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Abstract

In this paper, we investigate the relations between the stratifiable structure of spaces and the insertion of
semi-continuous functions and give some characterizations of perfect spaces, semi-stratifiable spaces and
K-semi-stratifiable spaces.
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1. Introduction

Let g and h be real-valued (non-continuous) functions defined on a space X and g � h

(g(x) � h(x) for each x ∈ X). Under what conditions does there exist a continuous function f

such that g � f � h? The problem has been investigated extensively. The resolution of the prob-
lem presents some characterizations of certain spaces, such as extremally disconnected spaces,
stratifiable spaces, and others.

In 1949, Stone [6] proved that a space X is extremally disconnected if and only if for any real-
valued functions g and h defined on X, g lower semi-continuous, h upper semi-continuous and
g � h, there exists a continuous function f defined on X such that g � f � h. Dowker [2]
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and Katětov [3] independently proved that a space X is normal and countably paracompact
if and only if for any real-valued functions g and h defined on X, g upper semi-continuous,
h lower semi-continuous and g < h, there exists a continuous function f defined on X such
that g < f < h. Michael [5] proved that a T1-space X is perfectly normal if and only if for
every pair g,h of real-valued functions defined on X, where g is upper semi-continuous, h is
lower semi-continuous and g � h, there exists a continuous function f defined on X such that
g � f � h, and g(x) < f (x) < h(x) whenever g(x) < h(x). In 1999 it was shown in [4] that X

is a stratifiable space if and only if for any real-valued functions g and h defined on X, g lower
semi-continuous, h upper semi-continuous and g � h, there exists a continuous function f de-
fined on X such that g � f � h, and if g(x) < h(x), then g(x) < f (x) < h(x). A special case of
this theorem is that a space X is stratifiable if and only if for any lower semi-continuous func-
tion h, there exists a continuous function f defined on X such that 0 � f � h, and if h(x) > 0,
then 0 < f (x) < h(x). Enlightened by these theorems, we present some characterizations of
semi-stratifiable spaces, K-semi-stratifiable spaces and perfect spaces which are remarkably sim-
ilar to these characterizations, particularly the ones for perfectly normal and stratifiable spaces.

Before stating the main results of this paper, we shall introduce some notions. Throughout
this paper, a space means a topological space and all spaces in this paper are assumed to be T1.

A real-valued function f defined on a space X is lower (upper) semi-continuous if for any
real number r , the set {x: f (x) > r} (the set {x: f (x) < r}) is open.

Definition 1.1. A real-valued function f defined on a space X is K-lower (K-upper) semi-
continuous if for every compact set K , f has a minimum (maximum) value on K .

Let X be a space. R(X) represents the set of all real-valued functions on X, and we write
LSC(X) and USC(X) for the set of all real-valued lower semi-continuous functions and upper
semi-continuous functions on X into I = [0,1], respectively. O(X) and K(X) are the sets of all
open and closed subsets of X, respectively. Also, denote by UKL(X) the set of all real-valued
upper and K-lower semi-continuous functions on X into I = [0,1].

Let X be a space. If A ⊂ X, we write χA for the characteristic function on A, that is, a func-
tion χA :X → [0,1] defined by

χA(x) =
{

1, x ∈ A,

0, x /∈ A.

One easily verifies that if A ∈ K(X), then χA ∈ USC(X); and χA ∈ LSC(X), if A ∈ O(X).

Definition 1.2. A map φ :R(X) → R(X) is called order-preserving if φ(g) � φ(h) for every pair
g, h of elements of R(X) satisfying g � h.

Definition 1.3. [1] X is a K-semi-stratifiable space if, to each U ∈ O(X), one can assign an
increasing sequence {Un}∞n=1 of closed subsets of X such that

(a)
⋃

n∈N Un = U ,
(b) Un ⊂ Vn, whenever U ⊂ V ,
(c) for every compact subsets K of U , there exists an N ∈ N such that K ⊂ UN .

A space X is said to be a semi-stratifiable space [4] if to each U ∈ O(X), one can assign an
increasing sequence of closed subsets {Un}∞ such that (a) and (b) above hold. X is said to be a
n=1
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perfect space [7] if to each U ∈ O(X), one can assign an increasing sequence of closed subsets
{Un}∞n=1 such that (a) above holds.

Lemma 1.4. [4] X is a semi-stratifiable space if and only if there is a map ρ : N×O(X) → K(X),
such that

(a)
⋃

n∈N ρ(n,U) = U for all U ∈ O(X),
(b) for any U,V ∈ O(X), if U ⊂ V , then ρ(n,U) ⊂ ρ(n,V ) for all n ∈ N,
(c) ρ(n,U) ⊂ ρ(n + 1,U) for all U ∈ O(X) and n ∈ N.

The above lemma holds for a K-semi-stratifiable space if ρ also satisfies

(d) for every compact subset K of U , there exists an N ∈ N such that K ⊂ ρ(N,U).

2. Some properties of semi-continuous functions and K-semi-continuous functions

In this section, we shall introduce some properties of semi-continuous functions and K-semi-
continuous functions that will be used in the proof of the primary results.

The following simple properties of semi-continuous functions can be found in [7].
A function f :X → R is lower (upper) semi-continuous if and only if for every real number r ,

the set {x: f (x) � r} (the set {x: f (x) � r}) is closed. A function f is lower (upper) semi-
continuous if and only if −f is upper (lower) semi-continuous. The sum of finitely many lower
(upper) semi-continuous functions is still a lower (upper) semi-continuous function.

The following Proposition 2.1 is easy to prove, so we omit the proof.

Proposition 2.1. If f :X → R+ is a lower (an upper) semi-continuous function and g :X → R+
an upper (a lower) semi-continuous function, then f

g
is a lower (an upper) semi-continuous

function on X into R+.

Proposition 2.2. Let {fn}∞n=1 be a monotonically increasing (decreasing) sequence of lower
(upper) semi-continuous functions defined on a space X. If {fn}∞n=1 is uniformly convergent
to a function f , then f is also lower (upper) semi-continuous.

Proof. We shall prove the case that all f ′
ns are lower semi-continuous.

As the inequality f (x) > f (x) − ε holds for each x ∈ X and ε > 0, it suffices to show that
there is a neighborhood U of x such that f (ξ) > f (x) − ε for all ξ ∈ U and ε > 0.

Since the sequence {fn}∞n=1 is uniformly convergent to f , for every ε > 0, there exists N ∈ N
such that fn(x) > f (x) − ε for all x ∈ X and n > N . Thus, we have fN+1(x) > f (x) − ε for
all x ∈ X and ε > 0. Since fN+1 is lower semi-continuous, there exists a neighborhood U of x

such that fN+1(ξ) > f (x) − ε for every ξ ∈ U . And f (ξ) > fN+1(ξ) for every ξ ∈ U , because
the sequence {fn}∞n=1 is monotonically increasing. So we have f (ξ) > f (x) − ε for every ξ ∈ U

and ε > 0. This concludes the proof. �
Proposition 2.3. Let {fn}∞n=1 be a sequence of lower semi-continuous functions defined on
a space X. If fn(x) � 0 for every x ∈ X and n ∈ N, and

∑∞
n=1 fn = f , then f is also lower

semi-continuous.
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Proof. Let sn = f1 + f2 + · · · + fn for every n ∈ N. Since every fn is lower semi-continuous,
every sn is also lower semi-continuous. Moreover, the sequence {sn}∞n=1 is monotonically in-
creasing because fn(x) � 0 for every x ∈ X and n ∈ N. With the condition that

∑∞
n=1 fn = f

which means that the sequence {sn}∞n=1 is uniformly convergent to f , one readily sees that f is
lower semi-continuous by Proposition 2.2. �
Proposition 2.4. Every lower (upper) semi-continuous function is a K-lower (upper) semi-
continuous function.

Proof. Let f :X → R be a lower semi-continuous function and K a compact subset of X. For
each n ∈ N, let Un = {x: f (x) > −n}. Then the family {Un}n∈N is an open cover of K . Since
K is compact, there exist finitely many numbers 1,2, . . . ,m such that K ⊂ ⋃m

n=1 Un, which
implies that f is lower bounded on K . Let α be the greatest lower bound of f (K). Then α is
the minimum value of f on K . Otherwise, we have K ⊂ ⋃

n∈N{x: f (x) > α + 1
n
}. Thus there

exists m ∈ N such that K ⊂ ⋃m
n=1{x: f (x) > α + 1

n
}. A contradiction. Therefore, f is K-lower

semi-continuous. �
The converse of Proposition 2.4 needs not be true, which can be seen from the following

example.

Example 2.5. Let X = {xn: n ∈ N} ∪ {x}, where {xn: n ∈ N} is a converging sequence with the
limit x. f :X → R is defined by f (xn) = − 1

n
, f (x) = 1. One easily verifies that f is K-lower

semi-continuous, but it is not lower semi-continuous.

Let f be a K-lower semi-continuous function. If a, b ∈ R and b > 0, then a + bf is also K-
lower semi-continuous. Generally, the sum of two K-lower semi-continuous functions need not
be K-lower semi-continuous.

Example 2.6. Let X be the space in Example 2.5. f :X → R and g :X → R are defined by
f (xn) = − 1

n
, f (x) = 1 and g(xn) = 2

n
, g(x) = 0, respectively. It is easy to verify that f and g

are both K-lower semi-continuous, but f + g is not K-lower semi-continuous.

3. Primary results

Lemma 3.1. A space X is semi-stratifiable if and only if for any partially-ordered set (H,�) and
any map F : N × H → K(X) that satisfy the following conditions:

(i) F(n + 1, h) ⊂ F(n,h) for all h ∈ H and all n ∈ N,
(ii) for any h1, h2 ∈ H , if h1 � h2 then F(n,h2) ⊂ F(n,h1) for all n ∈ N.

There is a map G : N × H → O(X) such that (i) and (ii) hold for G, F(n,h) ⊂ G(n,h) for all
n ∈ N, h ∈ H , and

⋂
n∈N F(n,h) = ⋂

n∈N G(n,h) for all h ∈ H .

As for a K-semi-stratifiable space X, we need the following additional condition:

For every compact subset K of X, if K ∩ F(n,h) = ∅ for some n ∈ N,

then there exists m ∈ N such that K ∩ G(m,h) = ∅. (∗)
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Proof. Suppose that X is semi-stratifiable and F : N × H → K(X) is a map that satisfies con-
ditions (i) and (ii) of the lemma. Let ρ be the map in Lemma 1.4. We shall show that the map
G : N × H → O(X) defined by G(n,h) = X − ρ(n,X − F(n,h)) satisfies the conditions of the
lemma. By the properties of ρ and F , one can easily verify that (i) and (ii) hold for G. Since,
by Lemma 1.4, the equality

⋃
n∈N ρ(n,U) = U holds for all U ∈ O(X) and n ∈ N, which shows

that ρ(n,U) ⊂ U , we have ρ(n,X − F(n,h)) ⊂ X − F(n,h) and so F(n,h) ⊂ G(n,h) for all
n ∈ N and h ∈ H . The last inclusion also shows us that

⋂
n∈N F(n,h) ⊂ ⋂

n∈N G(n,h).
We shall now show that the inclusion

⋂
n∈N G(n,h) ⊂ ⋂

n∈N F(n,h) also holds. If x /∈⋂
n∈N F(n,h), then x /∈ F(N,h) for some N ∈ N. Consequently, x ∈ ρ(M,X − F(N,h))

for some M ∈ N since X − F(N,h) = ⋃
n∈N ρ(n,X − F(N,h)). Let m = max{M,N}. Then

x ∈ ρ(M,X − F(N,h)) ⊂ ρ(m,X − F(N,h)) ⊂ ρ(m,X − F(m,h)). Thus x /∈ X − ρ(m,X −
F(m,h)) = G(m,h), which implies that x /∈ ⋂

n∈N G(n,h). �
Suppose now that X is a K-semi-stratifiable space. We shall show that the condition (∗) also

holds. If K ∩F(n,h) = ∅ for some n ∈ N , then K ⊂ X−F(n,h). Since X is K-semi-stratifiable,
there exists k ∈ N such that K ⊂ ρ(k,X − F(n,h)). Fix m ∈ N such that m > max{n, k}. Then
K ⊂ ρ(k,X − F(n,h)) ⊂ ρ(m,X − F(n,h)) ⊂ ρ(m,X − F(m,h)) = X − G(m,h). Therefore,
K ∩ G(m,h) = ∅.

Conversely, for each U ∈ O(X) consider the map F : N × O(X) → K(X) defined by
F(n,U) = X − U . One can easily verify that F satisfies (i) and (ii) above. So there is a map
G : N × O(X) → O(X) such that (i) and (ii) hold for G, F(n,U) ⊂ G(n,U) for all n ∈ N,
U ∈ O(X) and

⋂
n∈N F(n,U) = ⋂

n∈N G(n,U). Let ρ(n,U) = X − G(n,U). It is easy to ver-
ify that the last equality defines a map ρ : N × O(X) → K(X) that satisfies the conditions in
Lemma 1.4. So X is semi-stratifiable.

Suppose now that the condition (∗) also holds. For every compact set K , if K ⊂ U , then
K ∩ F(n,U) = ∅ for each n ∈ N. Thus there exists m ∈ N such that K ∩ G(m,U) = ∅, which
shows that K ⊂ ρ(m,U). Therefore, X is K-semi-stratifiable.

Theorem 3.2. A space X is perfect if and only if there is a map φ : LSC(X) → USC(X) such that
for any h ∈ LSC(X), 0 � φ(h) � h, and 0 < φ(h)(x) < h(x) whenever h(x) > 0.

Proof. Suppose that X is a perfect space and h ∈ LSC(X). By letting Ui = {x: h(x) > 1
2i }, we

obtain an open set Ui for each i ∈ N. Since X is perfect, for each i ∈ N, there exist a sequence of
closed subsets Fij of X satisfying Fij ⊂ Fij+1 such that Ui = ⋃

j∈N Fij . For each i ∈ N, define

an upper semi-continuous function gi :X → R by letting gi(x) = 0 for all x /∈ Ui , gi(x) = 1
2i+1

for all x ∈ Fi1, and gi(x) = 1
2i+j+1 for all x ∈ Fij+1 − Fij , where j � 1. Then For each i ∈ N,

gi ∈ USC(X). Let

φ(h)(x) =
∞∑
i=1

gi(x) = 1

2
−

∞∑
i=1

1

2i+1
− gi(x) for all x ∈ X and h ∈ LSC(X).

By Proposition 2.3, one easily sees that the equality above defines a map φ : LSC(X) → USC(X).
We shall now show that the map φ has the required properties. Suppose x ∈ X. If h(x) = 0,

then x /∈ Ui and so gi(x) = 0 for each i ∈ N. Thus φ(h)(x) = 0. If h(x) > 0, then h(x) > 1
2i and

so x ∈ Ui for some i ∈ N. Let

m = min{i: x ∈ Ui}.
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We have then

0 < φ(h)(x) =
m−1∑
i=1

gi(x) +
∞∑

i=m

gi(x) =
∞∑

i=m

gi(x) �
∞∑

i=m

1

2i+1
= 1

2m
< h(x).

Conversely, for each U ∈ O(X), let hU = χU . Then hU ∈ LSC(X), and so φ(hU ) ∈ USC(X).
By putting Fn = ρ(n,U) = {x: φ(hU )(x) � 1

2n }, we obtain an increasing sequence of closed
subsets Fn of X and it is easy to check that U = ⋃

n∈N Fn. Therefore, X is perfect. �
Theorem 3.3. A space X is semi-stratifiable if and only if there is an order-preserving map
φ : LSC(X) → USC(X) such that for any h ∈ LSC(X), 0 � φ(h) � h, and 0 < φ(h)(x) < h(x)

whenever h(x) > 0.

Proof. Suppose that X is semi-stratifiable. For each n ∈ N and h ∈ LSC(X), let F(n,h) =
{x: h(x) � 1

2n−1 }. This defines a map F : N × LSC(X) → K(X) and it is easy to verify that
F satisfies (i) and (ii) in Lemma 3.1. Since X is semi-stratifiable, by Lemma 3.1, there exists a
map G : N × LSC(X) → O(X) such that (i) and (ii) hold for G, F(n,h) ⊂ G(n,h) for all n ∈ N
and h ∈ LSC(X), and

⋂
n∈N G(n,h) = ⋂

n∈N F(n,h). Thus⋂
n∈N

G(n,h) = {
x: h(x) = 0

}
. (∗)

Let α(n,h) = χG(n,h) and

φ(h)(x) = 1 −
∞∑

n=1

1

2n
α(n,h)(x) for all x ∈ X.

By Proposition 2.3, we have φ(h) ∈ USC(X). We shall now show that φ is order-preserving.
Suppose that h1 � h2. Then, for each n ∈ N, we have G(n,h2) ⊂ G(n,h1), and so χG(n,h2) �
χG(n,h1) which shows that α(n,h2) � α(n,h1). By the definition of the map φ, one easily sees
that φ(h1) � φ(h2).

It remains to show that the map φ defined above satisfies the necessary conditions in the
theorem. Suppose that x ∈ X. If h(x) = 0, then x ∈ G(n,h) and so α(n,h)(x) = 1 for all n ∈ N
by (∗). Therefore

φ(h)(x) = 1 −
∞∑

n=1

1

2n
α(n,h)(x) = 1 −

∞∑
n=1

1

2n
= 0.

If h(x) > 0, then x /∈ ⋂
n∈N G(n,h). Let

N = min
{
n: x /∈ G(n,h)

}
.

Then x ∈ G(n,h) and so α(n,h)(x) = 1 for all n < N . But x /∈ G(N,h), and so x /∈ F(N,h),
since F(N,h) ⊂ G(N,h). This implies that h(x) > 1

2N−1 , Hence, we have

∞∑
n=1

1

2n
α(n,h)(x) =

N−1∑
n=1

1

2n
+

∞∑
n=N

1

2n
α(n,h)(x) = 1 − 1

2N−1
+

∞∑
n=N

1

2n
α(n,h)(x).

Consequently,

1 − 1

2N−1
�

∞∑ 1

2n
α(n,h)(x) <

∞∑ 1

2n
= 1.
n=1 n=1
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By the definition of φ, we have 0 < φ(h)(x) � 1
2N−1 < h(x).

Conversely, suppose there is an order-preserving map φ : LSC(X) → USC(X) that satisfies the
conditions given in the theorem. For any fixed U ∈ O(X), let hU = χU . Then φ(hU) ∈ USC(X).
For each n ∈ N, let ρ(n,U) = {x: φ(hU )(x) � 1

2n }. This defines a map ρ : N × O(X) → K(X).
To prove that X is semi-stratifiable, it suffices to show that ρ satisfies (a) through (c) in
Lemma 1.4. It can be easily checked that the map ρ satisfies (b) and (c) in Lemma 1.4. So
we shall show that ρ also satisfies (a).

For each n ∈ N, if x ∈ ρ(n,U), then we have 1
2n � φ(hU )(x) � hU(x). So χU(x) = hU(x) �

1
2n > 0. Hence, x ∈ U . This implies that ρ(n,U) ⊂ U for each n ∈ N and so

⋃
n∈N ρ(n,U) ⊂ U .

Conversely, for each x ∈ U , we have hU(x) = χU(x) = 1 > 0, and so φ(hU)(x) > 0. Hence,
there is an N ∈ N such that φ(hU )(x) � 1

2N , which implies that x ∈ ρ(N,U). Therefore,
U ⊂ ⋃

n∈N ρ(n,U). �
Theorem 3.4. X is a K-semi-stratifiable space if and only if there is an order-preserving map
φ : LSC(X) → UKL(X) such that for any h ∈ LSC(X), 0 � φ(h) � h, and 0 < φ(h)(x) < h(x)

whenever h(x) > 0.

Proof. Suppose that X is K-semi-stratifiable. Define a map φ as that in the proof of Theorem 3.3
(necessity) with G satisfying the additional condition in Lemma 3.1 for K-semi-stratifiable. Then
we need only to show that for each h ∈ LSC(X), φ(h) is K-lower semi-continuous. Suppose that
K is a compact set. If K ∩ G(n,h) = ∅ for some n ∈ N, let

N = min
{
n: K ∩ G(n,h) = ∅}

.

Then K ∩ G(n,h) = ∅ for all n � N and K ∩ G(n,h) �= ∅ for all n < N . Thus K ∩⋂
n<N G(n,h) = K ∩ G(N − 1, h) �= ∅. Take x0 ∈ K ∩ ⋂

n<N G(n,h). Then for each x ∈ K ,

φ(h)(x) = 1 −
∞∑

n=1

1

2n
α(n,h)(x) = 1 −

N−1∑
n=1

1

2n
α(n,h)(x)

� 1 −
N−1∑
n=1

1

2n
= 1

2N−1
= φ(h)(x0).

If K ∩G(n,h) �= ∅ for each n ∈ N, then, by Lemma 3.1, K ∩F(n,h) �= ∅ for each n ∈ N , and so
K ∩ ⋂

n∈N F(n,h) �= ∅ because of the compactness of K . Thus by the equality
⋂

n∈N F(n,h) =⋂
n∈N G(n,h), we have K ∩ ⋂

n∈N G(n,h) �= ∅. Take x0 ∈ K ∩ ⋂
n∈N G(n,h). Then for each

x ∈ K , φ(h)(x) � 0 = φ(h)(x0).
From the discussion above, we see that φ(h) has a minimum value on K . Therefore, for each

h ∈ LSC(X), φ(h) is K-lower semi-continuous.
Conversely, let ρ be the same map as that in the proof of Theorem 3.3 (sufficiency). We need

only to show that ρ also satisfies condition (d) of Lemma 1.4.
Suppose that U is an arbitrary open subset of X and K a compact subset of X satis-

fying K ⊂ U . Then φ(hU) is K-lower semi-continuous, and so there exists x0 ∈ K such
that 0 < φ(hU)(x0) � φ(hU)(x) for all x ∈ K . Fix N ∈ N such that φ(hU )(x0) � 1

2N . Then

φ(hU)(x) � 1
2N and so x ∈ ρ(N,U) for all x ∈ K , which implies that K ⊂ ρ(N,U). This con-

cludes the proof. �
The following corollaries are similar to Urysohn’ lemma.
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Corollary 3.5. A space X is semi-stratifiable if and only if for each pair of (A,U) of subsets
of X, A closed, U open and A ⊂ U , there is a lower semi-continuous function fU,A :X → [0,1]
such that A = f −1

U,A(0), X − U = f −1
U,A(1), and fU,A � fV,B whenever A ⊂ B and U ⊂ V .

Proof. Suppose that X is a semi-stratifiable space. Then, by Theorem 3.3, there is an order-
preserving map φ : LSC(X) → USC(X) such that for any h ∈ LSC(X), 0 � φ(h) � h and
0 < φ(h)(x) < h(x) whenever h(x) > 0. Let fA = 1 − χA and gU = φ(χU). Since A is closed
and U is open, We have then fA ∈ LSC(X), gU ∈ USC(X). Define fU,A :X → [0,1] by letting
fU,A(x) = fA(x)

1+gU (x)
for all x ∈ X. Then fU,A is lower semi-continuous by Proposition 2.1, and

one easily verifies that fU,A � fV,B when A ⊂ B and U ⊂ V .
From the equality fU,A = fA

1+gU
, one can see that fU,A(x) = 0 and x ∈ A are equivalent,

which implies that A = f −1
U,A(0). Similarly, one can verify that X − U = f −1

U,A(1).
Conversely, for each open subset U of X, let gU = 1 − fU,φ , where φ is the empty set. Then

gU ∈ USC(X), and gU � gV when U ⊂ V , and it is easy to verify that gU(x) = 0 if and only
if x /∈ U . As in the proof of Theorem 3.3 (sufficiency), put ρ(n,U) = {x: gU(x) � 1

2n }. Then ρ

satisfies the conditions in Lemma 1.4. So X is semi-stratifiable. �
Corollary 3.6. A space X is semi-stratifiable if and only if for each open subset U of X, we
can assign an upper semi-continuous function gU :X → [0,1] such that X − U = g−1

U (0), and
gU � gV whenever U ⊂ V .

Proof. Suppose that X is semi-stratifiable, and let gU = 1−fU,φ as above. As we have seen just
now, gU is as desired. The sufficiency can be proved in the same manner as in Corollary 3.5. �
Corollary 3.7. A space X is perfect if and only if for each pair (A,U) of subsets of X, A closed,
U open and A ⊂ U , there is a lower semi-continuous function fU,A :X → [0,1] such that A =
f −1

U,A(0),X − U = f −1
U,A(1).

Proof. Similar to Corollary 3.5. �
Corollary 3.8. A space X is perfect if and only if for each open subset U of X, we can assign an
upper semi-continuous function fU :X → [0,1] such that X − U = f −1

U (0).

Proof. Similar to Corollary 3.6. �
The proofs of the following two theorems are similar to Theorem 3.3 in [4].

Theorem 3.9. A space X is semi-stratifiable space if and only if every lower semi-continuous
function f on X is the limit of a monotonically increasing sequence of upper semi-continuous
functions {δn(f )} such that δn(f ) � δn(g) for each n ∈ N whenever f,g ∈ LSC(X) and f � g.

Theorem 3.10. A space X is perfect if and only if every lower semi-continuous function f on X

is the limit of a monotonically increasing sequence of upper semi-continuous functions.
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