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a b s t r a c t

In this paper, we study two variants of the problem of adding edges to a graph so as
to reduce the resulting diameter. More precisely, given a graph G = (V , E), and two
positive integersD andB, theMinimum-Cardinality Bounded-Diameter Edge Addition (MCBD)
problem is to find aminimum-cardinality set F of edges to be added to G in such a way that
the diameter of G + F is less than or equal to D, while the Bounded-Cardinality Minimum-
Diameter Edge Addition (BCMD) problem is to find a set F of B edges to be added to G in
such a way that the diameter of G + F is minimized. Both problems are well known to
be NP-hard, as well as approximable within O(log n logD) and 4 (up to an additive term
of 2), respectively. In this paper, we improve these long-standing approximation ratios to
O(log n) and to 2 (up to an additive term of 2), respectively. As a consequence, we close, in
an asymptotic sense, the gap on the approximability of MCBD, which was known to be not
approximable within c log n, for some constant c > 0, unless P = NP. Remarkably, as we
further show in the paper, our approximation ratio remains asymptotically tight even if we
allow for a solution whose diameter is optimal up to a multiplicative factor approaching
5
3 . On the other hand, on the positive side, we show that at most twice of the minimal
number of additional edges suffices to get at most twice of the required diameter. Some of
our results extend to the edge-weighted version of the problems.

© 2011 Elsevier B.V. All rights reserved.

1. Introduction

In this paper, we study two basic network design problems. In the first one, we are given a network and a distance
requirement D. The goal is to find a minimum-cardinality set of links to be added to the network so that every pair of its
nodes is connected by a path of at most D links. More formally

Minimum-Cardinality Bounded-Diameter Edge Addition (MCBD)
Instance: an undirected graph G = (V , E) and a value D ∈ Z+.
Goal: find a minimum-cardinality set F of edges to be added to G such that the diameter of G + F = (V , E ∪ F) is less

than or equal to D.
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Similarly, one can define the specular problem in which we are given a network and a budget B on the number of addable
links, and the goal is to add such links so that the resulting network has minimum (in terms of number of links) diameter.
More formally

Bounded-Cardinality Minimum-Diameter Edge Addition (BCMD)
Instance: an undirected graph G and a value B ∈ Z+.
Goal: find a set F of B edges to be added to G such that the diameter of G + F is minimized.

These two problems arise in practical applications like telecommunication networks and airplane flights scheduling
[7,12], but they also received a lot of attention in the graph theory community (see [1,8,11,14,23,25]).

Notice that the two defined problems are the optimization version of the same underlying decision problem. Therefore,
for the sake of unifying the exposition, we will denote by B the cardinality of an optimal solution for MCBD, and by D the
value of an optimal solution for BCMD.

Having this in mind, and following standard terminology on bicriteria optimization problems, for β, δ ≥ 1, a (β, δ)-
approximation algorithm for BCMD will denote an algorithm which can select a set F of additional edges whose size is at
most β times the budget B, and returns a graph G + F of diameter less than or equal to δD (where D is the value of the
diameter of an optimal solution for BCMD with budget B). Symmetrically, a (δ, β)-approximation algorithm for MCBD will
denote an algorithm that returns a graph G+ F whose diameter is at most δ times the required value D, by using at most βB
edges (where B is the size of an optimal solution for MCBD with required diameter D). Observe that a (β, δ)-approximation
algorithm for BCMD is a (δ, β)-approximation algorithm for MCBD, and vice versa.1

1.1. Related work and our results

In the rest of the paper we will denote by n the number of vertices of G. For D = 1 MCBD is clearly in P, while in papers
[10,20] it was proven that for D = 2, 3, 4, MCBD is not approximable within c log n for some constant c > 0, unless P = NP.
This inapproximability result holds in fact for any fixed value of D ≥ 5, by an easy extension of the NP-hardness result for
MCBD given by Chepoi and Vaxès [6]. As a consequence, there exists no (c log n, δ)-approximation algorithm for BCMD for
δ < 1 + 1/D, unless P = NP.

On the positive side, BCMD admits a constant (4 +
2
D )-approximation algorithm [20]; the same algorithm guarantees a

(2 +
2
D )-approximation for forests. Concerning positive results for MCBD, Dodis and Khanna [10] provide an O(log n logD)-

approximation algorithm as well as both approximability and non-approximability results for a more general version of
MCBD in which edges are associated with a cost and a length function, and B and D are redefined accordingly. Furthermore,
some variants of MCBD have been studied by Chepoi and Vaxès [6]. Here, a 2-approximation algorithm for forests is given
for even values of D, while for odd values an 8-approximation algorithm has been given by Ishii et al. [16]. This latter result
has been improved by in paper [5], where a (2 + ϵ)-approximation algorithm up to an additive constant of O(ϵ−5), for
every ϵ > 0, has been given. Establishing whether BCMD and MCBD restricted to trees/forests are in P is still an open
problem. Furthermore, concerning bicriteria approximation algorithms, Dodis and Khanna [10] provide a polynomial time
O(log n), 2 +

2
D


-approximation algorithm for BCMD. The same results has been proved also by Kapoor and Sarwat [18].

Finally, Meyerson and Tagiku [21] study a problem related to BCMD on edge-weighted graphs, where the objective is that
of minimizing the average distance.

Graph theory community addressed the problems for paths and cycles. Chung and Garey [8] provide lower and upper
bounds on the value D of the diameter when B edges are added to a graph. For paths, they show that n

B+1 −1 ≤ D < n
B+1 +3,

while for cycles they show that n
B+1 − 1 ≤ D ≤

n
B+1 + 3 if B is odd, and n

B+2 − 1 ≤ D < n
B+2 + 3 otherwise. Alon et al. [1]

provide lower and upper bounds on the number B of edges to add to a cycle to obtain a graph of diameter at most D. They
show that ⌊

n
D−1⌋ − 7 ≤ B ≤ ⌊

n
D−1⌋ if D is even, and ⌊

n
D−2⌋ − 155 ≤ B ≤ ⌊

n
D−2⌋ otherwise. All the above upper bounds are

obtained via polynomial time algorithms. This implies better approximations for paths and cycles.
In this paper, we provide a different analysis of the algorithm of Li et al. [20], in order to show that it actually computes

a

2+

2
D


-approximate solution for BCMD. Moreover, when the input instance is a forest, we achieve optimality up to small

constant additive terms.More precisely, we get an approximation guarantee of (1+
2
D ) for even values ofD, and of (1+

4
D ) for

odd values of D. Concerning approximability of MCBD, we improve the result given by Dodis and Khanna [10], by providing
an O(log n)-approximation algorithm. Thus, we close in an asymptotic sense the approximability of MCBD. Notably, our
algorithm extends to directed graphs, as well as to the case where we place the distance requirements Du,v for each pair u, v
of vertices. We regard our result as a significative contribution for the comprehension of MCBD since, as we further show in
the paper, our approximation ratio cannot be improved asymptotically, unless P = NP, even if we allow for a solutionwhose
diameter is optimal up to a multiplicative factor of 5

3 −
7−(D+1) mod 3

3D . Notice that this also implies a better inapproximability
threshold for BCMD for any D ≥ 6. On the other hand, on the positive side, we also show that if a doubling of the optimal
diameter is tolerated, thenMCBD admits a


2−

1
B )-approximation algorithm. Table 1 summarizes the currently best known

results for the two problems (results are given in form of bicriteria ratios for BCMD, and our contributions are written in
bold).

1 Indeed, we can always guess the value of an optimal solution for the problem.
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Table 1
Table of currently best known results for (β, δ)-approximation algorithms for BCMD. The non-
approximability results hold for some constant c > 0 unless P = NP. The question mark means
that the entry of the table is still an open problem.

Input instance Approximability Non-approximability
2 −

1
B , 2

 
c log n, δ < 1 +

1
D


, ∀D ≥ 2 [6,10,20]

General

1, 2 +

2
D

 
c log n, δ < 5

3 −
7−(D+1) mod 3

D


, ∀D ≥ 6

O(log n), 1


(2, 1) for D = 2h [6]
Forests (2 + ϵ, 1) for D = 2h + 1 [5] ?

1, 1 +
2
D


for D = 2h

1, 1 +
4
D


for D = 2h + 1

Some of our results extend to the edge-weighted version of BCMD (WBCMD for short), where each edge e of the graph in
input has a non-negative real weightw(e) associated with it, all edges to be added to the graph have weight equal toω ≥ 0,
and distances are measured w.r.t. edge weights.2 More precisely, we provide


2 +

2ω
D


- and


2 −

1
B , 2


-approximation

algorithms. Moreover, we prove an inapproximability result of (c log n, δ) for some constant c and for every δ < 2 −
3ω
D ,

unless P = NP. Observe that our approximation ratio matches the lower bound for ω = 0. Weaker results for WBCMD
have been found independently by Demaine and Zadimoghaddam [9]. Moreover, in the same paper the authors also give an
(O(log n), 1 + ϵ)-approximation algorithm for the edge-weighted version of the MCBD.

The paper is organized as follows.We give preliminary definitions in Section 2. The

2 +

2
D


-approximation algorithm for

BCMD is described in Section 3, and Section 4 is devoted to the approximation for MCBD. Sections 3 and 4 also contain some
conjectures that would imply better approximability results. Bicriteria approximability and non-approximability results are
given in Section 5. Finally, in Section 6, we provide the results for WBCMD.

2. Basic definitions

A graph G is a pair G = (V (G), E(G)), where V (G) is the set of vertices of G and E(G) is the set of edges of G. The set E(G) is
a subset of all the unordered pairs of distinct vertices in G, i.e., E(G) ⊆ {(u, v) | u, v ∈ V (G), u ≠ v}. Moreover, we say that u
and v are the endvertices of the edge (u, v), as well as that (u, v) is adjacent to u and to v, respectively. Furthermore, for two
given vertices u, v ∈ V (G)we say that u is a neighbor of v if and only if (u, v) ∈ E(G).We denote by Ḡ the complement ofG, i.e.,
the graph with V (Ḡ) := V (G) and E(Ḡ) := {(u, v) | u, v ∈ V (G), u ≠ v} \E(G). A graph G′ is a subgraph of G if V (G′) ⊆ V (G)
and E(G′) ⊆ E(G). For every F ⊆ {(u, v) | u, v ∈ V (G), u ≠ v}, we denote by G + F the graph with vertex set equal to V (G)
and edge set equal to E(G)∪F . We use G+e instead of G+{e}. For a given subset U ⊆ V (G)we denote by G[U] the subgraph
of G induced by U , i.e., the graph with vertex set V (G[U]) := U and edge set E(G[U]) := {(u, v) | u, v ∈ U, (u, v) ∈ E(G)}.

A path P in a graph G is an alternating sequence of vertices and edges (v1, e1, . . . , vh, eh, vh+1) (not necessarily distinct)
such that ei = (vi−1, vi) ∈ E(G) for every i = 1, . . . , h. The vertices v1 and vh+1 are the endvertices of the path P , or
equivalently, P is path from v1 to vh+1 in G. Moreover, the length of P is equal to h. A path is simple if vi ≠ vj for every i ≠ j.
A shortest path between two vertices u and v of a given graph G is a path from u to v in G of minimum length. By dG(u, v) we
denote the distance between u and v in G, i.e., the length of a shortest path from u to v. The diameter of Gwill be denoted by
diam(G) := maxu,v∈V (G) dG(u, v). Moreover, for a given U ⊆ V (G), we denote by rG(U) := minv∈V (G) maxu∈U dG(v, u) the
radius of U in G. A graph is connected if for every u, v ∈ V (G) there exists a path in G having u and v as endvertices.

Let λ ∈ Z+. We denote by Gλ the graphwith vertex set V (G) and edge set E(Gλ) = {(u, v) | u, v ∈ V (G), dG(u, v) ≤ λ}. A
set {v1, . . . , vℓ} of vertices ofG is an independent set ofG if and only if (vi, vj) ∉ E(G) for every i, j = 1, . . . , ℓ. An independent
set {v1, . . . , vℓ} of G is maximum if for every independent set {v′

1, . . . , v
′

ℓ′} of Gwe have that ℓ ≥ ℓ′. By α(G) we denote the
cardinality of a maximum independent set of G. A graph G is a clique if V (G) is an independent set in Ḡ.

For a given positive integer k > 0, and a subsetU ⊆ V (G), we say that ⟨V1, . . . , Vk⟩ is a k-clustering ofU if (i)∀i, Vi ⊆ V (G),
and (ii)U ⊆

k
i=1 Vi.We say that zi ∈ V (G) is a center of cluster Vi ifmaxv∈Vi dG(zi, v) = rG(Vi). For two given j, j′ ∈ Z+, j ≤ j′,

we denote by [j, j′] the set {j′′ | j′′ ∈ Z+, j ≤ j′′ ≤ j′} and by (j, j′] the set {j′′ | j′′ ∈ Z+, j < j′′ ≤ j′}.

3. Approximation algorithms for BCMD

We begin this section by describing the

4 +

2
D


-approximation algorithm for BCMD of Li et al. [20] and show that it

actually computes a

2 +

2
D


-approximate solution. This algorithm uses an algorithm for the k-center Problem as a black

2 The addition of parallel edges is allowed.
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Fig. 1. Case (i) of the proof of Lemma 2.

box. The k-center Problem is the problem that takes a graph G and an integer k ∈ Z∗ as inputs and asks for a k-clustering
⟨V1, . . . , Vk⟩ of V (G) that minimizes maxi∈[1,k] rG(Vi). It is well known that this problem cannot be approximated within a
factor better than 2, unless P = NP [22]. On the other hand, 2-approximation algorithms are given in papers [13,15].

The algorithm of Li et al. [20] uses any algorithm A for the k-center problem on input G and k = B + 1 to find a (B + 1)-
clustering ⟨V0, . . . , VB⟩ of V (G). Then, it computes a center zi for every cluster Vi and outputs the set F = {(z0, zi) | i ∈ [1, B]}.
We prove that this algorithm computes a


2 +

2
D


-approximate solution when A is the 2-approximation algorithm of

Gonzalez [13]. In the following we provide the description of a variant of the Gonzalez algorithm (Gonzalez for short)
that computes a k-clustering of a subset of vertices of the graph.

The algorithm Gonzalez takes as input a graph H , a set of vertices U ⊆ V (H), and a value k ∈ Z+. The algorithm returns
a k-clustering ⟨V1, . . . , Vk⟩ of U which is computed in two steps. In the first step, k vertices v1, . . . , vk ∈ U (not necessarily
distinct) are computed, and in the second step, the k-clustering ⟨V1, . . . , Vk⟩ of U is computed using information gathered
in the first step. The first step goes as follows. Vertex v1 ∈ U is chosen arbitrarily. Then, for every i = 2, . . . , k, vertex vi ∈ U
is a vertex that maximizes the minimum distance from v1, . . . , vi−1, i.e., vi ∈ argmaxv∈U minj∈[1,i−1] dH(vj, v). The second
step goes as follows. At the beginning Vi = {vi} for every i. Then, every vertex v ∈ U \ {v1, . . . , vk} is assigned to the cluster
associated with the closest of the vi’s, i.e., vertex v is added to cluster Vi if dH(vi, v) ≤ dH(vj, v), for every j ∈ [1, k], j ≠ i.
Ties are broken arbitrarily.

The subsequent lemmas are the key of our proof.

Lemma 1. Let H be a graph, let U ⊆ V (H), and let λ ∈ Z+. If α(Hλ
[U]) ≤ k,3 then the algorithm Gonzalez on input H,U,

and k computes a k-clustering ⟨V1, . . . , Vk⟩ of U such that rH(Vi) ≤ λ, ∀i ∈ [1, k].

Proof. We first show by contradiction that in H with α(Hλ
[U]) ≤ k, we have maxv∈U minj∈[1,k] dH(vj, v) ≤ λ. For the

sake of contradiction, assume that maxv∈U minj∈[1,k] dH(vj, v) > λ. Then, by construction, dH(vj, vj′) > λ for every
j, j′ ∈ [1, k], j ≠ j′. Let u ∈ U be any vertex such that u ∈ argmaxv∈U minj∈[1,k] dH(vj, v). We have that {v1, . . . , vk} ∪ {u} is
an independent set of Hλ

[U] of cardinality k + 1, thus contradicting the assumption that α(Hλ
[U]) ≤ k. As a consequence

of the above claim, we have that

rH(Vi) ≤ max
v∈Vi

dH(vi, v) ≤ max
v∈U

min
j∈[1,k]

dH(vj, v) ≤ λ

for every i ∈ [1, k]. �

Lemma 2. Let H be a graph and let λ ∈ Z+. For every e ∈ E(H̄), α((H + e)λ) ≥ α(Hλ) − 1.

Proof. Let v1, . . . , vℓ be an independent set in Hλ. For the sake of contradiction, assume there exists an edge e = (u, v) ∈

E(H̄) such that α((H + e)λ) < ℓ − 1. This implies that (i) there exist four distinct indexes i, i′, j, j′ ≤ ℓ such that
(vi, vj), (vi′ , vj′) ∈ E((H + e)λ) or (ii) there exist three distinct indexes i, i′, i′′ ≤ ℓ such that (vi, vi′), (vi′ , vi′′), (vi′′ , vi) ∈

E((H + e)λ).
We deal with case (i) first. Since dH(vi, vj), dH(vi′ , vj′) > λ and since dH+e(vi, vj), dH+e(vi′ , vj′) ≤ λ, then, both the

shortest path from vi and vj in H + e and the shortest path from vi′ and vj′ in H + e pass through edge e. Therefore, without
loss of generality, we have that (see also Fig. 1)

dH(vi, u) + 1 + dH(vj, v) ≤ λ
dH(vi′ , u) + 1 + dH(vj′ , v) ≤ λ
λ < dH(vi, u) + dH(vi′ , u)
λ < dH(vj, v) + dH(vj′ , v).

If we sum up all the inequalities we get 2 < 0, a contradiction.
Now, we deal with case (ii). Since dH(vi, vi′), dH(vi′ , vi′′), dH(vi′′ , vi) > λ and since dH+e(vi, vi′), dH+e(vi′ , vi′′), dH+e(vi′′ ,

vi) ≤ λ, any shortest path in H + e between any pair of the three vertices vi, vi′ , vi′′ has to go through the edge e. Thus, two

3 Here, Hλ
[U] means the subgraph of Hλ induced by U .
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Fig. 2. Tight example for the upper bound on D′ . On the left side, the input graph G is depicted. Let U be the set of vertices within the shaded area. The
budget is B = |U| − 2. Observe that U is a maximum independent set of G, and thus, α(G) = B + 2. On the right side, the addition of B edges to G (the
dashed edges) induces a graph of diameter D = 2. Thus, α(GD′

) ≤ B + 1 if and only if D′
≥ 2.

of the three vertices vi, vi′ , vi′′ are closer to one endvertex of e than to the other one. Without loss of generality, assume that
dH(vi′ , v) ≤ dH(vi′ , u), and dH(vi′′ , v) ≤ dH(vi′′ , u). As a consequence,

dH(vi′ , vi′′) ≤ dH(vi′ , v) + dH(vi′′ , v)

< min{dH(vi′ , v) + 1 + dH(vi′′ , u), dH(vi′ , u) + 1 + dH(vi′′ , v)}

= dH+e(vi′ , vi′′) ≤ λ,

and thus (vi′ , vi′′) ∈ E(Hλ), a contradiction. �

Thanks to the above lemmata, we can prove the following.

Theorem 1. There exists a

2 +

2
D


-approximation algorithm for BCMD running in polynomial time.

Proof. Let F∗ be an optimal solution for the BCMD on input instance G and B, and letD = diam(G+F∗). As α((G+F∗)D) = 1
and |F∗

| ≤ B, by a repeated use of Lemma 2, we obtain α((G + F∗)D) ≥ α(GD) − |F∗
|, and thus α(GD) ≤ B + 1. As a

consequence, Lemma 1 implies that the algorithm Gonzalez computes a (B + 1)-clustering ⟨V0, . . . , VB⟩ of V (G) such that
rG(Vi) ≤ D, ∀i ∈ [0, B]. Let zi be a center of cluster Vi and let F = {(z0, zi) | i ∈ [1, B]} be the solution returned by the
algorithm of Li et al. [20] when algorithm Gonzalez is used as the k-clustering procedure. Clearly, |F | ≤ B. Moreover, every
vertex v ∈ V (G) is at distance at most D + 1 from z0 in G + F . Therefore, diam(G + F) ≤ 2D + 2. The claim follows. �

Looking at the proof of Theorem 1, one can notice that the approximation ratio of the algorithm for BCMD is actually
2D′

+2
D , where D′

∈ Z+ is the minimum positive integer value such that α(GD′

) ≤ B + 1. Moreover, as a consequence of
Lemma 2, we proved that D′

≤ D. The example in Fig. 2 shows that this upper bound is essentially tight.
The following theorem shows a better approximability result for the class of forests.

Theorem 2. For the BCMD restricted to forests, there exists a linear time algorithmwhich returns a

1+

2
D


-approximate solution

for even values of D and a

1 +

4
D


-approximate algorithm for odd values of D.

Proof. Let G be a forest and let {H1, . . . ,Hℓ} be a minimum partition of GD in cliques.4 As forests are perfect graphs5 and
because GD is still a perfect graph (see [3]), we have that α(GD) = ℓ. Moreover, analogously to the proof of Theorem 1, we
have that ℓ ≤ B+1. Additionally, eachHi can be extended to a subtree Ti ofG such thatV (Hi) ⊆ V (Ti) anddiam(Ti) ≤ D. As an
unweighted undirected tree of diameter λ has radius equal to ⌈λ/2⌉ [2], it follows that ⟨V (T1), . . . , V (Tℓ)⟩ is an ℓ-clustering
of V (G) such that rG(V (Ti)) ≤ ⌈D/2⌉, for every i ∈ [1, ℓ]. As a consequence, an optimal solution for the k-center problem on
input G and k = B+1 is a (B+1)-clustering ⟨V0, . . . , VB⟩ such that rG(Vi) ≤ ⌈D/2⌉, for every i ∈ [0, B]. Furthermore, such a
clustering can be found in linear time [4,19]. Let zi be a center of Vi. Let F = {(z0, zi) | i ∈ [1, B]}. Clearly, |F | ≤ B. Moreover,
every vertex v ∈ V (G) is at distance at most ⌈D/2⌉ + 1 from z0 in G+ F . Therefore, diam(G+ F) ≤ 2⌈D/2⌉ + 2. Thus, if D is
even we get diam(G+ F) ≤ D+ 2, while for odd values of Dwe obtain diam(G+ F) ≤ D+ 4. This completes the proof. �

Open problems and conjectures. Despite all our efforts, we could not find an example in which the algorithm of Theorem 1
returns a solution having diameter strictly greater than 2D − 1. Therefore we conjecture that

Conjecture 1. The algorithm of Theorem 1 computes a

2 −

1
D


-approximate solution for BCMD.

As it might be difficult to either prove or disprove the above conjecture, we propose the following alternative conjecture
which, as we will prove, implies a weaker approximability result.

Conjecture 2. Let G be a graph and let B be the minimum number of edges whose addition to G induces a graph of diameter equal
to D. Then, there exists a (B+1)-clustering ⟨U0,U1, . . . ,UB⟩ of V (G) such that (i) rG(U0) ≤ D and (ii) diam(G[Ui]) ≤ D−1, ∀i ∈

[1, B].

4 A partition of G in cliques is a collection {H1, . . . ,Hℓ} of vertex-disjoint subgraphs of G such that
ℓ

i=1 V (Hi) = V (G) and each Hi is a clique. A partition
{H1, . . . ,Hℓ} of a graph G in cliques is minimum if and only if for every other partition {H ′

1, . . . ,H
′

ℓ′ } of G in cliques we have that ℓ ≤ ℓ′ .
5 A graph G is perfect if and only if the size of a minimum partition of G in cliques equals α(G) [3].
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Theorem 3. If Conjecture 2 holds, then there exists a 2-approximation algorithm for BCMD running in polynomial time.
Proof. The algorithm guesses D and the center z0 of the cluster U0 and builds cluster V0 = {v | v ∈ V (G), dG(z0, v) ≤ D}.
Let U = V (G) \ V0. Then, the algorithm computes a B-clustering ⟨V1, . . . , VB⟩ of U using the algorithm Gonzalez. Next, it
computes a center zi for each cluster Vi and finally returns the set F = {(z0, zi) | i ∈ [1, B]}.

Clearly U0 ⊆ V0. Moreover, because diam(G[Ui]) ≤ D − 1 and U ⊆
B

i=1 Ui, we have that α(GD−1
[U]) ≤ B and thus, by

Lemma 1, rG(Vi) ≤ D − 1. As a consequence, diam(G + F) ≤ 2D. This completes the proof. �

4. An O(log n)-approximation algorithm for MCBD

In this section we describe an O(log n)-approximation algorithm for MCBD. Without loss of generality, we can restrict
our focus to the class of connected graphs. Indeed, if D < diam(G) and the number of connected components of G is equal to
ℓ ≥ 2, thenwe can first add ℓ−1 edges to G tomake it connected and then run our O(log n)-approximation algorithm. Since
the value of an optimal solution has to be greater than or equal to ℓ−1, thenwe are still guaranteed to compute an O(log n)-
approximate solution. In what follows, we provide an informal description of the algorithm. For a formal description, see
Algorithm 1.

Algorithm 1 O(log n)-approximation algorithm for MCBD
if diam(G) ≤ D then return ∅ endif
if G is not connected then
add to G the minimum number of edges to make it connected;

end if
— beginning of first phase —
F1 := ∅;
i := 0;
Hi := G;
fix a vertex s ∈ V (G);
while cost(Hi) > 0 do

g := 0;
for all e ∈ {(s, v) | v ∈ V (G)} do
if gain(e,Hi) > g then g := gain(e,Hi); ē := e; endif

end for
F1 := F1 ∪ {ē};
Hi+1 := Hi + ē;
i := i + 1;

end while
G1 := G + F1;
— end of first phase —
— beginning of second phase —
Z :=


{u, v} | {u, v} ∈ I(G1)


;

for all e ∈ E(Ḡ) do
Se :=


{u, v} | {u, v} ∈ Z, dG1+e(u, v) ≤ D


;

end for
S := {Se | e ∈ E(Ḡ)};
compute a solution X for the Set Cover Problem on input Z and S;
F2 := {e | Se ∈ X};
— end of second phase —
return F1 ∪ F2;

In the rest of the section, for any graph H , let I(H) be a set of unordered pairs of vertices defined as follows I(H) :=
{u, v} | u, v ∈ V (H), dH(u, v) > D


. The algorithm uses a greedy approach and consists of two phases. In the

first phase, the algorithm fixes a vertex s ∈ V (G) and computes a set F1 of edges incident to s such that for each pair
{u, v} ∈ I(G), dG+F1(s, u) + dG+F1(s, v) ≤ D + 1. Observe that this immediately implies that diam(G + F1) ≤ D + 1.
Moreover, for every pair {u, v} ∈ I(G) there exists a path from u to v in G + F1 of length less than or equal to D + 1 which
contains s. Let G1 = G + F1. In the second phase, the algorithm computes a set F2 of edges such that diam(G1 + F2) ≤ D.
More precisely, for every pair {u, v} ∈ I(G1), there exists an edge e ∈ F2 such that dG1+e(u, v) ≤ D. We will prove that
|F1|, |F2| = O(B log n).

For the rest of the section, let s ∈ V (G) be fixed. We now describe the first phase of the algorithm. For any graph H and
for every two vertices u, v ∈ V (H), we define

µH(u, v) := max

0, dH(s, u) + dH(s, v) − (D + 1)


.
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Furthermore, let

cost(H) :=


{u,v}∈I(H)

µH(u, v).

Let Fs = {(s, v) | v ∈ V (G)}. For a given edge e, define gain(e,H) := cost(H) − cost(H + e) to be the gain of edge ew.r.t.
H . The algorithm first sets F1 := ∅ and H0 := G and then proceeds in discrete steps. During step i ≥ 1, the algorithm selects
an edge e = (s, v) ∈ Fs that maximizes gain(e,Hi−1), adds e to F1, and sets Hi := Hi−1 + e. The first phase of the algorithm
ends when cost(Hi) = 0. We prove the following

Lemma 3. At the end of the first phase, µG+F1(u, v) = 0 for every u, v ∈ V (G). Moreover, |F1| = O(B log n).

Proof. Clearly, the first phase of the algorithm ends when µHi(u, v) = µG+F1(u, v) = 0, for every {u, v} ∈ I(G).
Let F∗ be an optimal solution for MCBD on inputs G and D and let U = {v1, . . . , vℓ} be the set of endvertices of the edges

in F∗. Clearly, ℓ ≤ 2B. Let e∗

j = (s, vj), for every j ∈ [1, ℓ], and let F̂ = {e∗

1, . . . , e
∗

ℓ}. Observe that µG+F̂ (u, v) = 0, for every
u, v ∈ I(G). Moreover, F̂ ⊆ Fs.

Proposition 1. For every i,
ℓ

j=1 gain(e
∗

j ,Hi) ≥ cost(Hi).

Proof. For each j ∈ [1, ℓ], let H j
i denote the graph Hi + {e∗

1, . . . , e
∗

j } and let H0
i = Hi. Observe that cost(Hℓ

i ) = 0 as G+ F̂ is
a subgraph of Hℓ

i . As edges e∗

1, . . . , e
∗

ℓ are all incident to s, for all j ∈ [1, ℓ] and for all v ∈ V (G), dH j
i
(s, v) < dH j−1

i
(s, v)

implies dH j
i
(s, v) = dHi+e∗j

(s, v). As a consequence, for all j ∈ [1, ℓ] and for all v ∈ V (G), dHi(s, v) − dHi+e∗j
(s, v) ≥

dH j−1
i

(s, v)− dH j
i
(s, v). Then, by a simple case analysis, it follows that µHi(u, v)−µHi+e∗j

(u, v) ≥ µH j−1
i

(u, v)−µH j
i
(u, v) for

all j ∈ [1, ℓ] and for all u, v ∈ V (G), and thus gain

e∗

j ,Hi


≥ gain

e∗

j ,H
j−1
i


. Therefore

ℓ
j=1

gain

e∗

j ,Hi


≥

ℓ
j=1

gain

e∗

j ,H
j−1
i


=

ℓ
j=1


cost


H j−1

i


− cost


H j

i


= cost(Hi) − cost(Hℓ

i ) = cost(Hi). �

As a consequence of the above proposition, for every i ≥ 1, there exists an edge e ∈ Fs such that gain(e,Hi−1) ≥

max

1, cost(Hi−1)

ℓ


≥ max


1, cost(Hi−1)

2B


. This implies that cost(Hi) ≤ cost(H0)


1 −

1
2B

i
= cost(G)


1 −

1
2B

i
for

every i. Moreover, at the beginning of the last step of the algorithm, say η + 1, we have that cost(Hη) ≥ 1. Therefore,
1 ≤ cost(Hη) ≤ cost(G)


1 −

1
2B

η
. Taking the natural logarithm and simplifying, we finally get

η ≤ 2B ln cost(G) = O(B log n),

where the equality comes from the fact that cost(G) = O(n3) as G is connected. �

We now describe the second phase of the algorithm. Let G1 = G + F1, where F1 is the set of edges computed by the
algorithm in the first phase.Wemake a reduction to the Set Cover Problem. The Set Cover Problem takes as input a set of objects
Z and a collection S of subsets of Z and asks for the minimum-cardinality subset S′

⊆ S that covers Z , i.e.,


S∈S′ S = Z . The
Set Cover Problem is well known to be approximable within O(log |Z |) [17]. We build an instance of the Set Cover Problem
as follows. The objects in Z are the unordered pairs in I(G1). There is a set Se for every edge e in Ḡwhich is defined as follows

Se :=


{u, v} | {u, v} ∈ Z, dG1+e(u, v) ≤ D


.

Let S′′ be a solution computed by the O(log |Z |)-approximation algorithm for Set Cover Problem and let F2 = {e | Se ∈ X}.
We can prove the following

Lemma 4. At the end of the second phase, diam(G1 + F2) ≤ D. Moreover, |F2| = O(B log n).

Proof. Let {u, v} ∈ I(G1). By construction, pair {u, v} ∈ Z and there exists Se ∈ S′′ such that dG1+e(u, v) ≤ D. As e ∈ F2, we
have that dG1+F2(u, v) ≤ dG1+e(u, v) ≤ D. Therefore, diam(G1 + F2) ≤ D.

Let F∗ be an optimal solution for MCBD on inputs G and D and let U be the set of endvertices of the edges in F∗. We claim
that

S∗
=


S(s,u) | u ∈ U


∪


Se | e ∈ F∗


is a feasible solution for the instance of the Set Cover Problem defined above. Observe that this is enough to prove the claim,
as |S∗

| ≤ 3B and |Z | = |I(G1)| ≤ n2 implies |F2| = O(|S∗
| log |Z |) = O(B log n).

Let {u, v} be a pair in I(G1) and let P be a shortest path from u to v in G + F∗. As dG1(u, v) > D while dG1+F∗(u, v) ≤

dG+F∗(u, v) ≤ D, P contains some edge of F∗. We traverse P from u to v. Let u′ be the first vertex of P which is also
a vertex of U , and let v′ be the last vertex of P which is also a vertex of U . If P contains exactly one edge of F∗, i.e.,



D. Bilò et al. / Theoretical Computer Science 417 (2012) 12–22 19

(u′, v′) ∈ F∗, then pair {u, v} is in set S(u′,v′) by construction and S(u′,v′) ∈ S∗. If P contains two or more edges of F∗,
then dG1(u, u

′) + dG1(v
′, v) ≤ D − 2. Moreover, as Lemma 3 implies that dG1(s, u) + dG1(s, v) = D + 1, we have

dG1(u, u
′) + dG1(v

′, v) ≤ dG1(s, u) + dG1(s, v) − 3. Therefore, dG1(u, u
′) ≤ dG1(s, u) − 2 or dG1(v

′, v) ≤ dG1(s, v) − 2.
Without loss of generality, assume that dG1(u, u

′) ≤ dG1(s, u) − 2. Then, dG1+(s,u′)(u, v) ≤ dG1+(s,u′)(s, u) + dG1+(s,u′)(s, v) ≤

dG1(u, u
′)+ 1+ dG1(s, v) ≤ dG1(s, u)+ dG1(s, v)− 1 = D. As a consequence, the pair {u, v} is in the set S(s,u′). As S(s,u′) ∈ S∗,

the proof is completed. �

Lemmas 3 and 4 yield the main theorem of this section.

Theorem 4. Algorithm 1 is a polynomial time O(log n)-approximation algorithm for MCBD.

Remark 1. We already pointed out that our algorithm extends to directed graphs. It also extends to the case whenwe place
the distance requirements Dui,vi for ℓ pairs {u1, v2}, . . . , {uℓ, vℓ} of vertices of G (in particular the resulting graph need not
be connected). The approximation ratio becomes O(log ℓ + logDmax), where Dmax = maxi∈[1,ℓ] Dui,vi .

Open problems and conjectures for MCBD. The first natural open problem is that of determining whetherMCBD is in P for the
class of forests. In the following, we provide a conjecture which, as we will prove, guarantees the existence of a polynomial
time (1+1/B)-approximation algorithm for the class of forests for all even values ofD. To the best of our knowledge, 2 is the
approximation factor of the best up to date algorithm for the MCBD problem on forests for even values of D (see paper [6]).

Conjecture 3. Let G be a forest, let D ∈ Z+ be an even integer, and let B the minimum number of edges whose addition to
G induces a graph of diameter less than or equal to D. Then, there exists a (B + 1)-clustering ⟨U0,U1, . . . ,UB⟩ of V (G) such
that (i) diam(G[U0]) ≤ D, (ii) diam(G[U1]) ≤ D − 1, and (iii) diam(G[Ui]) ≤ D − 2, ∀i ∈ (1, B].

Theorem 5. If Conjecture 3 holds, then there exists a polynomial time algorithm computing a (1 +
1
B )-approximate solution for

MCBD on forests for the case in which D is an even number.

Proof. We claim that a clustering satisfying the conditions of Conjecture 3 can be found in polynomial time. Let ⟨U0, . . . ,UB⟩

be a (B+1)-clustering of V (G) satisfying the condition of Conjecture 3. First of all observe thatG[Ui] is a tree. It is well known
that a tree T has exactly one center if diam(T ) is even while it has exactly two adjacent centers if diam(T ) is odd [2]. Let Zi
be the set of centers of G[Ui]. The algorithm guesses one center z0 ∈ Z0 and the set Z1. Let E0 be the set of edges of G incident
to z0. The algorithm builds a new tree G′ from G as follows. First, it appends sufficiently many paths of length D/2− 1 (2n/D
paths are enough) to z0 and sufficiently many paths of length D/2 − 1 (again, 2n/D paths are enough) to all vertices in Z1.
Then it identifies all the edges in E0.6 Finally, if |Z1| = 2, the algorithm identifies also the (unique) edge ē linking the two
vertices in Z1. Observe that G′ has a (B + 1)-clustering ⟨U ′

0, . . . ,U
′

B⟩ such that rG′(U ′

i ) ≤ D/2 − 1. Moreover, every such
(B + 1)-clustering has to contain a cluster whose only center is xE0 and, if |Z1| = 2, a cluster whose only center is x{ē}.

The algorithm then finds in linear time a (B+1)-clustering ⟨V ′

0, . . . , V
′

B⟩ of V (G′)minimizing themaximum value among
the cluster radii [4,19]. Moreover, each cluster V ′

i can be extended to a cluster V ′′

i such that (i) V ′

i ⊆ V ′′

i , (ii) G[V ′′

i ] is a tree,
and (iii) rG′(V ′

i ) = rG′(V ′′

i ). Without loss of generality, assume that xE0 is the center of V ′

0. Moreover, if |Z1| = 2, without
loss of generality, assume that x{ē} is the center of V ′

1. Let V0 be equal to V ′

0 \ {xE0} plus z0 and all vertices adjacent to z0 in
G. If |Z1| = 2, then let V1 be equal to V ′

1 \ {x{ē}} plus the vertices in Z1. For every other i ∈ (1, B] let Vi = V ′

i . The (B + 1)-
clustering ⟨V0, . . . , VB⟩ of V (G) satisfies the conditions of Conjecture 3. Let zi be a center of cluster Vi, i ∈ (1, B], and let
F := {(z0, zi) | i ∈ (1, B]} ∪ {(z0, z) | z ∈ Z1}. Observe that each vertex is at distance of at most D/2 in the graph G + F . As a
consequence diam(G + F) ≤ D. Moreover, |F | ≤ B + 1.7 The claim follows. �

We observe that the result of Theorem 5 implies the existence of a PTAS for the problem. In fact, for every ϵ > 0 and
assuming that Conjecture 3 holds, the algorithm of Theorem 5 computes a (1+ ϵ)-approximate solution for every B > 1/ϵ,
while, for every B ≤ 1/ϵ, the brute-force-search algorithm that computes an optimal solution runs in time nO(B)

= nO(1/ϵ).

5. On the existence of bicriteria approximation algorithms

In this section we first prove the existence of a (2 −
1
B , 2)-approximation algorithm for BCMD and then we show that

for every D ≥ 4 there is no polynomial time algorithm with an approximation guarantee of (c log n, δ), for some constant
c > 0, and for every δ < 5

3 −
7−(D+1) mod 3

3D , unless P = NP.
We slightly modify the algorithm described in Section 3 to show the existence of a


2 −

1
B , 2


-approximation algorithm

for BCMD. The correctness proof follows from the subsequent two key lemmas.

Lemma 5. Let U ⊆ V (G). Let ⟨U1, . . . ,Uk⟩ be a k-clustering of U and let R = maxi∈[1,k] rG(Ui). Then the algorithm Gonzalez
finds a k-clustering ⟨V1, . . . , Vk⟩ of U such that rG(Vi) ≤ 2R, ∀i ∈ [1, k].

6 LetH be a graph and let F ⊆ E(H). Let U be the set of vertices which are not incident to any of the edges in F and let F̄ := {(u, v) | (u, v) ∈ E(H), u, v ∈

U}. The graph obtained from H by identifying the edges in F is the graph H ′ with vertex set V (H ′) := U ∪ {xF } and edge set E(H ′) := F̄ ∪ {(xF , v) | (u, v) ∈

E(H), u ∈ V (H) \ U}.
7 Observe that if |Z1| = 1, then |F | ≤ B and the algorithm is exact.
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Proof. The proof immediately follows from Lemma 1 after observing that α(G2R) ≤ k as the distance between every pair of
vertices u, v ∈ Ui for every i is dG(u, v) ≤ 2 · rG(Ui) ≤ 2R. �

Lemma 6. There exists a (2B)-clustering ⟨U1, . . . ,U2B⟩ of V (G) such that rG(U1) ≤ D and rG(Ui) ≤
D−1
2 , for every i ∈ (1, 2B].

Proof. Let F∗ be an optimal solution for BCMD on input G and B, and let V ′
= {v1, . . . , vℓ} be the set of endvertices of the

edges in F∗. Clearly, ℓ ≤ 2B. Let ⟨U1, . . . ,Uℓ⟩ be an ℓ-clustering of V (G) defined as follows. The cluster Ui contains vertex vi

and all the vertices v ∈ V (G) \
i−1

k=1 Uk such that dG(v, vi) ≤ dG(v, vj), ∀j ∈ (i, ℓ]. Clearly, rG(Ui) ≤ maxv∈Ui dG(v, vi). As a
consequence, we have to prove the claim for the case in which there exist i ∈ [1, ℓ] and v ∈ Ui such that dG(v, vi) > D−1

2 .
Without loss of generality, let us assume that there exists v ∈ U1 such that dG(v, v1) > D−1

2 ; let v∗ denote an arbitrary but
fixed vertex v with this property.

Let v, v′ be two vertices of Ui. Every path from v to v′ in G+F∗ passing through some edge of F∗ has a length greater than
or equal to dG(v, vi) + 1+ dG(v′, vi), while a shortest path in G from v to v′ has a length of at most dG(v, vi) + dG(v′, vi). As
a consequence, dG(v, v′) = dG+F∗(v, v′) ≤ D.

We modify the ℓ clusters by moving vertices from U2, . . . ,Uℓ to U1 as follows. As long as there exists a vertex v ∈ Ui,
i ∈ (1, ℓ], such that dG(v, vi) > D−1

2 , we remove v fromUi andwe add v toU1. Any path inG+F∗ from v∗ to v passing through
any edge in F∗ has a cost greater than or equal to dG(v∗, v1) + 1 + dG(v, vi) > D. Therefore, dG(v∗, v) = dG+F∗(v∗, v) ≤ D.
As a consequence, rG(U1) ≤ maxv∈U1 dG(v

∗, v) ≤ D. Moreover, for every i ∈ (1, ℓ], rG(Ui) ≤ maxv∈Vi dG(vi, v) ≤
D−1
2 by

construction. The claim follows. �

Let ⟨U1, . . . ,U2B⟩ be a (2B)-clustering of V (G) from Lemma 6. Let v1 be a center of U1, and let D′
= rG(U1). Our

algorithm, whose formal description is given below (Algorithm 2), first guesses v1 and D′. Then, it computes a cluster
V1 = {v ∈ V (G) | dG(v1, v) ≤ D′

} and uses the Gonzalez algorithm to find a (2B − 1)-clustering ⟨V2, . . . , V2B⟩ of V (G) \ V1.
As U1 ⊆ V1, ⟨U2, . . . ,U2B⟩ is a (2B − 1)-clustering of V (G) \ V1. Therefore, Lemma 5 implies that rG(Vi) ≤ D − 1, for every
i ∈ (1, 2B]. Let zi be a center of cluster Vi. The algorithm outputs F = {(z1, zi) | i ∈ (1, 2B]}. Observe that every vertex v is
at distance of at most D from z1 in G + F . Therefore, diam(G + F) ≤ 2D. Also observe that |F | ≤ 2B − 1. We have proved
the following theorem.

Theorem 6. Algorithm 2 returns a

2 −

1
B , 2


-approximate solution for BCMD.

Algorithm 2 Bicriteria approximation algorithm
F := ∅;
for all v ∈ V (G) do

for all v′
∈ V (G) do

V1 := {u ∈ V (G) | dG(v, u) ≤ dG(v, v′)};
compute a (2B − 1)-clustering ⟨V2, . . . , V2B⟩ of V (G) \ V1 using Gonzalez;
compute center zi for every cluster Vi, i ∈ [1, 2B];
F ′

:= {(z1, zi) | i ∈ [1, 2B]};
if diam(G + F ′) < diam(G + F) then F := F ′ endif

end for
end for
return F

Concerning inapproximability of BCMD we can prove the following.

Theorem 7. For every fixed integer D ≥ 4, there exists no (c log n, δ)-approximation algorithm for BCMD, for some constant
c > 0 and for every δ < 5

3 −
7−(D+1) mod 3

3D , unless P = NP.

Proof. The reduction is from theMinimum Dominating Set Problem (MDS for short), i.e., the problem of finding a minimum-
cardinality set of vertices U of a given graph G′ on n̂ vertices such that every vertex of G′ is in U or it is a neighbor of some
vertex in U . The MDS is not approximable within c ′ log n̂, for some constant c ′ > 0, unless P = NP [24].

Let G′ be a graph with n̂ vertices and let k∗ be the size of a minimum dominating set in G′. We transform the instance
of MDS to an instance of BCMD with n vertices and claim that the existence of a (c log n, δ)-approximation algorithm for
BCMD, with δ < 5

3 −
7−(D+1) mod 3

3D , implies the existence of a (c ′ log n̂)-approximation algorithm forMDS, for some c ′ < 17c.
This would immediately lead to a contradiction by choosing c small enough.

For the sake of exposition, we prove the result for every D = 6ρ + 4, where ρ ≥ 0 is a fixed integer. We build the input
graph G in the following way (see Fig. 3). G contains 2 copies G1,G2 of G′ plus a singleton vertex s such that s ∉ V (G′). For
every u ∈ V (G′), denote by ui the copy of u in Gi. Replace each edge (ui, vi) ∈ E(Gi) with a path Pui,vi from ui to vi of length
2ρ + 1 by adding 2ρ new vertices and 2ρ + 1 new edges. For every vertex u ∈ V (G′), and for every i = 1, 2, append a path
P i
u to ui of length ρ by adding ρ new vertices and ρ new edges. For every i = 1, 2, denote by ν i

u the endvertex of P i
u different

from ui (if ρ = 0 then ν i
u = ui). Set B = 2k∗. Observe that n ≤ 1 + 2n̂ + 2(2ρn̂2

+ ρn̂) ≤ 5ρn̂2, for n̂ large enough.
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Fig. 3. The reduction for the case D = 6ρ + 4, where ρ ≥ 0 is a fixed integer. The big vertices are the copies of the vertices contained in G′ . The solid edges
are the edges in the reduction. Observe that the addition of the dashed edges to the graph induces a graph of diameter less than or equal to D.

Let U∗ be aminimum-cardinality dominating set in G′. By augmenting Gwith the B = 2k∗ edges from s to both the copies
of each vertex in U∗, we obtain a graph having diameter less than or equal to D. Indeed, every vertex in Pui,vi is at distance
of at most ρ from either ui or vi. Furthermore, every vertex in P i

u is at distance of at most ρ from ui. Finally, every ui is at
distance of at most 2ρ + 1 from a copy of some vertex in U∗ in G, as U∗ is a dominating set in G′. As a consequence, every
vertex in Gi is at distance at most 3ρ + 2 from s. Therefore, the diameter of the resulting graph is less than or equal to D.

Now, let F be the set of edges computed by any

c log n, δ


-approximation algorithm for BCMD, with δ < 5

3 −

7−(D+1) mod 3
3D =

5
3 −

5
3D . Let X be the set of the endvertices of the edges in F . We have that |X | ≤ 2cB log n. Let Y be

equal to X . We modify Y as follows. As long as there is an x ∈ Y which is an internal vertex of Pui,vi , then we remove x from
Y and we add u and v to Y . Next, as long as there is an x ∈ Y which is a vertex of V (P i

u) \ {ui}, then we remove x from Y and
we add ui to Y . Clearly, |Y | ≤ 2|X | ≤ 4cB log n. Let U be the set of vertices in G′ defined as follows: U contains a vertex u of
G′ if and only if u1 ∈ Y or u2 ∈ Y . We have that |U| ≤ |Y | ≤ 4cB log n ≤ 8ck∗ log


5ρn̂2


< 17ck∗ log n̂, for large values of

n̂. To complete the proof, it is enough to show that U is a dominating set in G′. Let u be any vertex in V (G′) and consider the
two vertices ν1

u and ν2
u in G; their distance in G is +∞, while their distance in G + F is upper bounded by

δD <
5
3
D −

5
3

=
5
3
(6ρ + 4) −

5
3

= 10ρ + 5.

As a consequence, δD ≤ 10ρ +4. As there is no edge between V (G1) and V (G2) in G, there exists a vertex x ∈ X such that
dG(x, ν1

u ) ≤ 5ρ+1 or dG(x, ν2
u ) ≤ 5ρ+1. Therefore, by construction, there exists a vertex v in Y such that dG(v, ν1

u ) ≤ 5ρ+1
or dG(v, ν2

u ) ≤ 5ρ +1, i.e., dG(v, u1) ≤ 4ρ +1 or dG(v, u2) ≤ 4ρ +1. Since each of the vertices in Y is a copy of some vertex
of G′ and because dG(ui, vi) ≥ 4ρ + 2 for every u, v ∈ V (G′), (u, v) ∉ E(G′), it follows that U is a dominating set in G′.

To extend the proof for all the other values of D ≥ 4 we do the following. Let D = 6ρ + 3x + θ1 + θ2 + 2, where ρ is
a non-negative integer while x, θ1, θ2 ∈ {0, 1}. Observe that there exists a feasible choice of the variables for every D ≥ 4.
The algorithm builds an instance similar to the one we described above with the only difference that (i) the length of path
Pui,vi is equal to 2ρ + θi + x and (ii) the length of the path P i

u is ρ + x if i = 1, ρ otherwise. The proof then goes along the
same line of the above proof. �

6. Extension to edge-weighted graphs

In this section we extend some of our results for a generalized version of BCMD which is defined as follows.

Weighted Bounded-Cardinality Minimum-Diameter Edge Addition (WBCMD)
Instance: an undirected graph G with a real weight w(e) associated with each edge e ∈ E(G), a value B ∈ Z+, and a non-

negative real value ω ≥ 0.
Goal: find a set F of edges of cardinality at most B such that the diameter of G + F is minimized, where each edge e in F

has a weight w(e) = ω associated with it.8

The following results hold.

Theorem 8. There exists a

2 +

2ω
D


-approximation algorithm for WBCMD running in polynomial time.

Proof. The proof is identical to the proof of Theorem 1 after observing that (i) the definition of Gλ can be naturally extended
to every real value of λ ≥ 0, (ii) the algorithm Gonzalez can be naturally extended to deal with edge-weighted graphs,
(iii) Lemma 1 holds for the extension of Gonzalez to edge-weighted graphs, and (iv) Lemma 2 holds for the extension of
Gλ for real values of λ. �

8 The length of a path is nowmeasured w.r.t. its edge weights, i.e., the length of a path (v1, e1, . . . , vh, eh, vh+1) is equal to
h

i=1 w(ei). Thus the addition
of parallel edges is allowed.
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Theorem 9. Algorithm 2 returns a

2 −

1
B , 2


-approximate solution for WBCMD.

Proof. The proof is identical to the proof of Theorem 6 after observing that Lemma 6 can be extended to prove that there
exists a (2B)-clustering ⟨U1, . . . ,U2B⟩ of V (G) such that rG(U1) ≤ D and rG(Ui) ≤

D−ω
2 , for every i ∈ (1, 2B]. �

Theorem 10. For everyω ≥ 0, and for every D ≥ 2ω, there exists no (c log n, δ)-approximation algorithm forWBCMD, for some
constant c > 0 and for every δ < 2 −

3ω
D , unless P = NP.

Proof. Let ω ≥ 0 and let D ≥ 2ω be fixed. We build the input graph G in the following way. G contains 2 copies G1,G2 of G′

plus a singleton vertex s such that s ∉ V (G′). All the edges in G have a weight equal to D/2 − ω. Set B = 2k∗. Observe that
n = 1 + 2n̂. The proof goes along the same line of the proof of Theorem 7. �
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