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Abstract-Starting from a microscopic model of ferromagnetism, information is de- 
duced about the form of the macroscopic constitutive relationship between the fields 
H and M; this exhibits hysteresis and space interaction. Accordingly, the concepts of 
distributed and nondistributed hysteresis functionals are introduced. Constitutive re- 
lations of this type are coupled with Maxwell’s equations for a distributed system, for 
both the quasistationary and the fast evolution cases. Several weak formulations in 
Sobolev spaces are introduced; existence results are proved by means of implicit time 
discretization, a priori estimates and compactness procedures for taking the limit in the 
hysteresis functional. 

INTRODUCTION 

This paper deals with the electromagnetic evolution of a ferromagnetic body taking ac- 
count of hysteresis effects. In [8] the author studied this problem in the univariate case, 
representing the constitutive relation between the fields Hand M by means of a “memory 
functional” : 

Mb, t) = Kww, *), MO(x)l(~) Vt E [0, T], a.e. in s2. (1) 

Here Sz is a 3-dimensional domain, T > 0, 9 is a Volterra (i.e. causal) functional, its 
arguments are a (continuous) function of time into iw3 and a vector; H(x, .) denotes the 
function t ++ H(x, t) and M’(X) = M(x, 0) a.e. in Sz; x is just a parameter (actually in [S], 
M was replaced by B, but this is equivalent as B = p&f + ~ITM, J_L~ being a positive 
constant). Examples of hysteresis functionals were also given in [8]; the classical Preisach 
model was studied in [9], and then generalized to the vector case in [4]. 

Here we consider the multivariate case. The fact that the injection of {u E L’(11)3 1 VXV 
E L2(fl)3} into L’(fl)3 is not compact prevents from using a compactness argument for 
proving an existence result as in [8]. 

If instead of (1) a relation of the form M = +(H) with + maximal monotone function 
[w3 * [w3 (or graph, more generally) were used, then the previous difficulty could be 
overcome by means of a compensated compactness argument, as in [II: however this 
does not extend to the case with hysteresis. Moreover (1) does not take into account 
space interactions and is essentially a constitutive relation for a nondistributed system 
(i.e. with no explicit dependence on space). The use of a nondistributed constitutive 
relation (i.e., with x acting just as a parameter) for a distributed system is a common 
practice, but in the case of hysteresis there is the mathematical drawback that the 
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4-l .A. VISIVTIN 
“smoothness” of H w.r.t. .r does not imply any “smoothness’* of AI w.r.t. X. even for a 
“regular” functional 5 ; this does not seem very sound also from the physical viewpoint. 

Searching a more precise constitutive relation, in [IO] the author examined the math- 
ematical properties of a microscopic model of ferromagnetism. namely the classical theory 
of Weiss domains and Landau-Lifshitz equations. Here in section I we use this model 
for deducing some information on the structure of the constitutive relation between H 
and M. As a result in the case of quasistationary evolution we get 

H(t) = [%(icl(.r, .), H”(r))](t) + &AI(t) : = [%(M, H”)](t) in Q’(R)“. Vt E [O. Tl; (2) 

here % is the inverse of 8 (assumed to exist) and is a nondistributed hysteresis functional, 
H”(.Y) = H(.r, 0) a.e. in R and slz is a second order elliptic operator; 9 is an example of 
distributed hysteresis functional. These concepts are detailed in section 2. Eq. (2) is cou- 
pled with Maxwell’s equations for quasistationary evolution, i.e. without displacement 
current term, or equivalently with an equation of the form 

; (H + M) + Px’VxH = f, (3) 

with normalized constants and f datum. In section 3 we prove the existence of at least 
one weak solution for the system (2), (3) and another existence result for (3) coupled with 
the constitutive relation 

M = [9;(H, M’)] in 0 x [0, T], (4) 

where the distributed hysteresis functional 9 is the inverse of % (assumed to exist), so 
that (2) and (4) are equivalent. In many technical applications it is reasonable to assume 
the magnetostatic approximation, namely to replace Maxwell’s equations by 

VxH = f v . (/L&f + 4TrM) = 0; (5) 

we prove existence of a solution also for the system (2), (5). 
In section 4 we deal with the fast evolution case. The microscopic model suggests a 

macroscopic constitutive relation of the form 

H=%(M,H’)+$, 

where the extra term JMldt (multiplied by a viscosity coefficient) represents viscosity. 
We prove an existence result for the problem of this constitutive relation coupled with 
Maxwell’s equations, now including the displacement current term. 

These existence results can be summarized as follows. We prove existence of a solution 
for the magnetostatic equations or for Maxwell’s equations without displacement current 
term coupled with the quasistationary constitutive relation (2) or with the fast evolution 
relation (6) and also for Maxwell’s equations with displacement current coupled with (6). 
The excluded case of Maxwell’s equations with displacement current coupled with the 
quasistationary relation (2) is not physical, since the viscosity term in the constitutive 
relation is more important than the displacement current term. For all of these problems 
the uniqueness of the solution is an open question. 

Also the invertibility of hysteresis functionals is an open question, even under a certain 
monotonicity assumption. Can the functional corresponding to the classical Preisach 
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model be inverted’? If so, the question of the identification of its inverse arises. Another 
question is the possible existence of periodic solutions. Finally. can any space interaction 
effect be introduced also in the constitutive stress-strain relationship for plasticity? 

1. MICROSCOPIC AND MACROSCOPIC MODELS FOR FERROMAGNETISM 

Consider a ferromagnetic body occupying a bounded domain R of the Euclidean space 
iw3. According to the classical theory of Weiss, below a critical temperature on a micro- 
scopic scale the body is magnetically saturated, that is, denoting the microscopic magnetic 
field by m 

1 m(x. t) 1 = A ( positive constant) in R x [0, T]. (1.1) 

The evolution of m is governed by Landau-Lifshitz equations 

dm 
- = h,mxh’ - hzmx(mxh’) 
at 

in fl X [0, T] (1.2) 

h’: = h + V.(F,Vm) - G.m in 0 x [0, T] (1.3) 

i.e., h,“ = tz, + i -!- 
iJ= I axj 

where Xi, AZ are constants, A2 > 0; h is the magnetic field (the field in Maxwell’s equations, 
to be clearer), F and G are positive-definite 3’-tensors. As usual x denotes the vector 
product, the scalar product, V the gradient, V. the divergence, Vx the curl. Note that 
(I .2) preserves the constraint (1.1) in time, as can be easily checked multiplying (I .I) by 
m. An equivalent way of writing (1.2) is Gilbert’s equation 

&7Z 
-= 

at 
plm x tz’ - E $ 

( 1 
in 0 x [0, T], (1.4) 

with IJ. I, ~2 constants. The transformation formulas between the couples of constants A,, 
AZ and kI, pJ-2 are 

The first term at the right-hand side of (1.2) causes a precession of m around h’ and 
is not dissipative; the second term tends to align m to h’ and is due to viscosity, hence 
it is dissipative. Therefore, as remarked by Callen in [3], (1.4) suggests the interpretation 
that the dissipation introduces a contribution proportional to am/at into the effective mag- 
netic field, p.21~~~ representing a viscosity coefficient. 

An initial condition has to be prescribed 

m(x,O) = m’(x) in R x [0, T], (1.5) 

with 1 m” 1 = At. By physical reasons we have 

v.F.Urn (: = ;: viFij s,> = 0 on an x [O, T], 
i.j= I J 

(1.6) 
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where u denotes the unitary external normal vector on an. (1. I), . . . , (1.3) are coupled 

with Maxwell’s equations and Ohm’s law: 

in W3 x [0, T] (1.7) 

Vxe = -;;(h + 4nm) in W3 x [0, T] (1.8) 

j = a(e + f) in W3 x [0, T]. (1.9) 

Here j denotes the electric current density, e the electric field, u the electric conductivity 
(assumed constant in s1 and vanishing outside), E the dielectric permeability and c the 
velocity of the light in the vacuum; f represents a given applied electromotive force. 
Following [2], (1.7), . . . , (1.9) are set in the whole space and not just in 0 as for (1.2), 
(1.3). This physical setting was studied in [lo], where in particular an existence result for 
the corresponding weak formulation was proved. Here we deal with the macroscopic 
situation. Following a standard procedure, we introduce the space average operator 

+ * (4)(x): = 
1 

volume(B(x, R) fl fl) 
$(x + r)dr for x E R, 

where B(x, R) denotes the ball with center .r and prescribed radius R; it is assumed that 
B(x, R) fl n contains “many” particles, yet is “small” w.i.t. a. We set 

H: = (h), H’: = WY, M: = (m), E: = (e), J: = (j). (1.10) 

By (1.1) and (1.3) we have 

1 M(x, 1) 1 5 A in R X [0, T] (1.11) 

H’ = H + V.(F. VM) - G. M in R X [0, T] (1.12) 

and by (1.7), . . . , (1.9) 

VxH = 45rJ + ; 5 in W’ X [0, T] (1.13) 

VxE = -k ; (H + 4~rM) in R3 x [0, T] (1.14) 

J = o(E + f). in R3 X [0, T]. (1.15) 

In many cases the displacement current (E/C) (dE/dr) can be neglected (see [7], e.g.). 
Difficulties arise in the application of the averaging procedure to the nonlinear Landau- 
Lifshitz equation (1.2). Therefore instead we shall use an experimental relationship be- 
tween H’ and M. At first we assume that the relaxation process described by (1.2) (or 
equivalently by (1.4)) is fast enough compared with the evolution described by Maxwell’s 
equations, whose characteristic time scale depends on the datum f; in this case we in- 
troduce a quasi-stationary condition of the form 

M(x, t) = [%(H”(x, .), Ma(x)](t) in R X [0, T] (1.16) 
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with 5 is a “hysteresis functional” and :51’(x) = M(.r, 0) in R: this will be made precise 
later, however in particular it means that M does not depend just on the value of H’ at 
the same time, but also on the previous evolution of H' : this fact is strictly related to the 
multiplicity of solutions of the stationary microscopic problem of minimization of the 
magnetic energy under the constraint (1.1) (see [IO], section 2). 

In the univariate (i.e., one-dimensional) case it is possible to construct an approximation 
of 5 by means of a classical measurement technique (see [j], 5 36.3). In the multivariate 
situation rather than a direct measurement procedure it seems more convenient to use a 
model relating the vectorial case to the scalar one; in this direction see 141. Usually the 
hysteresis relation is written for H and not for H’, since in the nondistributed case (i.e.. 
with no space dependence) H’ = H. However by (1.2) the evolution of m is determined 
by h’. therefore it is natural to assume that the evolution of ICI: = (m) be controlled by 
that of H’: = (h’); instead H is the field appearing in Maxwell’s equations. 

Assuming that 3 can be inverted, (1.16) can be written in the form 

H’(x, t) = [% (iM(.r, .), H’“(X))](!) in R x [0, T], (1.17) 

with H”(x) = H’(x, O), or also by (1.12) 

H(x, 1) = [% (M(x, .), Heo(.~)>](r) - V . [F . VM(x, r)] + G.M(x, t) 

with H’(X) = H(x, 0) in 
invertible, then (1.18) can 

: = [% (M, HO)](x, t), in fI X [O, T], (1.18) 

Sz; % : = 3 - ’ and ‘% are hysteresis functionals. If also % is 
be rewritten as 

Mb, I) = [9(H, M”)](x~ t) in fl x [O, T], (1.19) 

with M’(X) = M(.r, 0) in 0; also 9: = % - ’ is a hysteresis functional. 
In conclusion, assuming that all inverses exist, in the quasistationary case we have 

four equivalent constitutive relations (here written in shortened form) 

M = $(H’, MO), H’ = %(M, He”), 
M = %(H, AZ’), H = %(M, H”), 

(1.20) 

5 and its inverse % are set pointwise in space, whereas 9 and its inverse % have a global 
character; all of these are hysteresis functionals. This will be made precise in the next 
section. Each of these relations can be coupled with Maxwell’s equations without dis- 
placement current term or also with magnetostatic equations. 

If f is such that the relaxation process of m cannot be neglected, (1.4) suggests to 
replace H’ by 

H’ : = H’ - z z = H + V . (F. VM) - G. A+’ - F $f in fj x [(I, T] (1.21) 

(by (1.12)); in this case also the displacement current term (E/C) (&!Zl&) can be taken into 
account in Maxwell’s equations; however also the magnetostatic approximation is often 
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used in practice. In order to shorten formulae. henceforth all physical constants, even pi 
in (1.131, will be replaced by 1; this will be immaterial for our mathematical developments. 

2. HYSTERESIS FUNCTIOlNALS 

We shall say that (2, ye, X) (or more shortly X) is a memoryfirnctional if and only if 

?Z is a real Banach space; 9C’Z x 2’ (2.1) 

(9.’ denotes the dual space of 2) 

Dom (X.) = {(u, 5) E CO([O, Tl; Dam(2)) x 2’ 1 (z)(O), 5) E Z} (2.2) 

(Dom (2): = {ZJ f 3 1 3w E ‘2 ‘ : (11, w) E 2}); 

V(u, 0 E Dom(Xe), Ye (u, 5) E CO([O, Tl; Z’), LX (u, 5)1(O) = 6 
and ‘d t E to, Tl (4t), [Xe(u, 01(t)) E 3; (2.3) 

V(u,,5),(ttz,5)EDom(~)),VtE[O,T], ifvi = zj2 in[O,t] then 
]Xe(u, 7 6.1(f) = [Xe(%, S)(r), (Causality) (2.4) 

If ‘ZZ is a Banach space of functions defined over a Euclidean domain a, then we shall 
say that X is a distribl4ted memory functional; if ‘Z = WN (N 2 l), then X will be said a 
non-disfributed memory functional, 

Besides the above basic properties, we introduce the following ones 

V(u, [) E Dam(X), Vk[O, T], setting 5;: = [X(u, [)I(;) and 
u;(t): = u(t + 5,, vt E [I, T], 
[X(u;, t;)](t - t) = [X(u, c)](t). (Semigroup property) 

(2.5) 

V(u, 5) E Dam(X), Vs: [0, T]+ [0, T] increasing homeomorphism, Vt E [O, T] 
]~(uos, 01(t) = [Xe(u, S)lMO). (Rate independence) 

(2.6) 

In the opinion of the writer, (2.5) and (2.6) are the distinguishing properties of hysteresis: 
they are not fulfilled by time convolution functionals representing viscosity effects. (%, 
2, 2) will be called a hysteresis fl4nctionai if and only if it fulfills (2.1), . . . , (2.6). 

More precisely what we have defined could be named a time-continuous memory func- 
tional, or a time-continuous hysteresis functional if also (2.5) and (2.6) hold, since in (2.3) 
“de (v. 5) E CO([O, T]; 3’). We shall use also the following property 

Vr’, t” E [O, T](t’ < t”), vu: [O, t’] - 27 continuous and piecewise linear, 

t/t E 3’ such that (v(O), 5) E 9?, Vz E %, set 

1 

u f - r’ 1 z - Ll(f’) 1 
in [0, 1’1 

u,: = u(t’) + ~ 
z t” - t’ 

in [t’, t”]; Qr,(z): = [X(Z);, 5)1(P). 
in [l”, T] 

It is required that Q,: % --, 2” be cyclically maximal monotone 

(Piecewise monotonicity). (2.7) 
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Remark that also this property does not hold if X has the form of a time convolution, 
whereas it is compatible with hysteresis phenomena. For applications we shall need also 
some continuity property of the functional z’ - X (~1, 5); this will be specified case by 
case. 

Let (2, g, X) be a memory functional; another memory functional (T’, 3 -I, X) will 
be called its inverse and we shall write X = X -’ if and only if 

V(Z), 5) E Dam(X), setting IV: = X(zl, 5). ZI = X(ot’, z(O)) (2.8) 

V(rcl, 7) E Dam(X), setting u: = X(rc~, n), k+’ = X((zl, ~(0)). (2.9) 

A necessary condition for the existence of the inverse of a memory functional is that the 
piecewise monotonicity property (2.7) be fulfilled. However, it is not evident that this 
property be also a sufficient condition. 

Now we consider an example of a typical procedure of construction of nondistributed 
hysteresis functionals (see [8], 9 4): % = IF! and S-I! is defined for input functions z’ in a 
suitable subset of C’([O, ?‘I), for instance for continuous and piecewise linear v’s; then 
by some uniform continuity property X is extended to its whole domain. It is easy to see 
that X can be inverted on the class of continuous and piecewise monotone functions [O. 
T] + Iw if (and only if) (2.7) holds; but it is not evident that the inverse can be extended 
to its whole domain and, if such an extension exists, that this be the inverse of X. 

Now we make the definitions of section 1 more accurate. In (1.16) ((w3, ti, %) is a 
nondistributed hysteresis functional and ri = graph Iw3 -+ (5 E [w3 ]] 5 1 5 At} is as sketched 

M 

M, t _ _____ ___-_____ 

D 
H' 

__--- _-em_ -_----MS 

Fig. 1 

Fig. I. 
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Fig. 2 

Fig. 2. 

in Fig. I. If 4 can be inverted, (1.16) is equivalent to (1.17) with (W-‘, 3.3) nondistributed 
hysteresis functional, .$ : = i? --I. Let the linear and continuous operator si: H’(Q)’ -+ 
(H’<fi)3)’ be defined by 

this is the bilinear form associated with M -H -V . (F . VM) + G . M and with the 
boundary condition (1.6). 

For a slow dynamics, using the expression 

H’ = H - d M E (H’(Q),’ (2.11) 

(see (1.12)), (I. 17) can be rewritten in the form 

H(t) = [%(M(x, .), H”(x))](t) + dM(r) 

: = [%(M(.), H”>](t) in (H’(fl)3)‘, VI E LO, Tl. (2.12) 

Let S = graph{f, E H’ (a)3 11 5 1 < At} + H’(R)3 be defined as follows: V(M, H) E H’(n)’ 
x (H’(a)‘)‘, (M, H) E S if an only if H’: = H - dM is measurable in II and (M(x), 
H’(x)) E 3 a.e. in II; then (H’(fl)3, S, $3) is a (distributed) hysteresis functional. If also 
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% can be inverted then (2.12) can be written in the form 

51 

M(t) = [3i”(H(.), MO)l(t) in ~Y’(fl)~, Vt E IO, 71, (2.13) 

with ((H’(fI)3)‘, R, 8) hysteresis functional, R: = S- ‘. 
We introduce a decomposition of % which will be used in the next sections. Remark 

that the maximal loop of 9: = $;-’ is contained in a set of the form 2: = {(M, N’) E 
(iw3)’ 11 M 1 5 MI, 1 H’ 1 5 Z-l;} with M,, H; E W + (see Fig. 2). We set 

vTTI : projection of [w3 onto {UE Iw3 1 1 11 1 2s H7) 

i- 

3,: = {(Y, n, WI I (u, w> E s> (2.14) 

%r(v, 5) = ~~ %(zJ, 0, V(tl, 5) E Dam (3); 

then (iw3, St, %I) is a nondistributed hysteresis functional and ZJ ++= 4(v): = %(u, 5) - 
93, (I!, 5) is a monotone function without hysteresis. We set also 

%3*(u): = c$(u) + du, vu E H’(f-q3. (2.15) 

Thus (2.12) can be rewritten as 

H(t) = [%r(M(x, *), 17’~(x)](t) + %(M(t)) in (17’(0)~)‘, Vt E [O, T]. (2.16) 

3. QUASISTATIONARY EVOLUTION 

For the study of Maxwell’s equations (1.13), (1.14) it is convenient to introduce the fol- 
lowing functional space 

w: = {u E L*(R3)3 1 vxu E L’(w3)3}, 

a Hilbert space with norm 1) v 11 w = ( 1) u Il~qW~p + II Vxu //~z(R~)A)“‘. Identifying ~!.“(iw’)~ 
with its dual we get 

w c LyR3)3 = (L2(R3)3)’ c W’, (3.1) 

with continuous and dense but noncompact inclusions. We shall use also the Hilbert triplet 

v: = H’(fl)3 c L2((s2)3 = (L2(Q3)’ c V’. (3.2) 

Any function defined just in R will be identified with its extension with value zero to 
R3\fI; thus 

v c L2(R3)3 = (L2(R3)3)’ c V’, (3.3) 

(21 E V 1 vxu = 0 on ail} C W; (3.4) 

in (3.2), . . . , (3.4) the inclusions are continuous and dense, in (3.2), (3.3) they are also 
compact. 

As we said in section I, if the relaxation dynamics of the elementary magnets (see 
(1.2), . . * ( (1.4)) is much faster than the dynamics expressed by Maxwell’s equations 
and controlled by the datum f. then we consider one of the quasi-stationary constitutive 
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relations (I .20). In our formulation we shall use the more general concept of memory 
functional: however for the existence result we shall require the piecewise monotonicity 
property (2.7). typical of hysteresis functionals. 

Let CC*. S, (3) be a distributed memory functional. in the sense of (7. I). . . . , (7.1): let 

(MO, HO) E s, HO E W’, f E L'(0. T; W’). (3.5) 

We introduce a weak problem corresponding to Maxwell’s equations with no displacement 
current term coupled with (2.14): 

(PI) Find iM E CO([O, T]): V) with M(r) E Dam(S) Vt E [O, T], 

M(0) = MO a.e. in 0, (3.6) 

such that, setting 

H(t): = [% (M, H”)](t) in V’, Vt E [0, T]. (3.7) 

then H E L’(0, T; W) and 

; (H + M) + VxVxH = f in W’, a.e. in IO, T[. (3.8) 

Remark 1. BY (2.3), (3.7) yields H(0) = H” in V’; by (3.8) we have also H + M E 
H’(0, T; W’), hence 

(H + M) I,=0 = H” + MO in W’. (3.9) 

THEOREII I. Assume that 

(MO, H”) E S, Ho E W, f = f, + fz 

with fI E L’(R-‘x]O, T[)3, f2 E W’.‘(O, T; W’) (3.10) 

(R’, .?, , %r) is a piecewise monotone (non-distributed) memory 
functional in the sense of @.I), . . . , (2.4), (2.7) 

V(ZJ, 5) E Dom(%r), 1 %r (11, 5) 1 % C, (C,: positive constant) 

(3. I I) 

(3.12) 

V{(vn, 5) E Dom(%,)},,EN, if v, + ZI strongly in C’([O, T])3, 

then (v, [) E Dom(%,) and %,(zJ,, , t) + %;,(zf, 5) strongly in C’([O, T])3 (3’13) 

%z: {U E V 1 v(x) E Dom(.Y? ,) a.e. in 0) -+ V’ is maximal monotone (3.14) 

cc,, c3: positive constants) (3. IS) 

HY: = Ho - %2(A40) is measurable in n and 
(M’(x), HP(x)) E Dom(%,) a.e. in 0. 

(3.16) 
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((;I. N.) E V x V’ 1 t,(x) E Dom(.? ,) a.e. in R, ;: = w - YJl(:‘) is measurable in R 
(i4.r). Ax)) E S, a.e. in fl} 

(3.17) 

Dam(%): = ((~1, 5) E C”([O. T]; Dam(S)) x V’ 1 (i,(O), 5) E S} (3.18) 

V (:z, 5) E Dam(%), setting H’:: = 5 - %?(I(.. 0)). 
[%(:~.E)](t): = [%,(i(x, .), H?(x))](t) + %2(z(., t)) in V’. vt E [O. T]. (3.‘9) 

: 

Then (V, S, 3) is a (distributed) memory functional in the sense of (1. I), . , (2.4) and 
problem (Pl) has at least one solution such that moreov& 

H E H’(0, T; L’(rW3)) n L”(0, T; W); M E H’(0, T; V). (3.20) 

Remark. The decomposition of 9 into the sum % = %r + (4: corresponds ‘to the 
developments at the end of section 2. The assumptions of theorem 2 are consistent with 
the physical model introduced in section I. 

Proof. 

(i) Approximation. 

Let m E N. k: = z 
rn 

(PI),,, Find M;, E V (n = 1, . . . , m) such that, setting 

M,: = linear interpolate of M,,,(A) : = MZ, in [0, T] (MC: 

H;,: = [%(M,,,, H’)](nk) in V’, n = 0, . . . , m, 

then HE, E W tfn and 

= MO) (3.2 I) 

(3.22) 

; (H: - H:,- ’ + M::, - ME,-‘) + VxVxHE, = fr:, in W’, n = 1, 

here 

. . . , m; (3.23) 

{ 

. = f?, + f2,, 
;5, = f,(nk) 

f?m(x): = i IJ,::,,, fr(x, t)dt a.e. in n, 
in V’. 

(PI), can be solved step by step. Let n E (1, . . . , m} and assume that MI,, is known for 
I= I,..., n - I; then (3.22) can be written in the form 

or also 

MZ = ((I%,)-‘(H::,) in V, 
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with @$, and (@:)-I cyclically maximal monotone graphs, hence subdifferentials of con- 
vex. lower semicontinuous functionals. Therefore (3.25) is equivalent to the minimization 
of a lower semicontinuous, strictly convex functional W + W; this problem has one and 
only one solution, which can be also numerically approximated by standard techniques, 
if an approximation of % is available. 

(ii) Estimates 
We multiply (3.23) against HZ, - HE,-’ and sum for n 
. . . , m}. We note that by the piecewise monotonicity 

1 1, for a generic I E { 1, 
if d, 'anh'by (3.15), 

Hf’, _ H”,- 1)“. z C2& -& II ME, -kM::‘- ’ II 
2 

; (3.24) 
/7=I v 

by a standard procedure based on Gronwall’s lemma we get 

t7, 

kC 
tl=l /I HE,-HE,-’ ’ 

k II 
I C (constant independent of m) (3.25) 

L’CR’) 

max II H:,, IIw 5 C (3.26) 
fI= I.....l?l 

k 2 
n=l 

(3.27) 

We denote by H,,, the function obtained by linear interpolation of H,,,(.r, nk): = HE,(x) 
a.e. in 0 in [0, T]; we set fii,(x, t): = H:,(x) a.e. in R, ~?,,,~(f): = [%r (M,,, H:])](nk) 

and e2,,,(t): = &(M$) in V’ for (n - I)& < t 5 nk, n = 1, . . . , m; we define ii?,,, and 
fm similarly. 

Thus (3.22), (3.23) and (3.25), . . . , (3.27) can be rewritten in the form 

1 ^ 

Hrn = G,, + G2, in V’, a.e. in IO, T[, (3.28) 

; (H, + M,,,) + VxVxtj, = j-, in W’, a.e. in IO, T[. (3.29) 

]I H, IIW~(0.T;L~(~))3)nL”(0.T;w) % C (constant independent of m) (3.30) 

II Mm IIHq0.T;“) 5 c; (3.31) 

moreover by (3.12) 

and then by comparison in (3.28) 

II (72, IIL=~o.T:L~~P~ 5 C. (3.33) 

(iii) Limif 

By the previous estimates there exist H, M, G,, Gz such that, possibly taking subsequ- 
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H,+H weakly in H’(0, T; JL’(W’)~), weakly star in L”(0, T; W) (3.34) 

M, -+ Ai weakly in H’(0, T; V) (3.33) 

Ln + G, weakly star in L”(&z]O, T[)3 (3.36) 

G Zm --+ G1 weakly star in L”(0, T; L’(fl)3). (3.37) 

As the inclusion H’(0, T, L”(W3)3) n L”(0, T; V) c L2(fl; CO([O, T])3) is compact, we 
have 

M,,(x, .) + fM(.r, .) strongly in CO([O, T])3, a.e. in R, 

whence by (3.13) 

%I(M,,(x, .), H?(.r)) + %I(M(x, .), H’?(x)) strongly in CO([O, T])j, a.e. in 0, 

then also 

G;,,,(x, .) + %l(M(x, .), H?(x)) strongly in C’([O, T])3, a.e. in R 

and by (3.36) 

Gl(.r, t) = [91(M(.r, .). H?(x))](f) V’t E [0, T], a.e. in R. (3.38) 

For any u E H’(0, T; V), setting <j(t): = v(nk) for (n - I)k < t 5 nk, we have 

0 5 k 5 .,(%2(M,,(nk)) - %z(u(nk)), M,(nk) - u(nk))v 
PI=1 

- - % (fj>, Mm - t~>v dt -+ l,’ V(GZ - i%(u), M - u),, dt, 

whence as %z is maximal monotone 

Gz = gz (M) in V’, Vt E [0, T].Cl (3.39) 

Now we introduce a second weak formulation corresponding to Maxwell’s equations 
with no displacement current term, coupled with (2.15). Let (V’, R, 3;) be a distributed 
memory function in the sense of (2.1), . . , (2.4), and let (3.5) hold. 

(P2) Find H E CO([O, T]; V’) fl L’(0, T; W) with 

H(0) = Ho in V’ 

such that, setting 

M(t): = [S(H, M’)](t) in V, Vr E [0, T], 

(3.40) 

(3.41) 
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then 

i (H + hi’) + VxK’xH = f in W’, a.e. in [0, T]. (3.42) 

See remark 1. 

THEOREM 2. Assume that (3.10) holds, that (V’, R, 9) is a piecewise monotone dis- 
tributed memory functional in the sense of (2.1), . . . , (2.4), (2.7) and that moreover 

V(Z), 5) E Dam(s), /( 5 (u, 5) lIL=coj~ 5 C (positive constant) (3.43) 

V{(un. 5) E Dom(3)jnEN, if u,,-, u weakly star in H’(0, T; L2(W3)3)n Lx(O, T; W), 
then (u, 5) E Dom( 5;) and 5(un, t)- 9 (ZJ, 5) strongly in C’([O, T]; V). 

(3.44) 

Then problem (PZ) has at least one solution such that moreover 

H E H’(0, T; L’ (iw3)3) n L=(O, T; W); M E L”(Q)3 n C’([O, T]; V). (3.45) 

Proof. 

(i) Approximation. 

Let m E N, k: = L 
m 

fP2) m Find HZ, 

H . = tn. 

MZ,: = 

then 

EW(n= l,..., m) such that, setting 

linear interpolate in [0, T] of H,(d): = H2, (HFn = Ho) (3.46) 

[Y(H,z, M”)lW) in V’, n = 0, . . . , m, (3.47) 

; (HZ, - HE,- ’ + M::, - Mz- ‘) + VXVXH~ = fk in W’, n = 1, . . . , m, (3.48) 

where f;, is as above. This problem has one and only one solution, which can be evaluated 
step by step as for (Pl),,,; also in this case a standard numerical method can be used, once 
an approximation procedure for 9 has been provided. 

(ii) Estimates 
As before, we multiply (3.48) by HZ, - Hk- ’ and sum for n = 1, . . . , I, for a generic 
IE (1,. . . , m}; as 9 is piecewise monotone we have 

t ,z, J11 (MG 
- &I;-‘) . (HE, - Hz; ‘)d,v 2 0; 

by a stanard procedure we get (using the same notations as in the previous proof) 

II ffr,, ~IH~~o.T:L~~~B’~J~~L”(o.T;w~ - -== c; (3.49) 



moreover by (3.43) 

(iii) Limit 
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II .bf,,, II L”(Ql’ 5 C. 
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(3 50) 

By the previous a priori estimates there exist H, M such that. possibly taking subsequ- 
ences, 

H,,, - H weakly in H’(0, T: L.‘(Ra’)‘) and weakly star in L”(0, T, WI (3.51) 

M,, --+ M weakly star in L”(Q)3; (3.57) 

hence by (3.44) 

s(H,,, MO) + 9(H, MO) strongly in CO([O. T]; V), (3.53) 

then by (3.47) we get (3.41). Taking m - = in the approximate equation we obtain (3.42).U 
Now we consider the problem obtained coupling the equations of magnetostatics with 

the constitutive relation (1.18). We assume that 

(MO, Ho) E S. Ho E W’, X E L’(W3)3. (3.54) 

(P3) Find M E CO([O, T]; V) with M(t) E Dam(S) Vr E [O, T], 

M(0) = MO a.e. in 0, (3.55) 

such that, setting 

H(I): = [%(i?Z, H’)](t) in V’, \dr E [O, T], (3.56) 

then H E L2(R’x]0, T[) and 

Ox(H - X) = 0 in W’, a.e. in IO, 7[ (3.57) 

o.(H + M) = 0 in H-‘(W3), a.e. in IO, T[. (3.58) 

THEOREM 3. Assume that (3.1 I), . . . , (3.19), (3.54) hold and that 

X E H’(0, T; L’(W3)). (3 59) 

Then problem (P3) has at least one solution such that moreover 

M E H’(0, T; W), H E H’(0, T; L’(W3)). 

Proof. (i) Approximation. Let m E N, k = 2: . 

(P3)nl Find MC, E V (n = 1, . . . , m) such th?t, setting (3.21) 
L’(R3)3 and 

(3.60) 

and (3.22), then H; E 

vx(HE, - XF,) = 0 in W’ 

O.(H::, + M;) = 0 in H-‘(W3), 

where X;,: = J$- l,,,X(t)dt, (n = 1, . . . , m). 

(3.61) 

(3.62) 
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(3.61) corresponds to the existence of 4;: X3 -+ 2 such that 74: = H$ - X”, in 
‘(2’)“. As for (PI) ??I, we have H” ,,, = b;(itlZ)hence (3.62) can be rewritten in the form 

v . [Cl& f x; f (c$;)-‘(v$; + Xn,)] = 0 in H-‘(2’) (3.63) 

This variational inequality has one and only one solution IL:, E H’(:R3); this can be also 
numerically approximated by standard techniques, once an approximation of % has been 
provided. (3.61) and (3.62) yield 

I w’ (JCL - H::; ’ - X:, + XT ‘) . (H:,, - Hn- ‘)dx + 

I/.( HZ, - HZ,-’ - XL + X%-I, M; - M:,-’ )r/ = 0 (3.65) 

whence by (3.24), using notations introduced above 

]I H,,, ]]H~(0.T:L~(~,j3j I C (constant independent of m) (3.66) 

II Mm IIwco.r:w, 5 c. (3.67) 

These estimates allow to take the limit in (3.22) as in the proof of theorem 1.0 

4. FAST EVOLUTION 

If the evolution is fast, the relaxation dynamics of the elementary magnets cannot be 
neglected and accordingly a dissipative term has to be inserted into the macroscopic 
constitutive relation. This allows to study Maxwell’s equations taking account also of the 
displacement current term. 

We shall denote the characteristic function of R (equal to 1 in R and vanishing outside) 
by xd; it represents a normalized electric conductivity. Let (V, S, %) be a (distributed) 
memory functional, in the sense of (2. I), . , (2.4); let 

E”, Ho E L’(R3)‘, (Aif’, Ho) E S, f E L'(W3x]0, T[)3. (4.1) 

We introduce a weak problem: 

(P4) Find E E L’(W3x]0, T[)’ and M E C’([O, T]; V) fl H’(0, T; V’) with M(t) E 
Dam(S) Vlt E [0, T] and 

M(0) = M” a.e. in R, (4.2) 

such that, setting 

H: = % (M, Ho) + $ in W’, a.e. in 10, T[, (4.3) 
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then N E L’(R3.r]0. T[)3 and 

VxH = $ + xn(E i f) in W’, a.e. in IO. T[ 

VxE = - ; (H + M) in W’, a.e. in IO, T[ 

E(0) = E” in W’ 

(H + M) I,=0 = HO + MO in W’. 
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(4.4) 

(4.5) 

(4.6) 

(4.7) 

Remark. (4.4) and (4.5) yield E, H + M E H’(0. T; W’) and this gives a meaning to 
(4.6) and (4.7). 

THEOREM 4. Assume that (4.1), (3.1 l), . . . , (3.19) hold and that 

CC1 = a$, where $: V += Iw U { + x} is convex and lower semi-continuous 
(d denoting the subdifferential). (4.8) 

Then problem (P4) has at least one solution such that moreover 

A4 E H'(0, T; L’(iw3,‘) fI L”(0, T; V). (4.9) 

Proof. 

(i) Approximation. 

Let m E N, k: = x . 

CP4L Find E:rE W and M::, E V fl W(n = I, . . . , m) such that, setting 

M,,,: = linear interpolate of M,,(nk): = M$ in [O, Tl (M!,: = M”) (4.10) 

H”,,: = [%(M,,, H”)lW) + ~(MZ, - M::; ‘) in V’, n = I, . . . , m, (4.1 I) 

then H; E W tin and (setting Hk: = Ho and EE,: = E”) 

VxH; = ; (EL - EZ,-“) + xn(E:, + Cd a.e. in R3, n = 1, . . . , 171, (4.12) 

UxE; = - ;(H; - H:- ’ + ME, - M:-‘) a.e. in R3, II = 1, . . . , m, (4.13) 

where f&(.~): = Ilk /;,“_ Ijx- f(x, r)dr a.e. in R. As for (PI),,, this problem can be solved 
step by step; at every step it is equivalent to a standard minimization problem and has 
one and only one solution, which can be numerically approximated by standard methods 
once an approximation of % has been provided. 

(ii) Estimates. 
We multiply (4.12) by E:, (4.13) by -kH;, and sum for n = 1, . . . , I, for a generic 1 E 
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m}. Note that 

(VxH:, . E:, - VxE:,, . H:,,)dx = j-3 V . (HZ, x E::,)d,K = 0. 

Therefore by a standard procedure, using the notations introduces in the proof of theorem 
1 and defining E,,,, E,,, similarly to H,,,, fi ,,,, we get 

/I E,,, ~IL=~0,7.;.~~R~~~, I C (constant independent of m) (4.14) 

II H/n IIL=~~.T:L~P~ 5 C (4.15) 

II Mm IIH’(O.T:L’(R)‘)nL’(0.7.:v) 5 c; (4.16) 

moreover as in the proof of theorem I we get (3.32) and (3.33). 

(iii) Limit 
By the previous a priori estimates there exist E, H, M, GI and Gz such that, possibly 
taking subsequences, 

Em + E weakly in L^(O, T; L”(lR’)3) (4.17) 

H,,, -+ H weakly in L”(0, T; L”(R-‘)‘) (4.18) 

M,,, --+ M weakly in H’(0, T; L’(R3)3), weakly star in L”(0, T; V) (4.19) 

G Im + G, weakly star in L”(Q)3 (4.20) 

G z,,, -j Gz weakly star in L”(0, T; f.‘(R)‘). (4.20) 

Taking m + x in (4.12) and (4.13) we get (4.4) and (4.5); (4.3) can be proved as for (PI).0 
Finally we notice that Theorems 1 and 3 hold also if in (Pl) and (P3) (3.7) and (3.57) 

f3M 
are replaced by (4.3); moreover the presence of the dissipative term z yields further 

regularity for M. 
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