp = \{ M \in R\text{-Mod} \mid \text{Ext}^i_R(T, M) = 0 \text{ for all } i \geq 1 \}$$

and

$$\text{Ker Tor}^A_{i \geq 1}(T, -) = \{ M \in A\text{-Mod} \mid \text{Tor}^A_i(T, M) = 0 \text{ for all } i \geq 1 \}.$$

For a fixed integer n, the subcategory $\text{Ker Tor}^A_{1 \leq i \leq n}(T, -)$ is similarly defined. Also we denote by $\text{Ad} T$ the class of modules isomorphic to direct sums of copies of the R-module T and by $\text{Add} T$ the class of modules isomorphic to direct summands of modules in $\text{Ad} T$.

Furthermore, we denote that

$$\text{Add} T = \{ M \in R\text{-Mod} \mid \text{there exists an exact sequence } 0 \to T_m \to \cdots \to T_0 \to M \to 0 \text{ for some } m, \text{ where } T_i \in \text{Add} T \text{ for each } i \}.$$

We say that an R-module T is selforthogonal if $\text{Ext}^i_R(T, T^*) = 0$ for all $i \geq 1$ and all $T^* \in \text{Add} T$. If T has a finitely generated projective resolution, then T is selforthogonal is equivalent to say that $\text{Ext}^i_R(T, T) = 0$ for all $i \geq 1$ [16].

An R-module M is n-presented by T if there exists an exact sequence $T_n \to \cdots \to T_2 \to T_1 \to M \to 0$ with $T_i \in \text{Add} T$ for each i. We denote by $\text{Pres}^n(T)$ the category of all R-modules n-presented by T. Of course, for every n, we have that $\text{Pres}^{n+1}(T) \subseteq \text{Pres}^n(T)$.

Note that $\text{Pres}^2(T)$ and $\text{Pres}^3(T)$ are just familiar subcategories $\text{Pres}(T)$ and $\text{Gen}(T)$ respectively. We denote that $\text{Copres}(T^*) = \{ N \in A\text{-Mod} \mid \text{there exists an exact sequence } 0 \to N \to K_1 \to K_2 \text{ with } K_1, K_2 \text{ products of copies of } T^* \}$ and that $\text{Cogen}(T^*) = \{ N \in A\text{-Mod} \mid N \text{ can be embedded in a product of copies of } T^* \}$.

T is said to be (n, t)-quasi-projective (here we assume that $n \geq t \geq 1$) if, for any exact sequence $0 \to M \to T_i \to \cdots \to T_1 \to N \to 0$ with $M \in \text{Pres}^{n-t}(T)$ and $T_i \in \text{Add} T$ for each i, the induced sequence $0 \to H_T M \to H_T T_i \to \cdots \to H_T T_1 \to H_T N \to 0$ is exact [15]. It is easy to see that, if T is (n, t)-quasi-projective, then T is also (m, s)-quasi-projective, for all m, s such that $m \geq n$ and $1 \leq s \leq t + m - n$. Note that notions of $(1, 1)$-quasi-projective, $(2, 1)$-quasi-projective, $(2, 2)$-quasi-projective and $(n, 1)$-quasi-projective respectively are just notions of Σ-quasi-projective [6] [11], w-Σ-quasi-projective [3], semi-Σ-quasi-projective [11] and n-quasi-projective [16], respectively.

It is well known that $(T \otimes_A \cdot, H_T)$ is a pair of adjoint functors and there are the following canonical homomorphisms for any R-module M and any A-module N:

$$\rho_M : T \otimes_A H_T M \to M \text{ by } t \otimes f \to f(t),$$

$$\sigma_N : N \to H_T (T \otimes_A N) \text{ by } n \to [t \to t \otimes n].$$
We denote by $\text{Stat}(T)$ the class of R-modules M such that ρ_M is an isomorphism and by $\text{Costat}(T)$ the class of A-modules N such that σ_N is an isomorphism.

Recall from [2] that an A-module K is 2-cotilting (1-cotilting, respectively) if

$$\text{Copres}(K) = \text{Cogen}(K), \text{respectively} = \ker \text{Ext}^i_A (\cdot, K)$$

(the definition is not the original one, but is equivalent to it by [2]). This definition is used throughout the paper. Note that in case A is an Artin algebra, finitely generated 1-cotilting modules coincide with usual cotilting modules (of injective dimension ≤ 1) in sense of [8].

Throughout the paper, gd_R denotes the (left) global dimension of the ring R. We denote by $\text{pd}_{RT}(\text{id}_{RT}, f_{\text{d}_{TA}}$, respectively) the projective (injective, flat, respectively) dimension of the module RT (RT, TA, respectively).

2. Global dimension of endomorphism rings

For any $M \in \hat{\text{Add}} T$, there is some m such that there is an exact sequence $0 \to T_m \to \cdots \to T_0 \to M \to 0$ with $T_i \in \text{Add} T$ for each i, by the definition. We denote T-res.dim(M) to be the minimal integer among such m. Then we have the following useful lemma.

Lemma 2.1. Let T be a selforthogonal R-module. Then T-res.dim(M) = $\text{pd}_A HT(M)$, for any $M \in \hat{\text{Add}} T$.

Proof. Assume that $m = T$-res.dim(M), then there is an exact sequence of minimal length $0 \to T_m \to \cdots \to T_0 \to M \to 0$ with $T_i \in \text{Add} T$ for each i. By applying the functor HT to the sequence, we obtain an induced exact sequence $0 \to HT T_m \to HT f_m \cdots \to HT T_0 \to HT M \to 0$, since T is selforthogonal. The last sequence in fact is a projective resolution of the A-module $HT M$. Hence $\text{pd}_A HT M \leq m = T$-res.dim($M$). If $\text{pd}_A HT M < m$, then it is easy to check that $\text{Coker} HT f_m$ must be a projective A-module. Now after applying the functor $T \otimes_A$ to the sequence $0 \to HT T_m \to HT f_m HT T_m-1 \to \text{Coker} HT f_m \to 0$, we deduce that $\text{Coker} f_m \simeq \text{Coker} T \otimes_A HT f_m = T \otimes_A \text{Coker} HT f_m \in \text{Add} T$. This shows that T-res.dim(M) < m, a contradiction. In conclusions, we have that T-res.dim(M) = $\text{pd}_A HT M$, for any $M \in \hat{\text{Add}} T$.

Under some additional conditions, T-res.dim(M) will be bounded by a fixed number for all $M \in \hat{\text{Add}} T$.

Lemma 2.2. Let T be a selforthogonal R-module with $\text{id}_R T' \leq s < \infty$ for all $T' \in \text{Add} T$. Then T-res.dim(M) $\leq s$ for any $M \in \hat{\text{Add}} T$. In particular, $\text{pd}_A HT M \leq s$.

Proof. For any $M \in \hat{\text{Add}} T$, there is an exact sequence $0 \to T_m \to f_m \cdots \to T_0 \to f_0 M \to 0$ with $T_i \in \text{Add} T$ for each i. If $m \leq s$, then we have nothing to say. So we as-
sume that $m > s$. Let $K_i = \text{Im} f_i$ for each $0 \leq i \leq m$. Note that $K_m = T_m$ and $K_0 = M$ in this case. Since T is selforthogonal, we have that

$$\text{Ext}_R^j(T, K_m) = 0 \quad \text{for all } j \geq 1 \text{ and all } 0 \leq i \leq m.$$

Then, by applying the functor $\text{Hom}_R(\cdot, K_m)$ to the sequence, we obtain that

$$\text{Ext}_R^1(K_{m-1}, K_m) \cong \text{Ext}_R^2(K_{m-2}, K_m) \cong \cdots \cong \text{Ext}_R^m(K_0, K_m),$$

by dimension shifting. By assumptions, $\text{id}_R T' \leq s$ for all $T' \in \text{Add} T$, so we have that $\text{id} K_m \leq s < m$. It follows that $\text{Ext}_R^1(K_{m-1}, K_m) \cong \text{Ext}_R^m(K_0, K_m) = 0$. Hence the sequence $0 \to T_m \to^d T_{m-1} \to K_{m-1} \to 0$ splits. This shows that T-res.dim(M) must be not more than s. □

Lemma 2.3. Let T be a selforthogonal R-module with $\text{pd}_R T \leq n$. Then $\text{Pres}^n(T) \subseteq T\perp$ and T is $(n+1)$-quasi-projective.

Proof. Take any $M \in \text{Pres}^n(T)$, then we have an exact sequence $T_n \to^j \cdots \to T_1 \to f_1 M \to 0$. Let $M_i = \text{Ker} f_i$ for each $1 \leq i \leq n$. Since T is selforthogonal, we have that

$$\text{Ext}_R^j(T, T_i) = 0 \quad \text{for all } j \geq 1 \text{ and all } 1 \leq i \leq n.$$

Then, by applying the functor H_T to the sequence, we obtain that

$$\text{Ext}_R^j(T, M) \cong \text{Ext}_R^{j+1}(T, M_i) \cong \cdots \cong \text{Ext}_R^{j+n}(T, M_n) \quad \text{for all } j \geq 1,$$

by dimension shifting. Since $\text{pd}_R T \leq n$, we deduce that

$$\text{Ext}_R^j(T, M) \cong \text{Ext}_R^{j+n}(T, M_n) = 0 \quad \text{for all } j \geq 1.$$

Hence $M \in T\perp$, and consequently, $\text{Pres}^n(T) \subseteq T\perp$.

Now consider any exact sequence $0 \to K \to T_N \to N \to 0$ with $K \in \text{Pres}^n(T)$ and $T_N \in \text{Add} T$. By the previous proof, we see that $K \in T\perp$. Hence, by applying the functor H_T to the last sequence, we obtain that the induced sequence $0 \to H_T K \to H_T T_N \to H_T N \to 0$ is exact, i.e., T is $(n+1)$-quasi-projective. □

The following result shows that a selfsmall and selforthogonal module over a ring of finite global dimension is always a \ast^m-module for some integer m.

Proposition 2.4. Let T be a selforthogonal R-module with $\text{pd}_R T \leq n$ ($n \geq 1$). If $\text{gd} R = d < \infty$, then $\text{Pres}^{n+d}(T) = \text{Add} T$. In particular, T is a \ast^{n+d}-module.

Proof. Obviously we have that $\overline{\text{Add} T} \subseteq \text{Pres}^{n+d}(T)$. We now show that $\text{Pres}^{n+d}(T) \subseteq \text{Add} T$ too.
For any $M \in \text{Pres}^{n+d}(T)$, we have an exact sequence $T_{n+d} \rightarrow f_{n+d} \cdots \rightarrow T_d \rightarrow f_d \cdots \rightarrow T_1 \rightarrow f_1$ $M \rightarrow 0$ with $T_i \in \text{Add} T$ for each $1 \leq i \leq n + d$. Denote that $M_i = \text{Ker} f_i$ for each i, then we see that $M_d \in \text{Pres}^d(T)$. We claim now $M_d \in \text{Add} T$ and then it holds that $M \in \widetilde{\text{Add}} T$.

In fact, note that $M_d \in \text{Gen}(T)$ clearly, so we have an exact sequence $0 \rightarrow N \rightarrow T((H_T M_d)_v) \rightarrow M \rightarrow 0$, (\ast)

where v is the canonical evaluation map, which obviously remains exact after applying the functor H_T. By Lemma 2.3, $M_d \in \text{Pres}^d(T) \subseteq T^\perp$. Hence we deduce that $N \in T^\perp$ too. Now by applying the functor $\text{Hom}_R(\cdot, N)$ to the exact sequence $0 \rightarrow M_d \rightarrow T_d \rightarrow \cdots \rightarrow T_1 \rightarrow M \rightarrow 0$, we obtain that $\text{Ext}^1_R(M_d, N) = \text{Ext}^2_R(M_{d-1}, N) = \cdots = \text{Ext}^d_R(M_1, N) = \text{Ext}^{d+1}_R(M, N)$, by dimension shifting. Since $\text{gd } R \leq d$, we see that $\text{Ext}^1_R(M_d, N) = \text{Ext}^{d+1}(M, N) = 0$. It follows that the sequence (\ast) splits and that $M_d \in \text{Add} T$, as we claimed.

Since $\text{Pres}^{n+d+1}(T) \subseteq \text{Pres}^{n+d}(T) = \widetilde{\text{Add}} T \subseteq \text{Pres}^{n+d+1}(T)$, we then get that $\text{Pres}^{n+d}(T) = \text{Pres}^{n+d+1}(T)$.

Note that T is clearly $(n + d + 1)$-quasi-projective by Lemma 2.3 and that T is self-small by assumptions, so we have that T is a s^{n+d}-module [16].

Now we give the estimate of the global dimension of the endomorphism ring of a self-orthogonal module.

Theorem 2.5. Let R be a ring of finite global dimension and T be a selforthogonal R-module with $A = \text{End}_R T$. Assume that $\text{id } T' \leq s$ for all $T' \in \text{Add } T$. Then $\text{fd } T_A \leq \text{gd } A \leq s + \text{fd } T_A$.

Proof. If $\text{fd } T_A = \infty$, then $\text{gd } A = \infty$ too and we have nothing to say in this case. So we assume that $\text{fd } T_A = t < \infty$. Then it is obvious that we need only to show that $\text{gd } A \leq s + t$.

For any A-module Y, by taking the projective resolution of Y, we obtain an exact sequence $0 \rightarrow Y_t \rightarrow P_{t-1} \rightarrow \cdots \rightarrow P_0 \rightarrow Y \rightarrow 0$ (***)

with P_i projective for each $0 \leq i \leq t - 1$. Denote by Y_t the ith syzygy, for each i. We claim now $\text{pd } A Y_t \leq s$ (note that $s < \infty$ since R is of finite global dimension) and so $\text{pd } A Y \leq t + s$. Then the conclusion will be followed from the arbitrariness of the choice of Y.

Indeed, by assumptions and Proposition 2.4, we have that $\text{Pres}^m(T) = \widetilde{\text{Add}} T$ and T is a s^m-module for some m. Hence, by results in [16], we obtain that

$$\text{Ker Tor}_{i\geq1}^A(T, -) = H_T(\text{Pres}^m(T)).$$
Since \(\text{pd}_A H_T M \leq s \) for any \(M \in \text{Pres}^m(T) \) by Lemma 2.2, it follows that \(\text{pd}_A N \leq s \) for any \(N \in \text{Ker} \text{Tor}^A_{i \geq 1}(T, -) \).

Now, by applying the functor \(T \otimes_A - \) to the sequence (**), we obtain that \(\text{Tor}_j^A(T,Y_t) \simeq \cdots \simeq \text{Tor}_j^A(T,Y_1) \simeq \text{Tor}_j^A(T,Y) \) for all \(j \geq 1 \).

Since \(\text{fd}_A T \leq t < \infty \), we have that \(\text{Tor}_j^A(T,Y_t) \simeq \text{Tor}_j^A(T,Y) = 0 \) for all \(j \geq 1 \), i.e., \(Y_t \in \text{Ker} \text{Tor}_{i \geq 1}^A(T, -) \). It follows that \(\text{pd}_A Y_t \leq s \) from arguments before, as desired.

Restricting to some special cases, we have the following corollary.

Corollary 2.6. Let \(R \) be a ring of finite global dimension and \(T \) an \(R \)-module with \(A = \text{End}_R T \). If moreover \(R \) is noetherian or \(T \) is of finitely generated projective resolution, then \(\text{fd}_A T \leq \text{gd}_A \leq \text{id}_R T + \text{fd}_A \). In particular, if \(R \) is noetherian and \(T \) is injective, then \(\text{gd}_A = \text{fd}_A = \text{wgd}_A \), where \(\text{wgd}_A \) denotes the weak global dimension of \(A \).

Proof. If \(R \) is noetherian or \(T \) is of finitely generated projective resolution, then it always holds that \(\text{id}_R T' \leq \text{id}_R T \) for all \(T' \in \text{Add} T \). Hence by applying Theorem 2.5, we have that \(\text{fd}_A T \leq \text{gd}_A \leq \text{id}_R T + \text{fd}_A \).

If \(R \) is noetherian and \(T \) is injective, then clearly we have that \(\text{gd}_A = \text{fd}_A \). By the definition of the weak global dimension, it always holds that \(\text{wgd}_A = \text{gd}_A \). Since \(\text{wgd}_A \leq \text{gd}_A \) obviously, it follows that \(\text{gd}_A = \text{fd}_A = \text{wgd}_A \).

3. **Two questions on \(\ast^n \)-modules**

In this section we will give answers to questions mentioned in the first section.

Firstly we note the following result.

Lemma 3.1. Let \(R \) be a ring and \(T \) be a selforthogonal \(R \)-module with \(\text{pd}_R T \leq n \). If \(\text{fd}_A T = t < \infty \), where \(A = \text{End}_R T \), then \(T \) is a \(\ast^m \)-module for some \(m \).

Proof. By Lemma 2.3, we have that \(T \) is \((n+1)\)-quasi-projective. If \(\text{fd}_A T = t = 0 \), then \(T \) is a \(\ast^2 \)-module by [15, Theorem 4.2]. So we assume that \(t \geq 1 \). Now by [15, Proposition 3.2], a selfsmall \((m,t+1)\)-quasi-projective module \(T \) with the flat dimension of \(T \) over its endomorphism ring not more than \(t \) is a \(\ast^m \)-module. Note that \(T \) is obviously \((n+t+1,t+1)\)-quasi-projective, so \(T \) is a \(\ast^{n+t+1} \)-module.

Now we give an example of \(\ast^3 \)-modules with infinite flat dimensions over their endomorphism rings. This shows that the answer to Question 1 in the first section is negative in general.
Example 3.2. Let \(R \) be the Artin algebra defined by the following quiver over a field \(k \)

\[
\begin{array}{c}
3 \\
\uparrow \theta \\
\downarrow \lambda \\
4 \\
\uparrow \rho \\
\downarrow \gamma \\
2 \\
\end{array}
\]

with relations \(\theta \lambda = 0 = \mu \eta, \gamma \delta = \nu \rho, \rho \alpha = \lambda \mu, \) and \(\beta \nu = \eta \theta \).

Then the \(R \)-module

\[
T = \begin{pmatrix}
\frac{3}{2} & \frac{2}{7} \\
\frac{1}{6} & \frac{1}{3} \\
\frac{4}{7} & \frac{3}{2}
\end{pmatrix}
\]

is a \(\ast^3 \)-module with \(\text{fd}_A T = \infty \), where \(A = \text{End}_R T \).

Proof. Note that \(\text{gd}_R T = 2 \) and \(T \) is indeed a projective \(R \)-module, so \(T \) is a \(\ast^3 \)-module by Proposition 2.4.

If \(\text{fd}_A T = t < \infty \). Then \(\text{gd} A \leq 2 + t < \infty \) by Theorem 2.5. However, \(A \) is in fact the path algebra defined by the quiver

\[
\begin{array}{c}
1 \\
\uparrow \alpha \\
\downarrow \beta \\
2
\end{array}
\]

with the relation \(\alpha \beta \alpha = 0 \). It is easy to check that \(A \) is of infinite global dimension. Hence we see that \(\text{fd}_A T = \infty \). \(\square \)

More generally, we have the following result which also shows that the flat dimension of \(T_A \) for \(T \) a \(\ast^n \)-module (\(n \geq 3 \)) with \(A = \text{End}_R T \) can even be arbitrarily far from the integer \(n \).

Proposition 3.3. Let \(A \) be an Artin algebra of finite representation type with \(\text{gd} A = d \) (maybe infinite). Then there exists an Artin algebra \(R \) with \(\text{gd} R = 2 \), over which there is a \(\ast^3 \)-module \(T \) with \(A = \text{End}_R T \) and \(\text{fd}_A T = d \).

Proof. By a well-known result in the representation theory of Artin algebras, any Artin algebra of finite representation type can be obtained as the endomorphism algebra of a projective and injective module \(T \) over an Artin algebra \(R \) with \(\text{gd} R = 2 \) (see for instance
In the case, we obtain that \(A = \text{End}_RT \) and that \(T \) is in fact a \(*^3 \)-module by Proposition 2.4, since \(\text{gd} R = 2 \) and \(\text{pd}_RT \leq 1 \). Note that \(T \) is also injective, so we have that \(\text{fd}_TA = \text{gd} A = d \) by Corollary 2.6.

However, in case \(n = 2 \), we have an affirmative answer to Question 1. To see this, we need the following lemma (cf. [5, Lemma 1.4]).

Lemma 3.4. Let \(T \) be an \(R \)-module with \(A = \text{End}_RT \). Then
\[
\ker \text{Tor}_i^A(T, -) = \ker \text{Ext}_i^A(\cdot, T^*) \quad \text{for each } i \geq 1.
\]
In particular, \(\text{fd}_TA = \text{id}_AT^* \).

Now we can show the following.

Proposition 3.5. Let \(T \) be a \(*^2 \)-module with \(A = \text{End}_RT \). Then \(T^* \) is 2-cotilting. In particular, \(\text{fd}_TA \leq 2 \).

Proof. Since \(T \) is a \(*^2 \)-module, we have that \(\text{Pres}^2(T) \subseteq \text{Stat}(T) \) by [16]. Since \(\text{Stat}(T) \subseteq \text{Pres}^2(T) \), holds obviously, we get that \(\text{Stat}(P) = \text{Pres}^2(T) \). Then by [17] or [12], we have that \(\text{Copres} T^* = \text{Costat}(T) = H_T(\text{Pres}^2(T)) \).

By [16], it holds that
\[
H_T(\text{Pres}^2(T)) = \ker \text{Tor}_i^{\geq 1}(T, -).
\]
Hence we obtain that
\[
\text{Copres} T^* = \ker \text{Tor}_i^{\geq 1}(T, -).
\]
Now, Lemma 3.4 helps us to deduce that \(\text{Copres} T^* = \ker \text{Ext}_i^{\geq 1}(\cdot, T^*) \). It follows that \(T^* \) is 2-cotilting, by [2].

In particular, we have that \(\text{id}_AT^* \leq 2 \) [2]. So, by Lemma 3.4, we also have that \(\text{fd}_TA \leq 2 \), as we desired. \(\square \)

It is well known that, if \(T \) is a \(* \)-module, then \(T^* \) is 1-cotilting. Hence it is not surprise that \(T^* \) is 2-cotilting when \(T \) is a \(*^2 \)-module. However, if \(T \) is a \(w-\Sigma \)-quasi-projective \(*^2 \)-module, then \(T^* \) is also 1-cotilting, as the following result shows.

Corollary 3.6. Let \(T \) be a \(*^2 \)-module with \(A = \text{End}_RT \). If \(T \) is \(w-\Sigma \)-quasi-projective, then \(T^* \) is 1-cotilting. In particular, \(\text{fd}_TA \leq 1 \).

Proof. If \(T \) is \(w-\Sigma \)-quasi-projective, then we have that \(\text{Costat}(T) = H_T(\text{Pres}^2(T)) = \text{Cogen} T^* \) by [3]. Hence we obtain that
\[
\ker \text{Tor}_i^{\geq 1}(T, -) = H_T(\text{Pres}^2(T)) = \text{Cogen} T^*.
\]
It follows that $\text{Cogen}^{+} = \text{Ker} \text{Ext}_{A}^{i \geq 1}(\cdot, T^{*})$ by Lemma 3.4. Then we have that T^{*} is 1-coitling by [2]. In particular, we have that $\text{fd} \, T_{A} = \text{id}_{A} T^{*} \leq 1$. □

The following result classifies the flat dimension of T_{A} when T is a \ast^{2}-module with $A = \text{End}_{R} T$.

Proposition 3.7. Let T be a \ast^{2}-module with $A = \text{End}_{R} T$. Then

(1) $\text{fd} \, T_{A} \leq 1$ if and only if T is w-Σ-quasi-projective.
(2) $\text{fd} \, T_{A} = 0$ if and only if T is semi-Σ-quasi-projective.

Proof. (1) The sufficient part follows from Corollary 3.6. We now show the necessary part.

By the definition, we need to show that the functor H_{T} preserves the exactness of any exact sequence $0 \to M \to TN \to N \to 0$ with $TN \in \text{Add} T$ and $M \in \text{Gen}(T)$. After applying the functor H_{T}, we obtain two induced exact sequences $0 \to H_{T} M \to H_{T} TN \to X \to 0$ and $0 \to X \to H_{T} N \to Y \to 0$ for some X, Y. Since T is a \ast^{2}-module, we have that $H_{T} TN, H_{T} N \in \text{Ker} \text{Tor}_{i \geq 1}^{A}(T, -)$ by [16]. Hence, by dimension shifting, we obtain that

$$\text{Tor}_{1}^{A}(T, X) \simeq \text{Tor}_{2}^{A}(T, Y).$$

Since $\text{fd} \, T_{A} \leq 1$, we see that $\text{Tor}_{1}^{A}(T, X) = 0$ in fact. Hence we have the following commutative exact diagram, by applying the functor $T \otimes_{A} -$ to the exact sequence $0 \to H_{T} M \to H_{T} TN \to X \to 0$:

$$
\begin{array}{cccccc}
0 & \longrightarrow & T \otimes_{A} H_{T} M & \longrightarrow & T \otimes_{A} H_{T} TN & \longrightarrow & T \otimes_{A} X & \longrightarrow & 0 \\
0 & \longrightarrow & M & \longrightarrow & TN & \longrightarrow & N & \longrightarrow & 0.
\end{array}
$$

It follows that ρ_{M} is a monomorphism from the diagram. Since $M \in \text{Gen}(T)$, ρ_{M} is also an epimorphism (see for instance [3]). Hence, ρ_{M} is an isomorphism. Therefore, we have that $M \in \text{Stat}(P) \subseteq \text{Pres}^{2}(T)$. Now since all three terms in the short exact sequence $0 \to M \to TN \to N \to 0$ are in $\text{Pres}^{2}(T)$, it remains exact after applying the functor H_{T} by [16], as we desired.

(2) By [15]. □

The following example shows that a w-Σ-quasi-projective \ast^{2}-module need neither be a \ast-module nor be semi-Σ-quasi-projective.

Example 3.8. Let R denote the path algebra defined by the quiver $1 \to 2 \to 3 \to 4$. Then, the partial tilting R-module

$$T = \frac{4}{3} \oplus_{2} \frac{4}{3} \oplus_{2} \frac{3}{2}$$
is a \(w\)-\(\Sigma\)-quasi-projective \(\ast^2\)-module, which is neither a \(\ast\)-module nor semi-\(\Sigma\)-quasi-projective.

Proof. \(R\) is clearly a hereditary algebra, hence \(T\) is a \(w\)-\(\Sigma\)-quasi-projective \(\ast^2\)-module by Lemma 2.3 and Proposition 2.4, since \(T\) is partial tilting.

Since the \(R\)-module \(3 \in \text{Gen}(T)\) and \(3 \notin \text{Pres}^2(T)\), we have that \(\text{Gen}(P) \neq \text{Pres}^2(T)\). Therefore, \(T\) is not a \(\ast\)-module.

Note also that we have an epimorphism
\[
\begin{array}{ccc}
 4 & \rightarrow & 4 \\
 2 & \rightarrow & 2
\end{array}
\]
in \(\text{Add} T\), which cannot split, so \(T\) is not semi-\(\Sigma\)-quasi-projective by the definition. \(\Box\)

Combining results in Section 2, we have the following result.

Proposition 3.9. Let \(R\) be a ring with \(\text{gd} R = 1\) and \(T\) be a selforthogonal \(R\)-module with \(A = \text{End}_RT\). Then

1. \(T^*\) is 1-tilting.
2. \(\text{gd} A \leq 2\).
3. If \(T\) is moreover semi-\(\Sigma\)-quasi-projective (specially \(T\) is projective) or injective, then \(\text{gd} A \leq 1\).
4. If \(T\) is both semi-\(\Sigma\)-quasi-projective and injective, then \(A\) is a semisimple ring.

Proof. By Lemma 2.3 and Proposition 2.4, we see that \(T\) is a \(w\)-\(\Sigma\)-quasi-projective \(\ast^2\)-module. Hence we have that \(T^*\) is 1-tilting by Corollary 3.6. Note that \(\text{id}_RT' \leq 1\) for all \(T' \in \text{Add} T\) since \(\text{gd} R = 1\) by assumptions, so we obtain that \(\text{gd} A \leq 2\) by Theorem 2.5.

Similarly, we get that (3) and (4) hold by applying Proposition 3.7 and Theorem 2.5. \(\Box\)

Remark. In the representation theory of Artin algebras, it is well known that, for a partial tilting module \(T\) over a hereditary algebra \(R\) with \(A = \text{End}_RT\), the global dimension of the endomorphism algebra \(A\) is not more than 2. This is followed from the fact that \(A\) is indeed a tilted algebra, see for instance [8]. The last proposition generalizes this result. Moreover, it also gives a cotilting module over \(A\) which is obtained directly from the \(R\)-module \(T\).

We end this paper with the following example, which shows that the answer to Question 2 in the first section is negative too in general, even in case \(n = 2\).

Example 3.10. The abelian group \(Q\), as a \(Z\)-module, is a \(\ast^2\)-module, which is clearly not finitely generated.

Proof. At first, \(Q\) is selfsmall since that, over a countable ring, any module with countable endomorphism ring is in fact selfsmall, by [1]. Secondly, \(Q\) is obviously a selforthogonal
\mathbb{Z}-module since it is injective and \mathbb{Z} is noetherian. Note also that $gd\mathbb{Z} = 1$, so we have that Q is a $*^2$-module, by Proposition 2.4. □

References