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� Energy systems need to decarbonise, provide security and remain affordable.
� There is uncertainty over which technologies will best enable this to happen.
� A strategy to deal with uncertainty is to assess a technologies ability to show resilience, flexibility and adaptability.
� Scale is important and smaller scale technologies are like to display the above characteristics.
� Smaller scale technologies are therefore more likely to enable a sustainable, secure, and affordable energy transition.
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This research explores the relationship between technology scale, energy security and decarbonisation
within the UK energy system. There is considerable uncertainty about how best to deliver on these goals
for energy policy, but a focus on supply chains and their resilience can provide useful insights into the
problems uncertainty causes. Technology scale is central to this, and through an analysis of the supply
chains of nuclear power and solar photovoltaics, it is suggested that smaller scale technologies are more
likely to support and enable a secure, low carbon energy transition. This is because their supply chains are
less complex, show more flexibility and adaptability, and can quickly respond to changes within an
energy system, and as such they are more resilient than large scale technologies. These characteristics
are likely to become increasingly important in a rapidly changing energy system, and prioritising those
technologies that demonstrate resilience, flexibility and adaptability will better enable a transition that
is rapid, sustainable, secure and affordable.

� 2013 The Author. Published by Elsevier Ltd. Open access under CC BY license.
1. Introduction

In common with other countries, the UK faces a challenge to
decarbonise its energy system whilst maintaining energy security
and affordability. This paper examines the underexplored relation-
ships and importance of technology scale within the context of
supply chains, in enabling these goals for energy policy to be met.

The supply chains that make up the component parts of energy
systems have evolved over many decades to meet society’s needs
for power, heat, transport, manufacturing and services. They are
complex and dynamic, involving many different actors, technolo-
gies, fuels, operating at different scales and locations, and are
shaped by the policies, rules and regulations that are in place. Most
energy systems are dominated by fossil fuel supply chains, which
for the most part, are mature and globalised, but they are prone
to inertia; and are increasingly struggling to collectively deliver
on the three main goals of energy policy (Section 2).

To move towards a more sustainable and secure energy system
requires a significant transition within current energy systems. A
number of scenarios have been developed to consider different
transition pathways and these suggest a growing role for electricity
within the energy system, which could be provided by a range of
low carbon technologies, such as nuclear power and renewable en-
ergy. However, they also indicate that no single technology will be
able to decarbonise the energy system, and as such options need to
be kept open.

During a transition, energy security also needs to be
maintained, and this requires energy systems that can deal with
short term shocks and longer term stresses to ensure continuity
between supply and demand. Resilience is a helpful way to con-
sider this, as it describes the ability of a system or supply chain
to return to its original state after a disruption. With the exception
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of unconventional oil and gas, fossil fuel supply chains have
evolved to be quite resilient. However, it is less clear how effective
alternative supply chains, such as nuclear power or renewable en-
ergy technologies, will be in providing security (Section 3).

Given the uncertainties that exist, and the range of technology
options that could play a role, a key issue will be to identify those
technologies that show characteristics of resilience, whilst also
showing flexibility and adaptability. There are a number of factors
that could help to determine this, such as the speed at which a
technology can be deployed, how compatible it is with the system
and other technologies, and any constraints it may face socially,
environmentally or economically (Section 4). A focus on technol-
ogy scale and supply chains could provide an important mecha-
nism by which these sorts of issues can be considered. To
examine this, two low carbon technologies are explored, large scale
nuclear power and small scale solar photovoltaics (Section 5).

The paper is organised as follows: Section 2 provides context on
supply chains, considers how they relate to energy systems, and
examines how they emerge and become established; Section 3
examines the complexity of energy security and how it relates to
the wider UK energy policy goal for decarbonisation; Section 4 con-
siders these issues in relation to a low carbon energy transition,
supply chains and technology scale; Section 5 provides a detailed
examination of nuclear power and solar PV, considering their role
within energy systems, their supply chains, possible costs, and
what this may mean for the UK; and Section 6 summarises the
findings and provides conclusions.
2. Conceptualising energy supply chains

Supply chains, or value chains, are complex, dynamic and often
globalised interconnected networks which comprise the entire se-
quence of activities involved in the delivery of a service or a prod-
uct, from production through to end use and disposal [1–3]. They
include multiple actors, operating at different scales and locations
and cover the process by which components and products are pro-
duced, combined and delivered [4–6].

At a macro level any energy system can be considered as a sup-
ply chain (Fig. 1 – [6]) that contains multiple and interrelated sub-
chains relating to suppliers and customers, based on different fuels,
technologies, and the infrastructure that connects them; as well as
the materials, labour and equipment needed for the development,
manufacture, installation and operation of the system [6]. These
supply chains are shaped by the policies, institutions, regulatory
frameworks and practices that are in place within a country, as
well as the wider interconnections it has to other energy systems,
and the markets, rules, and regulations that shape them [7,8]. The
primary purpose of the system is to meet the energy service de-
mands of end users for power, heat and transport, across the econ-
omy [6].

Historical energy transitions have played an important role in
shaping the supply chains that are in place. Within the UK, the
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Fig. 1. The energy system as a
system has evolved from using wood as the primary source of en-
ergy, into coal, and more recently oil, gas and electricity [9]. With
these transitions in fuel type there have also been multiple co-
evolving innovations: socially; politically; institutionally; and
technically [10,11]. An important recent innovation has been the
liberalisation of the energy system in the UK (and a number of
other countries) [12], resulting in a national energy system that
is increasingly shaped at the international level, in terms of capital,
technologies, fuels, and the ownership of equipment and energy
companies [13].

Collectively these historical developments have resulted in a
series of supply chains which are now mature, highly intercon-
nected and complex [6]; and these have evolved over several dec-
ades, leading to a system that now relies on embedded technical
and social commitments, making them prone to inertia and lock-
in [14,15].

The mechanism by which different technology supply chains
emerge and become established is, in part, a reflection of the inno-
vation process [16]. For newer technologies, compared to incum-
bents, there are a range of internal and external risks, reflecting
the immaturity of a technology and its supply chain, which will
need to be overcome in order for technologies to be delivered
[17]. As a technology comes to market, the supply chain associated
with it broadens to bring in skills and resources associated with its
deployment, such as: planning; design; manufacturing; construc-
tion and installation; operation and maintenance; and decommis-
sioning; as well as associated sectors like legal and financial
services [18].

For any technology there are a range of factors that influence its
development. There can be bottlenecks or constraints along an en-
tire supply chain, from the source of raw materials through to
decommissioning that can, without mitigation, impact on the scale
of development, deployment or operation [19]. These are impor-
tant because technologies can only develop as fast as the tightest
supply chain bottleneck allows [20]. There can also be more perva-
sive cross-cutting issues (Table 1) that impact across different
technology supply chains (which can also be experienced as tech-
nology specific bottlenecks) [6]. To some degree these issues will
vary between countries depending on the technologies and policies
in place, although globalisation can also mean they are experi-
enced across different regions simultaneously [21].

For a number of reasons the supply chains that make up energy
systems are now under pressure, particularly in terms of their abil-
ity to deal with key challenges of ensuring energy security and the
decarbonisation of supplies [12,29], which this paper goes onto
consider.
3. Energy security in a carbon constrained world

Although no energy system can be completely secure [30], a
central and high priority policy goal for all nations is energy secu-
rity [31]. There is not a precise definition for energy security [32],
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Table 1
Cross-cutting supply chain issues.

Issue Importance

Policy
confidence

There is a need to reduce risk, or the perceptions of risk [9,22,23], as companies and investors are wary of entering a supply chain or scaling up their
activity, unless they are confident of the policy regime that is in place [23–26]

Sufficient skills There is a need to ensure there are enough people with the right skills to manufacture, install and operate technologies or deliver different
approaches [27]

Access to
materials

Companies need access to a consistent supply of materials at a reasonable price, as a shortage can alter the economics of a technology and impact
their commercialisation [21,28]
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despite a wide literature on what it is and how it can be measured
[32–35] and as a result there is no single metric for it [7,36].

Despite these problems there is some consensus that at its core,
energy security is about the uninterrupted availability or provision
of energy for vital services [31]. To ensure security, energy systems
need to be able to withstand shocks and longer term stresses
[6,37]. Short-term shocks can include issues such as natural events,
technical or human failures, as well as market failures; whilst long-
er term stresses can include concerns over resource competition,
aging infrastructure and changing patterns of global demand and
supply [31,37] – these factors can also combine [37]. There are con-
siderable synergies between these findings and studies of risk
within supply chain literatures [38], with a shared recognition that
risks vary with time, scale and location, and increase as a result of
globalisation [38,39]. Shocks and stresses can be experienced by
individual companies and/or system-wide, impacting supply
chains at multiple operations over a wide geographic area and they
are difficult for individual actors to resolve [40].

Resilience is one way in which energy security [41] and supply
chains more generally [40] can be framed; with resilience seen as
the capacity of a system, or company to return to its original state
after a disruption. Included within this definition is the ability of a
system to respond to disturbances or risks [7,39–41]. This links to
wider studies into energy security, including a recent survey of 130
countries [31], which have characterised an energy system’s ability
to deal with threats in terms of: robustness and the capability of
the system to deal with risks to them; sovereign protection against
external threats to a system; and resilience in terms of the ability
of systems to withstand diverse disruptions (see also [7,36]). It is
also recognised that energy security is a property of energy sys-
tems, rather than the individual components within it [37].

Within the UK, energy security has become an important driver
of energy policy in recent years [37,42–44], in part reflecting the
fact that the country recently became a net importer of fossil fuels
after decades of self-sufficiency [9], as well as the need to secure
significant investment in its aging energy infrastructure [45]. In
2012, the government produced its first Energy Security Strategy
[44] whilst it was welcomed, analysts highlighted that it failed to
link to, and be consistent with, the UK’s wider energy policy goals
[36] for reducing greenhouse gas emissions [46,47] and as far as
practical ensuring affordability for both private consumers and
business competiveness [12].

Climate change is also a key driver of international energy pol-
icy [48] and it is recognised that energy systems are both the pri-
mary cause of climate change and a primary means for mitigation
[46]. In common with other countries [42], to reduce emissions
within the UK, it is recognised that significant changes to the cur-
rent energy system will be needed [47,49], based on the rapid and
effective deployment of existing and new technologies, as well as
changes to the wider non-technological social, economic and polit-
ical frameworks associated with it [50,51]. This will require a low
carbon transition, the speed and scale of which is unprecedented
[8,37]. It will also create new risks and opportunities for the supply
chains that shape energy systems [6], a challenge that in itself can
be considered as a long term stress for energy security [9].
4. Energy transitions, supply chains and scale

The UK energy system currently uses large-scale technologies,
centralised electricity and gas networks for transmission and dis-
tribution, and supporting institutional frameworks [11]. This cen-
tralised model has both delivered economies of scale and
reliability [52] including the uninterrupted supply of vital energy
services [6]. However, current supply chains are dominated by fos-
sil fuels which provided 87.3 per cent of supply in 2012 [53], and
these are increasingly incompatible with collectively delivering
the UK’s energy policy goals [37].

There is uncertainty over which technologies and supply chains
will come forward into a future low carbon energy mix [6,12],
implying the need to keep system options open [30,54,55]. To bet-
ter understand this, numerous pathways and scenarios have been
developed within the UK from a wide range of organisations
[54,56,57] and there is a tendency within them to focus on technol-
ogy adoption rates and economic outcomes [58]. There is some
agreement that a desired approach will include: on-going improve-
ments to energy efficiency; the almost full decarbonisation of elec-
tricity generation; and the extension of electricity into the heat and
transport sectors [9,55,57,59]. The expectation that electricity will
have a growing role within the future energy system, reflects the
fact that it easier to decarbonise than other fuels [60], as it can
be provided through a range of technologies [9]. A key challenge
will be to strengthen existing supply chains and develop new resil-
ient supply chains, relating to different technologies, fuels and
infrastructures, at the macro-, meso- and micro-level [6]. This will
require changes to the actors, markets, rules, regulations, institu-
tions and governance of the energy system [8,61]. Collectively,
such changes will lead to a more complex and diverse system than
is currently in place [7].

To enable change it will be important to understand the poten-
tial risks any supply chain faces and take appropriate mitigating
action if they are going to become resilient. Given the globalised
nature of supply chains, this will require countries to set the right
conditions and partnerships between the public and private sec-
tors [56] to enable companies to enter and build a supply chain.
This enables a supply chain to become diverse, creating capability
and capacity, leading to benefits such as reduced lead-in times, in-
creased learning and competition, which may both reduce cost and
increase the pace of a transition [6].

It is also important to acknowledge that supply chains are
developed within energy systems that are based on different tech-
nology pathways and interconnections, and there can be strong
path dependency linking to technology choices, infrastructures
and skills [62]. Given that the direction of future change is uncer-
tain, the ability to make good strategic decisions about that future
is difficult [63] as it is hard to understand, anticipate and manage
the development of energy systems [13]. This is not least because
the interdependencies that exist within the complex energy
system [9] may mean that changing one part will have unintended
consequences for other parts of the system [30,36]. Given this, an
important factor in enabling a transition toward a low carbon
and secure energy system will be to focus policy attention on the
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ability of the system to be resilient, adaptable and flexible [37]; as
this would provide space to adjust policies to reflect new develop-
ments, including dealing with unanticipated outcomes [64]. Such
an analysis can be applied at the system level and below it, in
terms of technology choices and supply chains; it can also take ac-
count of developments in enabling technologies such as power
storage, smart grids and demand-side management [13], which
are not considered within this paper, but which may shape future
system design and operation and could contribute to its resilience,
flexibility and adaptability.

From a technology perspective, there is no single solution that
can deliver a low carbon future [30], and therefore for security rea-
sons it will be important to prioritise those technologies that show
the above characteristics. This will require an assessment of issues,
such as their potential for: rapid deployment; supply chain devel-
opment and security; compatibility with current and future energy
systems, including other technologies within them; dealing with
social, political and environmental constraints; as well as their rel-
ative and projected costs [65]. An important consideration within
this is the relationship between technology and scale, because
markets, technological interrelatedness and infrastructures which
are large and complex tend to change slowly [66]. Also in a general
sense, large scale and complex technologies may have more points
along their supply chain where there are fewer firms, or shortages
in skills and face a bigger range of bottlenecks to deployment.

To better understand some of these issues this paper goes onto
explore the potential role of, and the supply chains for, nuclear
power and solar photovoltaics.
5. Large and small scale technology comparisons

5.1. Nuclear fission

Nuclear power is considered by many as an important low car-
bon technology that could help cut greenhouse gas emissions and
improve national energy security [67–69]. It can provide large
amounts of low carbon baseload power [70], although cannot eas-
ily be ramped up or down [71]. However, there are a number of
concerns relating to this technology, including: costs; proliferation
risks; and waste management [7,72]. The accident at Fukushima in
2011 also had an impact on public opinion and policy [73] and its
future remains uncertain in many countries, including the UK
[65,74,75].

Currently ‘Generation II’ nuclear plants are the most common in
operation [69] and they came to market in the late 1960s with a
typical operational lifespan of 40 years [76]; these are still being
constructed in many parts of the world [77]. The first ‘Generation
III’ reactor was built in the late 1990s [78] and these could operate
typically for 60 years [76]. Fourth generation designs may be de-
ployed from the 2030s [7]. The development within generations
is based on innovations of previous designs [7] and typical gaps be-
tween each are around 30 years. The financial and technical com-
mitment to design new reactors and get them licensed helps to
explain why there has been a move towards global standard de-
signs, such as Pressurised Water Reactors (PWRs), and why there
is little desire by nuclear vendors to modify these systems [7].

As of June 2013 there were 434 nuclear power reactors in oper-
ation in 31 different countries [77], but shut downs in Japan mean
this figure may be lower [65]. The current global installed capacity
is estimated at 364 GWe and in 2012 a total of 2346 TWh of elec-
tricity was generated [65,77]. In terms of new build, it is reported
that 68 are currently under construction [77], although nine of
these have been listed as under construction for more than
20 years [65]. Most new build is taking place within Asia, central
and eastern Europe, and the Middle East [79] and it is suggested
that countries with existing nuclear programs have plans to build
around 160 new plants by 2030 [80].

Within the UK, nuclear has been providing power since the
1950s [9] and there are currently 15 reactors in operation [81],
with a capacity of 10.6 GW [53]. In 2012 these provided around
19 per cent of the UK’s electricity [53], although its share within
the mix has been in decline since 1997 [81]. This reflects the age
of the UK nuclear fleet, and although life extensions may be ap-
proved in the future, currently all but one expected to close by
2023 [67]. It is suggested that between 12 and 16 GW [68,82] of
new capacity could be added in the future, with the UK govern-
ment saying nuclear is ‘low-carbon, affordable, dependable, and
contributes to the UK’s diversity and security of energy supplies’
[10,68]. So far the government has invested seven years of its time
and resources [83] in supporting new nuclear, through a wide
range of facilitating measures designed to: reduce regulatory and
planning risk; encourage investment in skills and the supply chain;
reform the market to reduce policy and revenue risk; and under-
write construction risk [67,81,84,85].

5.1.1. The nuclear supply chain
Nuclear power is based on a global supply chain for construc-

tion, operation and maintenance, and decommissioning. A typical
nuclear plant contains millions of items, each with its own supply
chain and unlike other low carbon technologies these are particu-
larly complex, not only because of the vast number of components
and materials that are needed, but also because many are critical to
both safety and reliability [86]. It is reported that on average a new
build project takes eight to ten years to commission [65,74],
although it has taken considerably longer than this in many coun-
tries [65]. During the construction phase thousands of companies
and workers will be involved along the supply chain. For example,
the last plant built in the UK, Sizewell B, involved over 3000 com-
panies and had over 4000 on-site workers [24]; the current Areva
project in Finland has more than 4000 employees on site from 55
different countries [87] and their new French build has around
100 suppliers from the global supply chain [88].

The construction supply chain for a typical nuclear plant is
characterised by the World Nuclear Association [68] as a pyramid
made up of six tiers – Fig. 2. The top tier comprises the Technology
Vendor, who are the main contractors for a plant, and these com-
panies generally have a long history in the nuclear sector [86].
There are currently nine consolidated vendors operating in the glo-
bal market [89], with four dominating the market (REVA, Hitachi-
GE, Toshiba Power Systems, and Mitsubishi Heavy Industry) [65].
Below the vendors, the supply chain comprises: Tier 2 – System
Integrators (e.g. reactor pressure vessel and steam generators); Tier
3 – Original Equipment Manufacturers (e.g. rod cluster control
assembly); Tier 4 – Sub-component Suppliers/Distributors (e.g.
control rods and heavy forgings); Tier 5 – Processors/Fabricators
(e.g. alloys); and Tier 6 – Raw Material Suppliers/Miners (e.g. silver,
zinc, etc.) [86,90].

This construction pyramid in Fig. 2, is one part of the overall nu-
clear supply chain, with the wider elements shown in Fig. 3 [4,24].
The cost and complexity of entering the nuclear supply chain can
be prohibitive for companies given that there are significant up-
front costs to gain the required quality accreditations [67]. This re-
flects the fact that nuclear facilities contain many components that
have to be specifically designed, in certified facilities that meet
stringent national and international, continuously increasing
safety standards and regulations [65,86]. This is particularly
important for the plant itself, given that once it has been commis-
sioned, checking build quality or making modifications may be dif-
ficult or impossible [86]. However, the importance of safety also
means a strong culture has to be applied right down through all
the elements of the supply chain [91]. It is also worth noting that
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there have been cases of counterfeit and forged components
entering the supply chain. In 2012 it was found that more than
5000 small components installed in Korea had forged safety docu-
ments, resulting in plant shut downs while the parts were replaced
[86].

As well as there being a small number of vendors, the number of
companies capable of supplying a range of key reactor components
is also limited. This directly relates to the scale of the technology
and the engineering challenges this creates, most notably for ul-
tra-large forgings, with a typical new reactor requiring around
200 complex heavy forgings in total [71]. This includes items such
as the reactor pressure vessels, steam turbines, generators and
other engineering components; which are needed for both new
build and lifetime extensions to existing fleets [24,92]. The high
costs and specialist skills needed for these components means only
a few companies are able to provide them. There are currently only
four companies globally capable of producing ultra-large forging,
operating in Japan, China and Russia and they are also servicing
other sectors’ heavy forging needs [92]. This could be a significant
bottleneck for global new nuclear build [67,68,92]. Some new
capacity is being built, but it is not clear if others will enter this
market [92], given the high level of investment needed for a new
heavy forge plant [86].

5.1.2. Analysis for the UK
In the UK, no nuclear plant has been built since 1995 and this

has resulted in the domestic supply chain being ‘withered away’
[26,67]. It has been suggested that around 70 per cent of the ele-
ments of the whole nuclear supply chain could come from UK com-
panies [67], possibly more with appropriate investment [74].
However, there is no UK based vendor [67] and a lack of capability
for many key systems and sub-systems needed for a new plant
[93,94]; and it is not expected that this capacity could be devel-
oped within the proposed timescale for any new build [68]. The
UK will therefore be dependent on the global supply chain for
the delivery of new plant [67] and this could be problematic be-
cause if a number of countries place reactor orders at the same
time, vendors may not have the capacity to increase their opera-
tions. In addition, the UK is a relatively small market, so global sup-
pliers, operators or investors may not prioritise it [93]. There are
therefore concerns over availability, lead-in times and the possibil-
ity of cost escalations from global competition [24].

The lack of skilled nuclear workers is also recognised as a signif-
icant bottleneck by government and industry [93]. It is expected
that many of those currently working within the domestic supply
chain are now over the age of 50 and likely to be retiring within
the next decade [67], with implications for the delivery of new
build, given that their knowledge and experience could be vital
for managing construction and safety risk within the UK. The avail-
ability of skilled workers could also be exacerbated by strong com-
petition between countries with new nuclear build programmes;
as well as competition for similar skills sets needed for both new
build and decommissioning [24]. The language problems caused
by using workers from different countries can also create signifi-
cant problems and delays, an issue recently experienced in Finland
[95].

The cost of nuclear is also an important consideration. Studies
of learning rates often suggest that market growth leads to cost
reductions, but this has not been the case for nuclear, despite sig-
nificant deployment [15], with a suggestion that prices over the
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last ten years have increased from $1000/kW to $7000/kW [65].
The projected costs for the PWR reactors at Hinkley Point in the
UK were estimated at around £7 billion [67], although it is sug-
gested that this has now risen to £14 or £15bn [83,96]. Significant
construction delays and cost overruns have been experienced for
the new PWRs in Flamanville, France and Olkiuoto, Finland, and
similar issues could be experienced in the UK [67,84]. Whilst this
is not uncommon for ‘first of a kind’ projects and lessons can be
learnt [97], there will be challenges that are unique to UK construc-
tion, such as, different working cultures, geography and regulatory
regimes; and as such they should be considered quasi ‘‘first of a
kind’’ [67]. The scale of the technology will also lead to additional
system costs, with the UK network operator suggesting that addi-
tional operating reserve and back-up generation capacity could see
costs rise to around £160 m a year [98,99].

The above issues and the lack of an established supply chain
and skills base means that significant delays could be experienced
within the UK [67] and this creates uncertainty for the future of
nuclear [65,74] and its supply chain [94]. With high costs and com-
plexity of regulatory compliance [15] already impacting on the
willingness of companies to engage with the supply chain or invest
in the training needed for accreditation [74], this uncertainty will
increase the problem. This is because it is difficult for companies
to make investment decisions to develop capacity in the hope that
projects might be forthcoming and for a similar reason attract new
workers [94]. Even though a potential deal between the UK govern-
ment and EDF for the first new nuclear power plant has been
struck [100], State Aid reviews by the EU could lead to a further
two or three years of uncertainty before the project goes ahead
[83]. Furthermore, a failure to manage the construction risk for
the UK’s first nuclear plant would have a significant impact on sub-
sequent plants being built, including public acceptance and inves-
tor confidence [67,74].
5.2. Solar photovoltaic energy

Solar photovoltaic (PV) technologies that directly convert sun-
light into electricity are small scale, and highly modular. Solar en-
ergy is abundant, offers significant opportunities for climate
change mitigation and it can be used to meet a variety of energy
service needs [101]. This section only considers PV, which in itself
can be used in a wide range of applications [102], on-grid and off-
grid, as stand-alone projects, rooftop installations or building inte-
grated [103]. PV is a variable power source, with output following
diurnal cycles and is influenced by changing weather patterns,
such as passing clouds [104]. In recent years PV has shown dra-
matic market growth and price reductions to become one of the
fastest growing renewable energy technologies [105] albeit from
a very low base. It is now considered as an established technology
and with installations rising year on year [106], it is recognised
that it could have a significant role in global energy systems [7]
and that of the UK [107]. As of 2012, the total global rated operat-
ing capacity passed 100 GW [108], and it is suggested by the IEA
that it will produce at least 110 TWh of power in 2013 [109]. Look-
ing forward, global PV rated capacity could increase to between
384 and 966 GW by 2035, depending on the policies adopted [73].

There is also growing interest and support for energy storage
solutions that can be deployed alongside PV [110], and these could
considerably increase its future role within energy systems. Recent
developments in storage include support from the German Gov-
ernment who announced a 25 million Euro fund to incentivise
storage alongside PV [111], with some companies are already offer-
ing domestic scale storage [112]. There has also been a marked
development in the number of companies promoting different
storage solutions at solar trade shows [110].
PV emerged in the 1960s from the NASA space programme [13]
and there are three ‘generations’ of PV technology – first using
crystalline silicon (C–Si), second based on thin film technologies
and on-going research into a range of third generation technologies
[7,106]. This paper only considers first generation mono- and mul-
ti-crystalline PV which have typical lifetimes of 25 years [106] and
efficiencies of around 18 per cent [7]. They account for 80–85 per
cent of the global PV market [19,113] and have dominated it for
over 30 years [103]. Innovation efforts for C–Si have focussed on
feedstock production, production processes, economies of scale
and on-going improvements to efficiencies for cells and modules
[15,106]. Typical innovation cycles for PV are up to ten times short-
er than those for conventional power plants as they can be in-
stalled with very short timescales [114].

Globally PV has shown sustained growth in recent years, with
annual growth rates ranging between 40 and 90 per cent over the
last decade [115]. The top markets are currently within Germany,
Italy, China, the US and Japan and these countries also have the
most installed capacity [108,113]. Globally it is estimated that
31 GW of new PV rated capacity was commissioned in 2012
[113]. Whilst Europe has been the consistent leader of installed
capacity, the market is changing rapidly and it is anticipated that
the majority of new growth will now come from outside of the
EU [115]. The main driver of growth has been government incen-
tives to support development and foster domestic supply chains
[103,116], including feed-in tariffs, investment subsidies or tax
breaks [115].

Within the UK, support has been provided for PV and other
renewable technologies from a number of grant programmes and
since 2010 via a feed-in tariff [103]. Provisional data for 2012 sug-
gests installed rated capacity stood at 1.7 GW, up from 0.9 GW in
2011, and generation was estimated at 1.1 GWh for 2012 [117].
As a result of falling costs and growing deployment, the UK govern-
ment now identifies PV as a key technology in its latest Renewable
Energy Roadmap [107], with a suggestion that by 2020, deploy-
ment could reach between 7 and 20 GW (equivalent to 6–
18 TWh). These estimates reflect the falling costs of PV, its ease
of installation, and high levels of positive public support [107]. A
new PV strategy is due to be released in 2013 setting out a strategic
approach to PV in the UK [107].

5.2.1. The PV (C–Si) supply chain
Analysis of the supply chain for PV suggests there are five main

tiers which include: Tier 1 – the production of the polysilicon
material; Tier 2 – production of ingots and wafers; Tier 3 –produc-
tion of solar cells; Teir 4 – module assembly; and Tier 5 system
installation [116] (Fig. 4). As with other technologies, there are a
limited number of companies within the top tiers of the supply
chain, reflecting the fact that the top tiers are capital and knowl-
edge intensive with large production volumes needed to be com-
petitive [116]. Data suggests that there are 25 plus companies
manufacturing solar grade silicon in Tier 1, around 40 producing
ingots and wafers and over 70 producing cells [116]. Some compa-
nies operate across all of these tiers, whilst some specialise in spe-
cific areas [118]. From Tier 4 onwards the supply chain
considerably expands as the processes are less complex and capac-
ity can easily be expanded in a short timescale [116].

Much of the supply chain has shifted towards Asia in recent
years, and in terms of modules Asia accounted for 86% of global
production in 2012, two-thirds of which came from China [108].
The rapid capacity build up in China has been enabled through a
favourable industrial policy, access to credit and government sup-
port [116]. Globally, production capacity is now in excess of de-
mand and this has resulted in overcapacity within the supply
chain [108]. This has led to fierce competition between manufac-
turers and dramatic price reductions for PV modules, with prices



Polysilicon
Production

Ingot and Wafer
Production

Solar Cell 
Production

System Installation

Module
Assembly

Tier 1

Tier 2

Tier 3

Tier 4

Tier 5

No. Market 
Participants

Low

High

High

Low

Barriers to
Entry

Fig. 4. The PV supply chain. Adapted from [116].

302 R. Hoggett / Applied Energy 123 (2014) 296–306
falling by more than 45% in two years to mid-2012 [119]. Produc-
tion costs in China have particularly influenced the global market
and price trends [116] and concerns have been raised that China
is selling PV on the global market at below production costs, which
has led to trade disputes, such as the recent one between the EU
and China [120].

Falling costs are making PV increasingly competitive with elec-
tricity retail prices in many countries [106,108,115], but they are
also impacting the supply chain through reduced margins for man-
ufacturers [108]. This has resulted in bankruptcies, stopped pro-
duction, scale-backs or cancellation of expansion plans [113]; as
well as new business strategies including: mergers; buy-outs;
diversification upstream and downstream in the supply chain;
and companies moving into project development and new strate-
gic partnerships [108,115,121]. Existing players in traditional mar-
kets are also continuing to invest in improving manufacturing
processes to reduce costs, with innovation and product differenti-
ation becoming increasingly important [108].

Despite these challenges, it is suggested that yearly production
capacity may continue to grow, and some new facilities have been
opened [108]. The slowdown in traditional markets, reflecting
market maturity and reductions in the level of support available
[116], has in part been balanced through openings in new markets,
made possible through falling PV prices, particularly in regions
with high solar insolation like Africa, the Middle East, South East
Asia and Latin America, where markets are in their infancy [113].

There is uncertainty over future prices and their stability [108],
but PV has historically shown consistent year on year price reduc-
tions [102]. There are multiple overlapping forces that impact on
these price reductions [116] and modules only account for around
half of the total installed costs, with the remainder coming from
Balance of System equipment [106]. Falling costs and improved
efficiency within this equipment could therefore play an important
role in future PV installation prices. Other opportunities for savings
within the supply chain include: running plants at close to capac-
ity; on-going improvements to the efficiency of modules and cells;
and further efforts to reduce cost across the whole supply chain
[106,121].

There are some potential bottlenecks in the PV supply chain,
mainly relating to raw materials. For C–Si manufacturing, the long
term trends in falling prices was reversed in the mid-2000s when
a shortage in silicon led to a serious bottleneck in the supply chain
[19,122]. The market responded to this problem with significant
new investments in capacity from both existing companies and
new entrants [101], particularly within China [123] and it is now
considered that global supply is secure, although market dynamics
may mean further new capacity will be needed in the future [19].
Looking forward, a potential new bottleneck that could emerge, if
mitigating strategies are not put in place, is access to silver [19]. This
is used in forming the electrical contact grids within panels and in
2010 the industry consumed around 11 per cent of the world’s silver
supply [124]. However, there are a range of strategies available to
reduce this risk, such as: securing primary and increasing secondary
silver supply; reducing silver’s intensity within production pro-
cesses; and substitution for more abundant materials [19].

A further bottleneck that may emerge in some markets con-
cerns grid access and challenges for grid management [113], with
the cost of reinforcement potentially being prohibitive [19] or
impacting on the competitiveness of PV [115]. Resolving this will
depend on the policies and regulatory frameworks that are in place
and how governments support changes to incentivise network
operators to avoid locking out decentralised generation options
[125]. This links to a wider discussion on system change and
how far and how quickly countries move towards smarter grids,
based on networks that are intelligent, efficient and secure [126],
which this paper does not explore.

5.2.2. Analysis for the UK
Market analysis of the PV supply chain shows its global nature

and how dynamic it has become. Most companies within the top
tiers of the supply chain are globally based and within the top
two tiers they dominate the market with around 90 per cent mar-
ket shares [116], diversity increases within the supply chain from
tier three onwards.

Whilst the UK was an early leader in PV [23], its role has since
diminished reflecting both the rapid development of the global
market and changes within the level of financial support offered
within the UK. The dynamic nature of the market means that data
changes rapidly, but in 2011 the UK had one global module manu-
facturer, over 60 other companies involved in the wider manufac-
turing supply chain and an estimated 4000 installation companies,
which account for around 80% of the estimated 15,650 jobs in the
UK sector [23,127].

Issues that could impact on the growth of PV within the UK in-
clude considerations, such as: how the global market restructures;
how costs for installed systems change, relative to wider electricity
retail prices; the level of support offered through government pol-
icies; and the wider decisions taken on how the energy system
should be developed. In respect to the global market, recent re-
search has suggested it will grow to a $155 billion industry by
2018, with the current imbalances in supply and demand expected
to come back into balance by 2015, which will ease current pricing
pressures and return manufacturers to profitability [128]. The
forthcoming solar plan for the UK shows a new commitment from
government for the future of PV and recognition of the need to ad-
dress barriers, such as network connection and management [107].
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6. Discussion and conclusions

This paper explores the relationships between technology scale,
supply chains, and energy security within the context of a low car-
bon transition. The focus is the UK energy system, but the findings
will be applicable to other countries, given there are similar char-
acteristics between industrialised energy systems, and they are
increasingly globally interconnected.
6.1. The need for, and uncertainty of, system change

A key problem for the UK is its energy system and supporting
infrastructure is currently designed around, and dominated by,
mature and globalised supply chains based on fossil fuels, which
are increasingly unable to deliver on the collective policy goals
for decarbonisation, energy security, and affordability. They there-
fore need to be replaced by new supply chains which, as well as
being low in carbon, also need to be secure, in terms of their ability
to deal with short term shocks and longer term stresses on the en-
ergy system. Furthermore, they need to be adaptable and flexible
to changing system conditions and other technology
developments.

Supply chains are complex, involving multiple actors operating
at different scales and locations and they are influenced by the
wider rules and regulations, etc. that are in place. The mechanisms
by which they become established reflects their innovation pro-
cess, and other factors, such as bottlenecks relating to skills or
materials, as well as the certainty that policy does or does not pro-
vide. These issues need to be understood and acted upon to enable
companies and investors to enter a supply chain or scale up their
activity to create the resilience needed for a low carbon and secure
transition.

A key issue is the considerable uncertainty in identifying which
technology pathway and supply chains will be most effective in
delivering on the goals for energy policy. Whilst a range of low car-
bon technologies are available (including some which are not yet
at market), there is no single technology solution and therefore op-
tions need to be kept open. Also, it is expected that a more diverse
energy system than is currently in place will emerge, and this cre-
ates further uncertainty as it is not clear how the widespread
deployment of new technologies might impact the energy system,
given the interdependencies that exist between its component
parts. It is also not possible to predict with any certainty, issues
such as emerging technology or system innovations, including
those relating to: technologies; networks; and the operation of
the system. A sensible strategy to deal with these uncertainties is
to consider the ability of new technologies to provide resilience,
adaptability and flexibility, as this would allow developments to
be monitored and allow for any unintended consequences to be
addressed.

Through an analysis of the different characteristics that low car-
bon technologies have, it would be possible to better identify
where priority should be given. Assessment of factors that could
be important, include: the potential for deployment; supply chain
capacity and capability; compatibility with the system and other
technologies within it; potential costs; and any constraints that
they may face.
6.2. The importance of technology scale

Many of these issues discussed above have direct links to tech-
nology scale, as it can influence how technology supply chains de-
velop, including the willingness or ability of companies to be
involved, as well as the wider characteristics that a technology dis-
plays in terms of resilience, flexibility and adaptability.
Large scale nuclear power and small scale PV were compared to
better understand the role of scale and the risks it may create for a
secure low carbon transition. This shows that whilst they have
some similarities, such as the importance of and need for policy
support and some constraints within the capital and knowledge
intensive top tiers of their supply chains; they also display very dif-
ferent characteristics and this could influence their potential role
within system change.

6.2.1. Nuclear power
Nuclear power, compared to PV, is providing large amounts of

low carbon power and as such its further deployment could have
an important role in mitigating climate change. Its role in provid-
ing energy security and affordability is less clear. This is because
its supply chain does not appear to be resilient or flexible, and this
directly relates to the scale of this technology.

Nuclear has a mostly bespoke supply chain for key components,
reflecting the complexity of this technology, including the need to
meet stringent safety requirements. A number of significant bottle-
necks are apparent, including within the top tiers, a limited num-
ber of global vendors and heavy forging capacity; as well as cross
cutting issues like the number of skilled workers that are available.
Building a nuclear plant is also a global project requiring workers
and companies from many different countries, which can create
construction risks. These issues are a particular concern for the
UK, as the delivery of new plant will be dependent on the global
supply chain and the UK is a small market relative to others. These
supply chain constraints and wider policy uncertainties impact on
the willingness of companies to enter the supply chain or invest in
skills, reducing its resilience. These same factors will also impact
on the potential deployment rate for nuclear power.

Nuclear also lacks flexibility in terms of its operational profile,
as it cannot be ramped up or down easily. It is also not adaptable
because once deployed, a generation III reactor is expected to run
for around 60 years and it is impossible to know how the energy
system might change within this time; it can therefore constrain
other technology options, or system operational choices, as these
will have to fit in around nuclear power. There are also innovation
concerns for nuclear, because plant design is globally standardised,
there is reluctance from vendors to make changes once licensed,
and there are around 30 years between the developments of each
generation. In respect to learning rates, despite widespread
deployment the costs of nuclear are not falling and its role in pro-
viding affordable energy is open to question.

6.2.2. Solar PV
The large scale deployment of PV can play an important role in

helping to tackle climate change, although its output is variable
reflecting time of day and local conditions. How big a role it can
play will therefore in part depend on what other technologies are
on the system to help balance its variability. However, the PV sup-
ply chain does demonstrate resilience, adaptability and flexibility,
and it therefore has an important role in the context of system
change and energy security.

PV is small scale and highly modular, and can be deployed
quickly in a variety of different applications and scales, providing
flexibility. It is less complex than nuclear and its supply chain
capacity can be quickly expanded, either in response to a bottle-
neck or to anticipated demand; it is also expected that the supply
chain will quickly reorganise to deal with the issues of oversupply.
It also has more companies operating at the top of the supply chain
and very strong competition between them.

There are bottlenecks that may emerge in the future, as well as
possible options to deal with them, including the potential use of
alternative generations of PV, such as thin film, which this paper
has not explored. In terms of innovation, PV has shown quick
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learning rates, with innovation cycles typically ten times shorter
than for conventional power plants. In part this has led to dramatic
cost reductions, which against a backdrop of rising retail electricity
prices, are expected to make it quickly competitive in many mar-
kets. Developments in storage could also significantly increase
the potential role that PV could play within energy systems.

6.3. Conclusions

Given the uncertainty that exists in bringing about a low carbon
energy transition, a sensible strategy is to consider how effective dif-
ferent technologies are at providing resilience, flexibility and adapt-
ability. Energy security also has to be ensured, and in a rapidly
changing energy system, resilience and flexibility are likely to play
a growing role in enabling security. From a supply chain perspective,
risks appear to increase if a supply chain is reliant on a limited num-
ber of companies, technologies or markets, whereas resilience in-
creases if the number of companies, networks, connections, etc., is
large, as this creates alternative options for bringing forward a low
carbon technology at an affordable cost. This requires policy makers
to put in place effective technology and wider policies for rules and
regulations to create an environment that increases the ability or
willingness of companies to participate within the supply chain.

Resilience is not just a property of end-use technologies, but
also the scale and complexity of the supply chain behind it. Large
technologies like nuclear power appear to offer less resilience than
smaller scale technologies like PV. This reflects the fact that the nu-
clear supply chain is complex, can have big barriers to entry, and
faces a number of bottlenecks which are not easy to resolve. Inno-
vation also appears to be slower, with long life cycles between gen-
erations of plant and once deployed they remain on the system for
decades, potentially constraining the development of the system
and other technologies. Smaller scale technologies like PV can
show quick rates on innovation and can be quickly deployed and
improved. Collectively these supply chain issues can impact
deployment rates and therefore the potential role of these technol-
ogies in bringing about a low carbon transition whilst also ensuring
energy security.

Arguably, then, from an energy security and low carbon transi-
tion perspective, there is something inherently more secure about
smaller-scale technologies. Currently this sort of analysis is not
considered by policy-makers within the UK, but given the multiple
challenges in bringing about a low carbon transition, such an ap-
proach could better help to identify where support should best
be directed. This is more likely to enable a transition that is rapid,
sustainable, secure and affordable and it deserves more policy
attention.

This paper has only examined nuclear power and PV, but it is
possible that similar findings may exist for other large scale (e.g.
carbon capture and storage) and smaller scale (e.g. wind) technol-
ogies. Neither has it explored the potential for enabling technolo-
gies such as smart grids or energy storage. This work would
therefore benefit from further studies into the scale and supply
chains of other low carbon technologies and enabling technologies
and how they relate to resilience, flexibility and the adaptability
needed within a rapidly changing energy system.
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