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Many hinds of phenomena are studied with the aid of (rooted) digraphs such as those 
indicated by Figs. 1.1 and 1.2. 

Figure 1.1 Figure 1.2 

These two digraphs, while different, usually represent the same phenomenon, say, the 
same “computational process.” Our interest in rooted trees stems from the fact that 
these two digraphs “unfold” into the SAME infinite tree. In some cases at least it is also 
true that different (i.e. non-isomorphic) trees represent different phenomena (of the same 
kind). In these cases the unfoldings (i.e. the trees) are surrogates for the phenomena. 

1. INTRODUCTION 

1.1 Outside injhnce 

Many kinds of phenomena are studied with the aid of (rooted) digraphs such as those 
indicated by Figs. 1.1 and 1.2. 

Figure 1.1 Figure 1.2 

These two digraphs, while different, usually represent the same phenomenon, say, the 
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same “computational process.” Our interest in rooted trees stems from the fact that these 
two digraphs “unfold” into the SAME infinite tree viz. that of Fig. 2.1.8. In some cases 
at least it is also true that different (i.e. non-isomorphic) trees represent different 
phenomena (of the same kind; for example, see Theorem 4.7 [5]). In these cases the 
unfoldings (i.e. the trees) are surrogates for the phenomena. 

We give a specific example. Flowchart schemes, in the sense of [5], are appropriately 
labelled, rooted, diagraphs. Two such flowchart schemes are “strongly equivalent” (cf. 
[5]) iff they unfold into the same tree. Moreover, as indicated in [5], two flowchart schemes 
are strongly equivalent iff they are “semantically equivalent” i.e. equivalent under all 
interpretations. 

It may be remarked that a “flowchart scheme” is a variant of the notion of a “primitive 
normal description.” This latter notion plays a central role in [I, 51, and is exploited in 
Sections 3 and 4. 

The abstract development relies heavily on the notion algebraic theory” introduced 
by [14] (cf. also [9]). G eneralizations of this notion, (including one used here), are discussed 
in ([8], cf., in particular, p. 113). 

1.2. On Section 2 

The longest section, Section 2, deals, in concrete fashion with rooted trees (locally 
finite and ordered). We adopt a Peano-like characterization of this kind of tree as definition 
(and in Appendix 1 relate this characterization to appropriate graph theoretic concepts). 
Sufficient properties of appropriately labelled trees, on which we define “composition,” 
“source-tupling,” and “iteration,” are indicated to assert that they form an “iterative 
algebraic theory” (without, however, using the concept). In this connection we find it 
convenient to faithfully represent trees by matrices of sets of words and to introduce the 
notion “profile” of a tree. The final subsection shows that every tree is a component of a 
(possibly infinite) vector iteration of a “primitive tree,” the trees of “finite index” being 
obtained by finite vector iterations. 

1.3 On Sections 3 and 4 

While an appreciation of Section 2 requires very little background, an appreciation of 
Sections 3 and 4 requires rather more. These two sections axiomatically characterize a 
subcollection I’ tr of the collection r Tr of trees nearly on the basis of tree composition 
alone. The subcollection I’tr is the iterative subtheory of r Tr generated by r. This 
characterization is our main result: r tr is the collection of trees of finite index in r Tr and 
is the iterative algebraic theory freely generated by r. The argument for Theorem 3.4, 
which is the heart of the proof of the main result, depends upon a new insight concerning 
trees viz. (3.4) of Theorem 3.41 The setting of the main result involves the “base category” 
Jtr, (the skeletal category of finite sets). If one replace JV by Y, (the category of (all) 
sets), one obtains an analogue of the main result: the collection of trees called r Tr(Y) 
is the “completely iterative algebraic theory over Y freely generated by r.” The trees in 
r Tr(9’) differ from those in r Tr = r T&V) in that the outdegree (or ‘rank”) of a 
vertex is not restricted to be finite and in that the local order is replaced by local indexing. 
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If, however, the “rank” of each y in r is a finite set, each tree in r D(Y) is locally finite. 
In this case we have: the collection of all trees in r R(9) whose singly rooted components 
have finite index may be described as the “(finitely) iterative algebraic theory over Y 
freely generated by I”’ or the “scalar iterative algebraic theory over 9’ freely generated 
by r.3’ 

1.4 Historical background 

In the above we have introduced “iterative theory” as a convenient summery for a 
collection of facts concerning the trees r TV and “iterative theory freely generated by r” 
as an axiomatic description of I’tr. Actually the notion “iterative theory” preceded in 
time [3] the recognition of r TY as a particular instance of the notion and the existence of 
free iterative theories [l] preceded in time the recognition of I’ tr as the iterative theory 
freely generated by r. From a purely mathematical point of view the usefulness of this 
result stems from the fact that (a) to establish certain assertions, e.g. identities, for all 
iterative theories, it is sufficient to establish these assertions for free ones and (b) many 
true assertions concerning iterative theories are transparently true in the tree theory r tr. 

The suggestion that a suitable collection of trees might provide a concrete description 
of “free iterative theories” was first made by Goguen et aZ. [ll]. A proof of this fact was 
first offered by Ginali (cf. [13]). I n h er readable thesis, [13], Ginali characterizes the trees 
involved as “regular” and relates the material to studies of Mitchell Wand, Erwin 
Engeler, the above-mentioned authors, and others. 

2 

2.1 Unlabelled Rooted Trees 

According to many texts on graph theory a “tree” is an (undirected) graph which is 
connected and acyclic. Our concern is with certain kinds of “rooted trees,” i.e. trees 
equipped with distinguished vertices, called roots. Furthermore, the rooted trees discussed 
here have the property that the set of “immediate successors” of any vertex is finite and 
linearly ordered; we call these trees “locally finite” and “locally ordered.” 

Before giving a formal definition, we indicate some examples of rooted, locally finite, 
locally ordered trees. See Figs. 2.1.0-2.1.11. 

The singly rooted, locally finite, locally ordered tree (briefly, “tree”) represented by 
Fig. 2.1 .O has three vertices; one vertex, the root, has rank 2; thefirst and second successors 
of the root have rank zero. The fact that we regard the phrases “first successor” and 
“second successor” as meaningful, suggests that Figs. 2.1.0 and 2.1.2 represent the same 
tree, and Figs. 2.1.4 and 2.1.5 represent different (i.e. “non-isomorphic”) trees. (The 
phrase “ordered tree” is sometimes used in this connection, but we prefer to say “locally 
ordered.“) The vertices of rank 0 in a tree are called the leaves of the tree. Thus, the tree 
of Fig. 2.1.3 has four leaves, and the tree of Fig. 2.1.7 has no leaves. Figure 2.1.10 indicates 
a doubly rooted tree. 
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Figure 2.1 .O 
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Figure 2.1.3 (B,) 

A 
Figure 2.1.1 (B,) 
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Figure 2.1.7 

One might say that the trees represented by Figs. 2.1.0 and 2.1.1 are “isomorphic” or 
“the same.” In our technical discussion we do not identify isomorphism with equality. 

We now give our formal definition. 

DEFINITION 2.1.1. A ranked set is a set V together with a function p: V + N, where N 
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Figure 2.1.8 

0 
Figure 2.1.9 
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Figure 2.1.10 

is the set of non-negative integers. An edge of the ranked set (V, p) is a pair (0, ;) where 
w E V and i E [erp].l Let 12 be a non-negative integer. 

DEFINITION 2.1.2. An n-rooted (locally finite, locally ordered, unlabelled) tree T is a 
ranked set (V, p) equipped with a function u: E -+ V (where E is the set of edges of 

1 For n EN, [n] denotes the set {l, 2 ,..., n}. In particular, [0] is the empty set 0, [l] = {l}, etc. 
If f: X + Y is a function and x E X, we write the value off at x variously as xf of f(x). The com- 
position of f: X -+ Y with g: Y -+ Z is written fg: X -+ Z or X J Y +a Z (note the missing 
arrowhead). 
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(V, p)) and an ordered set of n distinct elements <I ,..., E, of V satisfying the following 
(Peano-like) conditions: 

u is injective; i.e. a(~, i) = a(~‘, i’) 3 (v, i) = (v’, i’). (2.1.1) 

No element ci , i E [n], is in the range of (r. (2.1.2) 

If I” is any subset of V which contains or ,..., Ed , and is “closed 
under 0,” then V’ = V. (V’ is closed under o if u(v, i) E V’ whenever (2.1.3) 
v E V’ and i E [VP].) 

The elements of V are called the vertices of T. The elements <I ,..., E, are the first, 
second,..., nth roots of T; (T is called the successor function of T. 

The above definition might be labelled “Proposition” or “Theorem.” The terminology 
reflects our view that this is more appropriately a definition. Certainly the definition is the 
result of some analysis of the subject. A discussion of the relation between the common 
notion of tree and the special case of our singly rooted trees is given in Appendix I. 

We list some elementary properties of n-rooted trees. 

PROPOSITION 2.1.3. The set V of vertices of a O-rooted tree is empty. 

Indeed, let V’ = 0 in the “induction clause” (2.1.3) of Definition 2.1.2. 
If T = ((V, P), U, or ,..., E,), abbreviated T = (V, p, c, e1 ,..., E,), is an n-rooted tree and 

v, v’ E V we say v’ is an immediate successor of v if v’ = o(v, i), some i E [VP]. We say v’ 
is a descendant of v if there is a finite sequence zlr , va ,..., vk , k > 1, of vertices such that 
et = o, , U’ = vk and vitl is an immediate successor of vi , for 1 < i < lz. In particular, 
for each v, v is a descendant of v. 

PROPOSITION 2.1.4. Let T = (V, p, a, l 1 ,..., c,) be an n-rooted tree. 

(a) For any vertex v E V, the collection of all descendants of v, denoted vD, , is a 
l-rooted tree, where the rank function on vD, is p restricted to vDT , the successor function on 
vD, is u restricted to vD, , and the root of vD, is v. (This tree, as well as its set of vertices, 
is denoted vD, .) 

(b) If neither v E v’D, nor v’ E vD, , then vD, n v’Dr = % . 

(c) V is the set of all descendants of the roots Ed ,..., E, . More speciJcally V is the 
union QD, u ... u E,D~ of the disjoint sets elDT ,..., E,,D~ . 

These facts follow easily from Definition 2.1.2. 
We see that D, , defined in 2.1.4(a) above is a function mapping V into the set of singly 

rooted “subtrees” of T. For ZI E V, the tree vD, is called the “tree of descendants of v,” 
or the “descendency tree of T at v.” 

DEFINITION 2.1 S. Let T = (V, p, u, or ,..., c,) and T’ = (V’, p’, u’, Ed’,..., E,‘) be 
n-rooted trees. An isomorphism 0: T + T’ is a bijective function V -+ V’ such that 
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(a) $3 = Q’, each i, 1 < i - n. 

(b) For each ZI E V, wp = 00~’ (i.e. 8 preserves rank). 

(c) For each edge (w, i) in T, u(v, i)e = a’(&, i). 

The conditions (b) and (c) may be expressed by saying the following two diagrams 
commute, 

V--LV’ 

Y’ 1 1 
8 

eve, i) E’ Q’ V’ 

where E and E’ are the set of edges of T and T’ respectively. 

PROPOSITION 2.1.6. Let T and T’ be n-rooted trees. If t9 andl? are isomorphisms T -+ T’, 
then 8 = 8’. 

Proof. We use the notation of Definition 2.1.5. Let X C V be the set of vertices w of T 
such that oB = we’. Clearly the roots of T belong to X. But if er E X and (v, i) E E, then 
~(0, i)O = u’(@ i) = o’(vB’, i) = ~(0, i)el. Thus X is closed under a, proving X = V. 

Thus if two n-rooted trees are isomorphic, they are “uniquely isomorphic.” 
A tree is m-homomgeneous if vp = m, for each vertex v of T. Clearly a singly rooted, 

l-homogeneous tree may be identified with the natural numbers N, with or = 0, and 
u(n, 1) = n + 1. The proof of the following proposition is straightforward. 

PROPOSITION 2.1.7. If Tl and T, are m-homogeneous n-rooted trees, then Tl is isomorphic 
to T, . 

By virtue of 2.1.7, one may speak of “the” m-homogeneous n-rooted tree; for example 
Fig. 2.1.7 depicts “the” 2-homogeneous singly rooted tree. 

Note. m-homogeneous trees are defined for the sake of example only. 
At this point, we want to select a “canonical” representative for each isomorphism class 

of n-rooted trees. First we treat the case n = 1. The selection may be done in a number of 
ways, of course. The following choice2 appears in the literature. Let [w] = (1,2,...). 

e Knuth [6, p. 558, 151 attributes (essentially) this idea to Francis Galton, “Natural Inheritance” 
(Macmillan, 1889, p. 249). 

571/16/3-7 
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Let T be a singly rooted tree. Using (2.1.3), one shows that there is a unique map from 
V to [WI*, zI E V * BE [WI*, satisfying 

the root E goes to the null sequence A; (2.1.4) 

if z, E V, in [wf], then a(o,i) = 5. Let T be the image of T. (2.1.5) 

A rank and successor function may be defined on T in exactly one way to make T -+ iii 
and isomorphiim. Trees of the form T are called (singly rooted) normaltrees. We note the 
following facts: 

PROPOSITION 2.1.8. If V C [CO]*, p: V-t N a function, then T = (V, p) is a singly 
rooted normal tree a3 

AEV 

ifvEV, thentiEVi#iE[wp]; 

if V’ C V, A E V’, and for all v E V’, i E [wp], we have vi E v’, 

(2.1.6) 

(2.1.7) 

(2.1.8) 

then V’ = v. 

PROPOSITION 2.1.9. If( V,p) is a normal tree, then u(w, i) = vi, and p is determined by V. 
Thus we may identifr a single rooted normal tree with its set of wrtices. 

PROPOSITION 2.1.10. If V, C [WI*, i = I,2 are isomorphic singly rooted normal trees, 
then v, = v, . 

Now we will define the notion of a normal n rooted tree, A > 1. By Proposition 2.1.4(c), 
the set of vertices of such a tree is the union of the sets of vertices of n disjoint singly 
rooted trees. 

DEFINITION 2.1.11. A subset V of [n] x [w] * is (the set of vertices of) a normal 
n-rooted tree if for each i E [n], the set Vi = (v E [w] * 1 (i, w) E V} is (the set of vertices of) 
a normal singly rooted tree. 

[By identifying [l] x [w] * with [w] *, we may allow n = 1 in Definition 2.1.11.1 
If V C [n] x [WI* is a normal n-rooted tree, its ith root is the vertex (i, A); p and u are 

determined by V. Note too that an edge of a normal n-rooted tree is of the form ((i, w),j). 
The following is obvious. 

PROPOSITION 2.1.12. Let T be an n-rooted tree. There is a unique n-rooted normal tree 
i” isomorphic to T. Thus if Tl and Tz are isomorphic normal n-rooted trees, Tl = Tz . 

Remark 2.1.13. The characterization of rooted trees embodied in Definition 2.1.2 
permits the formulation of the principle of (mathematical) tree induction, the analogue of the 
principle of mathematical induction. Namely, assume P(v) is a proposition which depends 
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on a vertex v of a rooted tree. The principle asserts: if P(EJ for i E [n] and P(V) 3 P(u(v,~)), 
i E b(s)], then P(V) for all o. 

2.2. Trees T: n -t p 

A tree T: n---f p (also written n -tT p) consists of an n-rooted tree T’ as in Section 2.1 
together with a function 7 from a subset (called the set of termini of T) of the leaves of T’ 
into [p]. The function 7 is called the termini function of T. We say the tree 
T = (T’, T): n -+p is normal if T’ is normal. By 2.1 .11, the normal tree T is fully specified 
by (V, T), where V is the set of vertices of T’. 

A tree T in the sense of Section 2.1 may be regarded as a tree T: n -+ 1 by taking 
p-r(O), the set of all leaves of T, as the set of termini, and letting T: p-l(O) + [l] be the 
constant function. The tree T may also be regarded as a tree T: n --+ 0 by taking the empty 
set 0 = [0] as the set of termini, and taking the unique function [0] + [0] as 7. 

Given trees Ti: n -+ p, i = 1,2, and a bijection 8: V, -+ V, between their sets of 
vertices, we say 6: Tl + T, is an isomorphism if 8 preserves p, u, the roots, the property of 
being a terminus, and r. It should be clear that if TX , T2: n -+ p are isomorphic, they are 
uniquely isomorphic, generalizing Proposition 2.1.6. 

For each p, and each i E [p], there is a root-tree js: 1 + p (alternatively 1 -4 p) deter- 
mined up to isomorphism by the following description. The tree j, consists of a single 
vertex E whose rank is 0. The root E is also a terminus, and T(E) = j. These root trees play 
a significant role in our discussion. 

We now define an operation of cymposition on trees n + p. Strictly speaking, this 
“operation” is really an operation “up to isomorphism.” Given trees T: n + p, U: p -+ 4, 
composition produces the tree T . U: n + CJ defined (up to isomorphism) as follows. Let 
Ui = ciDU , the tree of descendants of the ith root of U, i E [p]. The tree T . U is obtained 
from T by attaching a copy of Vi to each terminus ZI of T such that T(v) = i. For example 
if T = jp: 1 -+p, T . U is isomorphic to U, . 

As a second example, let T: 2 + 3 be the tree indicated in Fig. 2.2.1. Let U: 3 -+ 2 be 
the tree indicated in Fig. 2.2.2. Then T . U: 2 + 2 is the tree indicated by Fig. 2.2.3. 
Let T: n -+ p be a normal tree. We associate with Tan “augmented matrix” T = (A; a), 
where A is an n x p matrix, and a is a n X 1 matrix. A, c [WI*, i E [n],l,j, [p], consists 
of those words v E [w] * such that (i, V) is a terminus of T and T(i, V) = j; ai C [w] *, i E [n], 

r------- 1 i 
I 
I I A I 2 3 

I . I 
’ I 

I 

i-,-------l 
Figure 2.2.1 
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r-- ----_----_-- -! 

i~----~~.-~--.---~ 

Figure 2.2.2 

r --------------- 1 
I I I I I I nm t I I / f ! 
I I I I 2 I 
L2----2------J 

Figure 2.2.3 

consists of all er E [w] * such that (i, o) is a vertex of T which is not a terminus. For example, 
inthecasen=landT=j,,AIj={A},A,= ~,k#j;a=a,= @.[Whenn=l, 
we identify (1, V) with v.] 

In the case of finite trees T: n -+ p, a more efficient representation as an augmented 
12 x p matrix T = (A; a) is available (but we will not use this alternative); viz. ai C [WI* 
is taken as the set of words v E [WI* such that (i, e)) is a non-terminus leaf of T, Ai is 
unchanged, Thus this representation takes into account only the “successful paths” i.e. 
the paths from a root to a leaf. 

These augmented matrices are useful to show the operation of composition is associative. 
Now let u = (B; b) be an augmented p x q matrix, and define 

(A; u) * (B; b) = (AB; a + Ab) (2.2.1) 

where AB is the n x q matrix obtained by ordinary matrix multiplication (addition of 
matrix entries being union, and multiplication of matrix entities being (complex) con- 
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catenation of sets of words), Ab is the tt column vector obtained by multiplying the n x p 
matrix A with the p x 1 column vector b; a + Ab is the n column vector whose ith 
component is ai U (Ab)i . 

It is possible to define the augmented matrix T = (A; a) for an arbitrary (i.e. not 
necessarily normal) tree T: n -+ p. First, define the label of the path from the ith root l i 
of T to any vertex e, in QD~ to be the word w E [WI*, where O(v) = (i, w) and where 
0: T -+ T’ is the isomorphism between T and a normal tree T’. Then define Aij to be the 
set of all labels of paths from l i to a terminus e, of T such that T(V) = j; ai is the set of all 
labels of paths from l i to a nonterminus. Clearly, if T itself is normal, this definition of T 
agrees with the previous one. 

PROPOSITION 2.2.1. Ifn -+Tp -JJ q are trees, then 

T.UET.0 (2.2.2) 

where the multiplication on the right is given by (2.2.1). 
Furthermore, if T is not isomorphic to T’, T # T’. 

Ry an n x p surmatrix we mean an n x p augmented matrix of the form T, where 
T: n + p is a tree. If T is normal, with the set V _C [n] x [w] * of vertices, then each set 
Vi = {v j (i, v) E I’}, i E [n] is (the set of vertices of) a normal tree Ti: 1 --f p. We note that 

Vi = Aa U Ai, U ... U Ai, U ai; (2.2.3) 

(2.2.4) 

Q(V) = j 3 V E A,j . (2.2.5) 

Thus n x p surmatrices serve as simple “surrogates” or representations for normal 
trees n + p. 

The following is immediate from Proposition 2.1.1. 

COROLLARY 2.2.2. The set of surmatrices is closed under multiplication; i.e. if (A; a) 
is an n x p surmatrix and (B; b) is a p x q surmatrix then the product (A; a) . (B; b) = 
(AB; a + Ab) is an n x q surmatrix. 

Remark. In the notation for surmatrices, a semicolon, rather than a comma, is used to 
avoid any possible confusion with “source pairing” in algebraic theories. 

2.3. Tr 

Let AUG be the collection of all augmented matrices (A; a) where Aij C [a]*, ai C [WI* 
and let SUR be the subcollection of all surmatrices. If fi: 1 + p, i E [n], are augmented 
“row matrices” then define (fi , fi ,..., f,J: n ---f p to mean the n x p augmented matrix 
whose ith augmented row is fi . We call this operation source-tupling. Let j, be the 
surmatrix which is surrogate for the normal root tree j, and let 1, = (1, , 2, ,..., p,) be 
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the p x p surmatrix (A; a) where A is the identity matrix and a is empty. We have in 
AUG and in SUR (cf. Corollary 2.2.2) for YZ -9 p -+g q -4 Y 

(f-d-h =f*(g*4 (2.3.1) 

1;f =f =f.l, (2.3.2) 

f = (1, .f, 2, *f,..., n, *f) (2.3.3) 

in . (fi ,fi ,...,fJ = fi , where fi: 1 + p, i E [n]. (2.3.4) 

By virtue of satisfying (2.3.1)-(2.3.4), BUG and SUR are “algebraic theories,” SUR 
being a subtheory of AUG (see [3] for the definition of “algebraic theory” as used here). 
We note the obvious fact 

iff = (A; a): 1 -+p is a surmatrix, f f j, , forje [p], then A # u Aij. (2.3.5) 
i 

From (2.3.5) it follows that 

in SUR, if f: 1 -+p is not j, for anyj E [p], then f *g is not j, for any 

g: P -+ 49 i E kl* 
(2.3.6) 

By virtue of satisfying (2.3.6) ( as well as (2.3.1)-(2.3.4)) SUR is an “ideal theory” [3]. 
The next property of SUR we wish to note concerns solutions to equations in SUR. 
Let f = (A; a): n --+ p + n be in AUG. We decompose the n x (p + n) matrix A into 

“blocks” A = [BC] where B is an n x p matrix, and C is an n x n matrix; specifically 
Bij = Atj , i E E&j E [PI; Gj = A(,+~) , i,i E bl. 

In AUG, consider the equation in the “unknown” 6: n + p 

6 =f*(l,,4) (2.3.7) 

where (1, , 4) = (1,2, ,..., p9 , & ,..., 5,) and tr = i, * 5. Using 

f = (A; a) = ([Bc]; a) and 

4 = (K 4, 

equation (2.3.1) becomes 

(2.3.8) 

where the “1” on the right is the p x p matrix with {II} along the diagonal and o else- 
where. The “0” is a p x 1 matrix with o everywhere. The equation (2.3.8) is equivalent 
to 

Y=CY+B, 

u = Cu + a. 
(2.3.9) 
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By repeated substitution we obtain Y=CY+B=C(CY+B)+B=C”Y+ 
CB+B=C3Y+C2B+CB+B=*--. 

Thus (2.3.9) is equivalent to 

Y = C”+‘Y + i C’B, 
i=O 

(2.3.10) 

v = c*+llJ + i csz, 
i=O 

all r > 0. 

If we let 

Y = f C’B, 
i=O 

m 
(2.3.11) 

v = 1 Cia, 

then a simple calculation shows (2.3.11) satisfies (2.3.7), and hence (2.3.8) and (2.3.9) 
as well. 

Call a matrixpositiwe if the union of all entries consists only of words of positive length; 
i.e. II is not in the union. We claim that if C is positive, the solution (2.3.11) to (2.3.7) 
is unique. To establish the uniqueness, it is helpful to introduce the following operations 
s, on 12 x p matrices D, where Dij c [WI*. 

s,.(Dij) = {w E Dij 1 length w < r} 

s,(D) is the n x p matrix whose (i, j)th entry is s,(Di3). 
(2.3.12) 

Now if C is positive, i.e. s,(C) = 0, then for all r > 0, s,(C’+~) = 0, and s,(C~+~Y) = 0, 
so that from (2.3.10), s,(Y) = s~(C~~~ GB), f or all Y > 0. This uniquely characterizes Y. 
The argument is identical for V. In summary, we have 

PROPOSITION 2.3.1. The equation (2.3.7) always has a soZution in AUG. Iff = ([BC]; a) 
and if = ( r; v), then (2.3.11) is one such solution; if C is positive, this solution is unique. 

In the case that C is positive and f is in SUR (i.e. f is a surrogate for a normal tree) we 
wish to establish that the unique solution to (2.3.7) is also in SUR. By Proposition 2.3.1, 
it is sufficient to show there is some 4 in SUR which satisfies (2.3.7). We will not give this 
argument, but rely on extrapolation from the particular case where n = 1, p = 1 and 
f: 1 --t 2 is the surrogate of the tree indicated in Fig. 2.3.1. 

A I 2 

Figure 2.3.1 
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A = JJ I 
Figure 2.3.2 

Figure 2.3.3 

. 

. 

Then Eq. (2.3.7) is represented by Fig. 2.3.2, and Fig. 2.3.3 is a solution to (2.3.7). 
Thus, we have 

THEOREM 2.3.2. If f = ([BC]; ) a is in SUR and C is positive, then Eq. (2.3.7) has a 
unique solution in SUR. 

Permitting ourselves the extravagance of a different name, Tr, for the algebraic theory 
isomorphic to SUR whose elements (“morphisms”) are normal trees, we have 

COROLLARY 2.3.3. If f: n + p + n is in Tr and’& . f is not a root tree for each i E [n], 
then Eq. (2.3.7) has a unique solution in Tr. 

By virtue of Corollary 2.3.3, TY is an “iterative algebraic theory” in the sense of [3] 
(cf. Remark 2.3.4). 

We may describe the unique solution to Eq. (2.3.7) . m more detail using the notion of 
“profile.” If T: n -+ p is a normal tree and (i, v) i E [u], v E [UJ] *, is a vertex of T, let the 
length of (i, v) be the length of the word v. The profile of T at length d, P,(T), is the 
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sequence of non-negative integers wrp, w2p ,..., w,p, where wr ,..., wo, , n > 0 is the 
sequence (from left to right) of vertices of T of length d. 

Now if .$ = f. (1, , 0, where .f satisfies the hypotheses of Corollary 2.3.3, it follows 
that for any m > 0, 

where 1, @ 0,: p ---f p + n is the p-rooted normal tree such that the ith root is a terminus 
labelled i, i E [p]. Thus, as an unlabelled tree, f may be described by the fact that for every 
m the profile of f at length d < m equals the profile off. (I 21 @ 0, , f )” at length d. 

Remark 2.3.4. As was noted in [5], either Eq. (2.3.7) or the equation 

5 =f .(5,1,> (2.3.13) 

where f: n --f n + p is ideal, may be used to characterize iterative algebraic theories. 
Equations of the form (2.3.7) have unique solutions iff those of the form (2.5.13) do. The 
unique solution to (2.3.7) is denoted f + and was called [5] the right iterate off. The unique 
solution to (2.3.13) was called the left iterate off. 

In order to use some results of [3] without translation, we will rely on a temporary 
expedient. Namely we will adopt the (unsatisfactory) convention that if the source of a 
morphism f is [n] and the target off is written [n + p] then f + indicates the left iterate 
while if the target off is written [p + n] then f + is the right iterate off. This convention is 
clearly unsatisfactory as a permanent measure, e.g. ambiguity results when n = p. 
Despite this we believe that using this convention hew will not cause any confusion. 

For the sequel we require the following. 

DEFINITION 2.3.5. If f : n -+ p is in TY and i, . f is a root tree for each i E [n], then f is 
called base. 

2.4. l- Tr 

By a genus r we mean a family of pairwise disjoint sets ri , i E N. Clearly there is a 
“canonical bijection” between genera and ranked sets, the choice between the two being 
mainly a matter of notational convenience. Thus, a genus r gives rise to a ranked set 
(A,p)whereA =r,,u~,uI',u **. and p: A -+ N has the value ion the elements of ri . 
Conversely, a ranked set (A, p) gives rise to the genus r, where ri = p-‘(i). Moreover, 
the compositions 

and 
Genera - Ranked sets -+ Genera 

Ranked sets - Genera -+ Ranked sets 

are respectively the identity Genera + Genera and the identity Ranked sets -+ Ranked 
sets. 
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Let r be a genus. By a r-tree T: n + p we mean a tree T’: n + p in the sense of 
Section 2.2 together with a (“labelling”) function X: V- -+ r,, u r, u r2 9 . . . . where V- 
is the set of non-termini satisfying 

Thus specification of a r-tree n + p involves specifying a ranked set (V, p), roots c1 ,..., E, , 
a successor function U, terminus function 7 and the function X. Even if the tree is normal, 
so that the roots as well as p and a need not be specified, one still has (V, T, h). The 
information, we shall see, can be compectly secured in an appropriate kind of augmented 
matrix which, as before, will serve as a convenient surrogate for “normal tree.” 

Figure 2.4.1 

An example will facilitate the exposition. Consider Figure 2.4.1, where ys , ya’ E rs and 
yO E r,-, , which is intended to represent a tree 1 -+ 3. The normal tree represented by 
Figure 2.4.1 is specified by the first four columns of the following table. 

v p 7 x New names for vertices Abbreviations for new names 

A 2 Y2 A A 

1 2 Y2 (Y2) 1) Y2l 

2 2 Y2’ (Y2 3 2) Y22 

11 0 2 (Y2 3 1XYP 9 1) nlrzl 

12 0 Yo (Y2 lNY2 I 9 2)Yo YzlY22Yo 

21 0 3 (Y2 9 2NY2’7 1) Y22Y2’1 

22 0 2 (Y2 , NY2’7 2) Y22Y2’2 

If T: 1 + 3 is the r-tree specified by the above table, i.e. the r-tree depicted by Figure 
2.4.1, we define T to be the 1 x 3 augmented matrix (A; Q) where A,, = O, A,, = 
-lY213/2L Y22Y2’2L 42 = iY22Y2’11, a, = (y21y22yo , y21, y22, A>. In general, given any 
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r-tree n -+ p, we define the augmented matrix T as in Section 2.2 but interpret the 
phrase “labels of paths” in the manner indicated by the above example (see the discussion 
preceding Proposition 2.2.1). 

In the case of finite r-trees n -J p a more efficient representation is possible (cf. 
Section 2.2) while preserving the injectiveness of the map T ti T. The more efficient 
representation applied to Fig. 2.4.1 yields a, = (yzlyz27+,} while Ari is unchanged, j E [3]. 

By a r-surmatrix we mean an augmented matrix of the form T where T is a T-tree. 

PROPOSITION 2.4.1. Proposition 2.2.1 holds for r-trees T, U and r-surmatrices are 
closed under multiplication. 

PROPOSITION 2.4.2. Proposition 2.2.1 holds in the domain of finite r-trees even if T is 
interpreted as “the more eficient” representation of T. 

The discussion of Section 2.3 carries over to r-trees and their representations leading to 

THEOREM 2.4.3. I’ SUR and r Tr are (isomorphic) iterative algebraic theories. 

In the special case that r, is a one element set for each i E N each tree T: n + p in the 
sense of Section 2.2 may be made into a r-tree in eactly one way, i.e. there is exactly one 
function A: V- -+ u& ri satisfying (2.4.1). Thus the notion “r-tree 71 + p” may be 
regarded as a generalization of the notion “tree 12 + p”. Thus 

PROPOSITION 2.4.4. In the case that r is a family of singletons r SUR M SUR and 
r Tr w Tr. 

In the case that r is a family of singletons Fig. 2.4.1 may be “abbreviated” by the tree 
1 + 3 represented by Fig. 2.4.2, in particular 3/Z = ys’. 

2 3 2 

Figure 2.4.2 

For use in Section 3, we point out a fundamental property of the theory r Tr. Call a 
r-tree T: 1 -+ tl atomic if T has n + 1 vertices: a root E of rank n, and tt immediate succes- 
sors, all of which are termini; the ith successor is labelled i, iE [n]; the value X(E) = y 
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Figure 2.4.3 

belongs to r,, . Such a tree may be represented by Fig. 2.4.3 (Clearly for each n there is a 
bijection between the set of normal atomic r-trees 1 + n and the set r, .) 

The property of I’ Tr we want to call attention to is the following: 

PROPOSITION 2.4.5. Let Tl, T,: 1 -+ n be atomic (normal) r-trees, and Zet U, , 
U,: n -+ p be arbitrary (normal) r-trees. If Tl * U, = Tz . U, , then Tl = Tz and U, = U, . 

We express this fact briefly by saying r Tr has the unique factorization property. 
We also require the notion “primitive tree.” A tree T: n --f p in r Tr is primitive if 

for each i E [n], 

i; T = yi.fi 

for some atomic yi and base fi . 

2.5. Trees of Finite Index and Iterates of Primitive Trees 

Call a r-tree T: 1 -+ p trivial if T is isomorphic to the root tree j, , for some j E [p]. 
Thus a tree T: 1 + p with only one vertex E (so up = 0) is non-trivial iff f is labelled with 
an element in r,, . By the descendency index of T (briefly, the index of T) we mean the num- 
ber of distinct normal trees isomorphic to non-trivial descendency trees of T; i.e. the 
index of T is the cardinality of the set of non-trivial normal r-trees T’: 1 ---f p such that 
there is a vertex v with T’ isomorphic to vDT (see Proposition 2.1.4). Since the r-trees we 
are dealing with are locally finite, the index of T is either finite or denumerably infinite. 

For example, the indices of the trees in Figs. 2.1.2-2.1.9 are respectively 
1,2,2,2,3, 1, 1, 0, when regarded as trees 1 + 1 (where ris a family of singletons). The 
tree in Figure 2.1.11 has infinite index. When regarded as trees 1 ---f 0, the index of the 
trees in Figures 2.1.2-2.1.6,2.1.8 and 2.1.9 are increased by one. The index of the tree in 
Fig. 2.1.7 remains one. 

Now suppose T: 1 + p has finite index n > 0 and let Tl , T, ,..., T,, be an enumeration 
without repetition of the non-trivial normal r-trees isomorphic to descendency trees of T, 
and suppose Tr is isomorphic to T. We shall construct a primitive r-tree 7: n + p + n 
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(i.e. a primitive morphism in r Tr) such that 1, .7t = TX . (Recall 1,: 1 + 1z is the root 
tree.) 

For i E [n], let ni be a vertex of T such that viD, is isomorphic to Ti . Suppose the label 
of vi is yi E rai, . We define 7 by the requirement that 

1,‘T = yi-fi, (2.51) 

where yi is the atomic r-tree 1 + vip, andfi (defined below) is base; i.e. 

i, ’ 7: [l] yi [Vip] fi [p + ~1. (2.5.2) 

Thus, in the case that v,p = O,f, = 09+n: [0] + [p + n]. Otherwise, let k E [Vip]. The kth 
successor u(vi , K) = v’ of vi in T is either a terminus or not. If, in the former case, v’ is 
labelled j E [p], we define kf =j~ [p + n]. Otherwise, if v’D, is isomorphic to Tl, 
1~[7i],wedefinekf~=p+Z~[p+n]. 

r -----B--B---------- 1 
I I I 
I 
I I A A 

I 
I I 
I 

I l 3 I 1 I 
L -----------------a- -J 

~:[2]-[3] 

Figure 2.5.1 
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Figure 2.5.2 
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For example, suppose that the tree T indicated in Fig. 2.1.4 is treated as a tree 1 -+ 1, 
and that all the vertices of rank 2 are labelled d E I’, . Then T: [2] --P [3] is indicated in 
Fig. 2.51, where again, the vertices of rank 2 are labelled d. Here i, * 7 = d + fi , i E [2], 
wherefi: [2] -+ [3] and Ifi = 1, 2fi = 3; Ifi = 1, 2fi = 1. 

T * (11 @ 0, , T)~, for d > 0 is indicated in Fig. 2.52, where, as before, the vertices of 
rank 2 are labelled d. 

As another example, if we treat the tree indicated in Fig. 2.1.8 as a tree T: 1 + 0, 
where each vertex of rank 2 is labelled d E r, and each vertex of rank 0 is labelled _L E r,, , 
then the index of T is 2, and T: [2] + [2] is given by Fig. 2.5.3. T’, T3, T4 are indicated in 
Fig. 2.5.4. These examples illustrate the following theorem. 

r ----e----------v--- 1 

I 
0 I 
I I 

Figure 2.5.3 

r - - - - - ‘ - “ - - -7  r -  

I  I  I  

1 

\ 

0 i i 
I I I 

I I I 
I J. I I 
I 

I 2 I 
I I 
I I 

L------------J L- 

------ 

i ------I 

Figure 2.5.4 

THEOREM 2.5.1. If T: 1 -+p is a r-tree with finite index s, and T: [s] -+ [p + s] is the 
primitiwe morphism in I’Tr described by (2.5.1) and (2.5.2), then 1, . T+: [I] ---t [p] is 
isomorphic to T. In the case that T is ajnite tree, we have, for all su&iently large d, 

The construction of the primitive tree 7 described in the discussion preceding Theorem 
2.5.1 cCworks” even when the r-tree T: 1 +p does not have finite index. Indeed, suppose 
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the index of T is w. Define the primitive (infinitely rooted) normal tree 7: [u] --t [w] 
exactly as before. 7+: [u] ’ --t [p] IS to be taken as a “limit” of the trees 

as 6+ co. Then, as before 1, * T+ is isomorphic to T. Thus, we have 

THEOREM 2.5.2. Theorem 2.5.1 holds even when the descendency index of T is W. 

We call attention to the fact that the iterate of T: [w] h [w] is ambiguous until one 
specifies “thep”, 0 < p < w, which is to be the target of r+. 

Remark 2.5.3. It is important to note that “in~nite vector iteration” is used to obtain 
Theorem 2.5.2 while only ” f;nite vector iteration” is used in Theorem 2.5.1. 

Remark 2.5.4. The collection of trees of finite index is closed under composition, 
(finite) source-tupling and iteration. Indeed, if T has index n and U has index p, then 
T * U and (T, 7J) have (when defined) index at most n + p and T+ has (when defined) 
index at most n. 

3. INJECTIVITY 

In this section, it is assumed that the reader is familiar with [3]. It would be helpful to 
the reader to have read [l] as well, but this is not essential. In [I] it was shown that for 
any genus r, there is an iterative theory I’$, freely generated by r; i.e. for any iterative 
theory J and any family h of functions mapping r, into ideal morphisms [l] * [n] in 
J there is a unique ideal theory morphism rY + J extending h. Furthermore, it was 
shown that r9 contained PY, the algebraic theory freely generated by r. The argument 
given in [l] showed that I’Y may be constructed as certain equivalence classes of “normal 
descriptions” (see below). A more concrete description of I’9 is obtained in this section 
(Corollary 3.2). Another description of rJ is obtained in Section 4 (Corollary 4.1.2). 

The objective of this section is to prove the following. 

THEOREM 3.1. The ideal theory morphism from r9 into r Tr induced by the map which 
takes thegenerator y E r, into the tree y: 1 3 n for each y in r, (and each n E N) is injective. 

COROLLARY 3.2. The iterative subtheory of r Tr generated by r denoted r tr is (a 
description of ) the iterative theory freely generated by r. 

In [l] it was shown (cf. Theorem 4.1 end last paragraph of Section 6) that r.9 may be 
described as ND(rY)/- where, by definition, D N D’ iff for all ideal theory-morphisms 
4 ~4 from I’Y into a arbitrary iterative theory J, we have 1 D IJ = 1 D IJ . [If D = (8; T) 
then 1 B I, = ,9 * (?+, I,).] 

A morphism n --& p in I’9 will be called primitive if for all i E [n], i * $ has degree 1, 
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i.e., i . $ = yigi , where yi is in r and gi is a base morphism.3 A normal description 
D = (fi; T) in ND(F9) will be called primitive if 7 is primitive. By I’ . Jlr we mean the 
collection of all primitive morphisms and by ND(r . N) we mean the collection of all 
primitive normal descriptions; r . JV is a “sort” in the sense of [3] and ND(r . JV) is the 
collection of all normal descriptions of sort r. JV. Since the collection of all normal 
descriptions of a given sort is closed under composition, source tupling and iteration and 
contains for each 12, p and for each function [n] -9 [p] the base normal description 
(b; 0,), we have ND(r . J)/ N is a sub-iterative theory of ND(rF)/w containing 
“a copy of r” and so ND(rF)/w = ND(r . X)/m. Thus ND(r . A”)/- is a description 
of the free iterative theory r9. 

To prove Theorem 3.1 (and with it Corollary 3.2), we wish to show for primitive 
normal descriptions [n] -2 [p], i E [2]: if j Or lrTr = 1 Da h-r,. then Dr ND, , i.e., for 
any iterative theory J and for any ideal theory-morphism 4 H$ of lY into J, 1 D1 IJ = 
1 Dz IJ. In fact, it is enough to prove this for 11 = 1. It is then sufficient to prove: 

if [2] + [PI and 1 * I D [rr,. = 2 * ] D L-r,. then 1 * 1 D IJ = 2 . j B IJ 

for this reduces to the former assertion by taking D = (DI , D,): [2] -+ [p]. Now if 
D = (/I; T) and 1 F-@ i, 2 HB~, then the latter assertion reduces to: 

i * T+ = j . 7+ in r Tr * i . F+ = j . ?+ in J, which is Proposition 3.4 (3.8). 

We pause to make the following observation. 

PROPOSITION 3.3. (a) Let T: [s] + [s + p] be an ideal morphism in an iterative theory. 
Define the base morphism [s] +OL [s] &y the requirement i . 01 = inf{K E [s] I k - T+ = i * T’}. 

Then 

&t * T+ = T+ (3.1) 

i’T+=j’T+@i*~=j’~. (3.2) 

(b) The conjunction of (3.1) and (3.2) is equivalent to LY: [s] --ty [s]/s -+c [s], (i.e. 
ol=v.c)forsomecwhereirj-i. T+ =j'T+, [s]/= is the partition induced by the 
equivalence relation = on [s], v takes i E [s] into its equivalence class i/z and c is a choice 
function, i.e. c(E) E E where E is an =-equivalence class. 

THEOREM 3.4. (a) In an iterative theory let [s] -+I [s + p] be an ideal morphism and 
Es] --+a [s] the base morphism of Proposition 3.3(a). DeJne # by 

i.e. 4 = 7 * [a @ l,]. 

8 In this section we write i * 4 in place of i, - 4 since the source of the morphism I$ will be clear 
from context. 
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Then 

*+ = r+. (3.3) 

(b) Suppose the iterative theory is r Tr and the ideal morphism T is primitive. 

Then # is standard, i.e. 

i*$+=j**+=>i*+=j-4: 

Furthermore 

~*#=$, 

(3.4) 

(3.5) 

(3.6) 

(3.7) 

(3.8) 

Proof. (a) * * (T+, 1,) = 7 * [a @ I,] * (T+, I& by definition 
= T’((Y’T+, 1,) by [3, (2.5.16)] 
= T ’ (T+, 1,) by (3.1) 
= T+. 

Thus (3.3) follows by the unique solution property i.e. by [3, (4.1.3)]. 

(b) Assume i - $+ = j * I/J+ and suppose i * 7 = yi * fi for each i E [s] where fa is base. 
By the assumption, (3.3) and definition of # we have 

From the unique factorization property in P Tr, we have yt = ‘yi and fi * (CY * Tt, 1,) = 
fi * [CY @ l,] * (T+, 1,) = h * [a @ l,] * (T+, 1,) = fj * (a . T+, 1,). Using (3.1), we obtain 

fi ’ (Tt, 1,) = fj ’ (Tt, 1,). (3.9) 

Let k E [s] and suppose k &a I, k tJj I’. If l E [s], then so is I’ and 1. Tt = 1’ . Tt from 
the last equlaty. Using (3.2), we conclude that I . 01 = I’ - 01. If 1 E s + [p], we obtain 
1 = I’ from (3.9). It follows then for I E [s + p], 1 . [CL @ lD] = I’ . [a 0 l,] so that 
fi’[CL@l,] = fj’[a@l,], yi’fi’[a@l,] = ~~‘f~.[oL~19],i’T.[~[0101~] = 

j . r * [a @ l,] and i . # = j * #. Thus (3.4) is proved. 
Now (3.5) readily follows from (3.1), (3.3) and (3.4). 
To obtain (3.6) we calculate: 
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It remains to prove (3.7) and (3.8). Note first that if 7 and IJ are any ideal morphisms 
satisfying (3.6) (in any iterative theory) then 

so that #+ = T+. From (3.6), $ . ($, 0, @ 1,) = ? 3 (I&O, @ 16) and so 4’ = ?+ by the 
argument immediately above, which proves (3.7). For the final assertion (3.8) assume 
i * T+ =j * T+. By (3.3) and (3.4), i . I/J =j . $ so that i . $ =j . $ and i * $+ = j . $+ from 
the defining equation for $+. Since $+ = ?+, we have i . ?+ = j . Q+. l 

4 

4.1. Characterizing r tr 

In Section 3, it was proved that the morphism TX ---f r Tr from the iterative theory I’#, 
freely generated by the genus r into r Tr, which takes y E r, to the primitive tree 
y: 1 -tp, is injective. This yielded one “concrete” description of r, namely that given in 
Corollary 3.2. In this section, we note that the elementary observation contained in 
Theorem 2.5.1 gives an even simpler description of PY. Theorem 4.1.1 together with 
its Corollary constitute the main result of this paper. 

Recall that r tr is the iterative subtheory of r TV generated by the atomic r-trees. 

THEOREM 4.1.1. The morphisms in r tr con.& precisely of those normal r-trees of 
fmit.~? index. 

Proof. Each primitive r-tree 1 --f p has finite index, and this property is preserved by 
the operations of composition, source-tupling and iteration (cf. 2.5.4). Thus every 
morphism in r tr has finite index. 

Conversely, suppose T: 1 ‘p is a normal r-t ree with finite index s. If s = 0, T is 
j, ,for some j E [p]. Otherwise, by Theorem 2.5.1, T is 1, * Tt, where 7: s +p + s is a 
primitive r-tree. Thus, in either case, T is a morphism in r tr, completing the proof. 

COROLLARY 4.1.2. The iterative theory, r9 is isomorphic to r tr. 

Proof. By Theorem 4.1.1 and Corollary 3.2. 
In section 2.5 it was noted that every r-tree of finite index is a component of a finite 

vector iterate of a primitive r-tree while every r-tree of infinite index is a component of 
an infinite vector iterate of a primitive r-tree. In order to provide an algebraic theory 
setting for the discussion of infinite vector iteration, we “replace” (in the next section) 
the base category consisting of the skeletal category of finite sets by the category of all 
sets (of all cardinalities). We do not employ a skeletal category here in order to avoid 
getting involved with cardinal or ordinal arithmetic. Indeed in Section 2.5, in the case that 
the index of the tree T was W, we were tempted to describe the primitive tree 7 by 
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T: [w] -+ [p + w], even though p + w = w. Nevertheless this notation may be useful. 
The reader may recall from ordinal arithmetic that w + p # w. Thus ordinal arithmetic 
here suggests a spurious distinction between “right” and left” infinite vector iteration. 

4.2. Algebraic Theories with Base 9; Completely Iterative Theories 

The algebraic theories used in Sections 2, 3, and 4.1 (see also [l, 3,9]) might be more 
precisely described as “algebraic theories with base M,” where X is the category whose 
morphisms are functions [n] 3 [p]. Indeed, in [3], the functions [n] -+ [P] were called 
the “base morphisms” in any algebraic theory. In this section we define the notion of 
an algebraic theory with base Sp, where Y is the category of sets. The category M 
may be described as the full subcategory of Y determined by restricting the objects 
of Y to be [a], for 71 = 0, 1, 2 ,... . We will also indicate how the definitions and most 
of the results of [3] extend to theories with base Y. Theorem 3.1 and its corollary have 
an interesting generalization in this setting. 

DEFINITION 4.2.1. An algebraic theory T with base Y (briefly “Y-theory”) is 
a category having the class of all sets as its class of objects. Furthermore, for each set A 
and each a E A, there is a distinguished morphism 

a: [I] + A 

satisfying 

for any family &: [l] -+ B of morphisms indexed by a E A, there is 
a unique morphism (4.2.1) 

+:A-+B 

such that for each a E A 

&: [l] -!L A 2 B. 

+ is called the source-tupling of the family (&: a E A). 
The Y-theory T is nondegenerate if for a # a’ in A = [2], the distinguished morphisms 

a, a’: [I] -+ A are distinct. It follows that if T is nondegenerate and a, a’ are distinct 
members of any set A, then the distinguished morphisms a, a’: [I] + A are also distinct. 

If T is nondegenerate, a functionf: A -+ B may be identified with the source-tupling 
of the morphisms (&: [I] -+ B 1 a E A), where for each a E A, if af = b then q& is the 
distinguished morphism b: [l] -+ B. In this way, Y is (isomorphic to) a subtheory of 
any nondegenerate Y-theory. 

Henceforth, all Y-theories are assumed nondegenerate. 

The (isomorphic images of) functions f: A -+ B in Y are called the base morphisms 
in T. The distinguished a: [I] -+ A is of course base, being identified with the function 
1 t-+a. 
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A morphism $: [l] + A in an Y-theory T is ideal if for any morphism $: A + B, 
the composition 4 . $: [l] + B is not base. A morphism 4: A + B is ideal if for each 
a E A, a . $ is ideal. The algebraic theory T itself is ideal if every nondistinguished 
morphism [l] * A is ideal, for every set A. 

Assume a choice for forming the “disjoint union” C, + C, of the sets C, , C, has been 
made, along with the corresponding base injections Q: Ci * C, + C’s , i = 1,2. It may 
be shown that the following “universal property” holds in any Y-theory. 

For any morphisms q$: Ci --f D, i = 1,2 (with a common target) 
there is a unique morphism (4.2.2) 

&Cl+- C,+D 

such that 

I&: ci - li C,+ C,B-D, i= 1,2, i.e. (bi = ti . e. 

The morphism 8 is called the source pairing of +r , $a and is denoted (+r , $a). 

DEFINITION 4.2.2. An ideal Y-theory T is completely iterative if for each morphism 
9: A * B + A there is a unique morphism $+: A * B satisfying 

++ = 4 * (18 , $‘). (4.2.3) 

The morphism 4’ is the infinite vector iterate of $ if the cardinality of A is infinite. 
Note that Eq. (4.2.3) is the analogue of Eq. (2.3.7) (see Remark 2.3.4). The morphism 

(lB , $+) is the source pairing of the identity morphism (function) 1s: B 3 B and 
$+: A G-B. It may be shown that the property of being “completely iterative” does 
not depend on the “choice” made above (preceding (4.2.2)). 

We now indicate briefly how the main results of [l, 31 extend to ideal and completely 
iterative Y-theories. 

Let T be an ideal Y-theory. An Y-normal description D = (/I; T): A -fs B over T of 
weight S consists of a morphism 

and an ideal morphism 

r:S-+BfS 

(where A, B, S are sets; i.e., objects of T). If T is completely iterative, the behavior of D, 
denoted ) D 1, is the morphism 

IDj:ABB+S-o_B 

A sort Z in an ideal Y-theory T is a collection (ZA: A an object in T), where for each 
set A, Za is a set of ideal morphisms [I] -j A, such that if [l] +D A is in .ZA and A + B 
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is base, then [l] -O A -+f B is in ZB . If 2 is a sort, we let Z” be the collection of all 
morphisms U: A + B such that, for each distinguished morphism a: [l] -+ A, 

THEOREM 4.2.3. (An analogue for completely iterative theories of part of the Main 
Theorem in [3]). Let Z be a sort in the completely iterative theory T. The least completely 
iterative subtheory of T containing Z consists precisely of the behaviors of all normal descrip- 
tions D = (/?; T) over T such that 7 E X0. 

The proof of Theorem 4.2.3 may be obtained by essentially notational changes in the 
proof given in [3]. 

The part of the Main Theorem of [3] that does not generalize to completely iterative 
theories concerns the relation between “scalar” and “vector” iteration because the 
generalization admits “infinite vector” iteration. (See Remark 4.2.7). For iterative 
theories (with base N), scalar iteration is as powerful as vector iteration (see [2]). For 
completely iterative theories, scalar iteration is weaker than vector iteration, as we will 
explain below. 

By making use of the constructions involved in the proof indicated above of 
Theorem 4.2.3, and with only minor changes in the argument in [l, Sections 5, 61, one 
can prove 

For any genus r = (J’,: n E N), there is a completely iterative theory 
freely generated by P. (4.2.4) 

In fact, by generalizing the notion of genus (or, equivalently, ranked set) a stronger 
theorem may be proved with no additional labor. An Y-ranked set consists of a set I’ 
and a function 

where 9, here, is merely the class of all sets. Thus an Y-ranked set is equivalent to an 
“Y-genus”: a collection (rd: i E Y} of pairwise disjoint set indexed by 9’. 

THEOREM 4.2.4. (Analogue of [l]). For any Y-genus (ri: i E Y}, there is a completely 
iterative theory T%?(Y), freely generated by P, i.e., for any completely iterative theory J 
and any function F taking y E ri , i E Y to an ideal morphism ‘/F: [l] + i in J, there is a 
unique Y-ideal theory morphism F: I’%(Y) + J extending F. 

Arguing as in [I], one first shows there is an Y-theory, rY(Y), freely generated by I’. 
Then the elements of r%?(9) can be described as certain equivalence classes of those 
(primitive) normal descriptions D = (/I; T): A -+ B, over rY(Y), where for each 
distinguished s: [I] + S, s E S, s . T: [l] -+ B + S factors uniquely as 

s -7: [l] -J-i--+ f B+S 

for some y E ri, i E 9, and some base morphism f. 
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Again using trees, a “concrete” description of rY(Y) and P%?(Y) may be given. 

DEFINITION 4.2.5. For any set A, an A-rooted Y-tree consists of: 

an Y-ranked set p: V + Y; (4.2.4) 

a (“root”) function r: A + V (4.2.5) 

a (“successor”) function o: E + V, where E = ((0, i) / w E V, i E up) 
satisfying the following requirements: (4.2.6) 

o and r are injective functions; (4.2.7) 

no element ur, a E A, is in the image of a; (4.2.8) 

any subset V’ of V, containing each element m, a E A and closed 
under a, coincides with V. (4.2.9) 

Clearly Definition 4.2.5 is a generalization of “n-rooted tree.” Isomorphism of 
A-rooted Y-trees is defined analogously to the numeric case so that if two A-rooted 
Y-trees are isomorphic, they are uniquely isomorphic. In the obvious way now, we may 
define the notion of an Y-tree T: A -+ B, and a normal Y-tree T: A -+ B. (The vertices 
of a normal Y-tree are elements of I*, the set of finite sequences of elements of I, where 
I = uVpr, p(w)). Note that in general, Y-trees are neither locally finite nor locally ordered 
but they are locally indexed and this indexing, to a great extent, serves as a substitute 
for the order. If pr: I’+ Y is an Y-ranked set, then a (normal) I’9’-tree T: A --+ B 
consists of a (normal) Y-tree T’: A -+ B together with a labelling function X: V----f I’ 
(where V- is the set of non-termini) such that the following diagram commutes. 

The atomic r.9’-tree y: [I] *i corresponding to y E ri, in Y is indicated in 
Fig. 4.2.1.4 The set of vertices of the normal I’9’-tree indicated in the figure consists 
of the empty sequence A, and all words a in i * of length one such that a E i; the termini 
function takes a E i to a. 

’ In accordance with the discussion preceding Theorem 4.2.4, F, is the set of elements of r whose 
rank is i; i.e. x E r, if xpr = i. 
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Y .A a, b -ei 
‘. /’ 

a 5-c b 

a b 
Figure 4.2.1 

With the by now familiar definitions of composition and the distinguished (“root”) 
trees a: [l] + A, it may be shown in a straightforward manner that the collection of 
normal I’Y-trees T: A + B forms a completely iterative theory; we denote this theory 
r Tr(9’). 

Clearly, the least subtheory (note: not completely iterative subtheory) of r Tr(Y) 
containing the normal primitive I’5”-trees y: [l] + i, for y E r, , is (isomorphic to) the 
Y-theory rY(Y), freely generated by l? The morphisms in this copy of KY(Y) 
consist of those normal I’Y-trees having no infinite paths. 

The argument of Section 3 carries over to prove 

THEOREM 4.2.6. The unique ideal Y-theory morphism F: lY(9’) + r Tr(Y), taking 
y E ri , to the primitive normal r9’-tree y: [l] + i, for all i E 9, in r Tr(sP), is an 
injection. 

The morphism F takes the equivalence class of the primitive normal description 
D = (p; T): A -Pi B to the morphism /3 * (1s , T+) in I’ Tr(Y). 

The idea used to prove Theorem 4.1.1 (and Theorem 2.51) can be used to show 
that F is not only injective, but surjective as well. 

Indeed, let 4: [l] + A be any normal rY’-tree T. Let S be the set of all non-trivial 
normal trees isomorphic to descendancy trees of T. Defme the primitive morphism 
r: S ---f A + S by the requirement that for each s E S 

s.r:[l]Lii *’ A+S 

where ys E ri is the label of the vertex v, where vDr M s, and fs is the base function 
i+A+ Sdefined by: 

For b E i if edge (~1, b) points to v’ in T then 

(a) if v’ is a non-terminus and v’DT M s’ define bf8 = s’ 

(b) if w’ is a terminus of T labelled a E A then bfs = a. 

Let /3: [l] + A + S be the base function taking 1 to s,, where s,, is the normal tree 
isomorphic to T. 

It may be verified that /3 * (IA , + ’ T ) = $ m r Tr(Y). Thus for Y-theories we have 
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THEOREM 4.2.7. I’%‘(Y) is isomorphic to r Tr(Y). 

Remark 4.2.8. Even when p: r-t 9 is an Y-ranked set, such that for each y E r, 
3/p = [n] for some 1z, we can use the completely iterative theory r Tr(sP) to show that 
“scalar” and infinite vector iteration are not equivalent. Indeed, suppose 3/p = [l] for 
all y in the countably infinite set r = {yi , ys ,... }. Let 7: [I] + 4 be the normal I’Y-tree 
indicated by Fig. 4.2.2. 7 does not belong to the least subtheory T of r Tr(Y) containing 
the atomic trees y closed under scalar iteration since G- has infinitely many non-isomorphic 
subtrees. These matters are more fully explained below. 

YI 

:: 

72 

73 

. 
. 
. 

Figure 42.2 

An ideal Y-theory is JEnitely iterative (respectively scalar iterative) if for any finite 
set A (respectively, any singleton set A) and any ideal morphism 4: A + B + A there 
is a unique morphism 4’: A --t B such that I$+ = $ . (1s , $+). The morphism $+ is called 
the “finite vector iterate of q5” (respectively, the “scalar iterate of d”). 

Call an ideal morphism 4 “numerical” if 4: [ s 3 B + [s] for some set B, some number ] 
s > 0; it may be easily shown that an ideal Y-theory T is finitely iterative iff every 
numerical ideal morphism has a finite vector iterate; also T is scalar iterative iff every 
numerical ideal morphism with source [l] has a scalar iterate. Using these facts and the 
argument of [2], one obtains 

PROPOSITION 4.2.9. Every scalar iterative Y-theory is jinitely iterative. 

If the rank of each y in the ranked set I’ is a finite set, r is called jinitary. 

THEOREM 4.2.10. Suppose that r is aJinitary ranked set. Let T be the least subtheory 
of r Tr(Y) closed under scalar iteration (or equivalently, by 4.2.9, closed under jG.&!e 
iteration). Then 
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(a) Every function taking y: [l] -+ A, y E P to j? [I] -+ A in a scalar iterative 
theory J extends uniquely to a Y-theory morphism F: T + J (bri@y, T is the scalar iterative 
Y-theory freely generated by P). 

(b) The morphisms A + B in T, where A is a singleton set, consist precisely of those 
normal I’Y-trees in P Tr with @site descendency index. 

The proof of this theorem makes use of the observation that any r tree T: [l] + A 
of finite index can be written as a composition 

T: [l] ?- [n] --L A 

where f is an injective function. 

Problem. If the ranked set r is not finitary and if T is the scalar iterative subtheory 
of r Tr(9) generated by J’, is T freely generated by r? 

We suspect the answer to the problem is “yes.” 

APPENDIX I: COMPARISON OF DEFINITIONS OF ROOTED TREES 

A popular definition of “tree” (cf. e.g. [IO]) has it that a tree is a connected acyclic 
(undirected) graph. In this appendix, the connection between this popular definition 
and the definition of “rooted tree” given in Section 2.1 is discussed. 

In [lo] a graph G consists of a finite set V (of vertices or nodes) and a set E of (edges 
or lines) i.e., doubletons {e), o’}, o, ZJ’ E V, v # v’. We immediately delete the requirement 
that V be finite (since our trees are permitted to be infinite) but otherwise embrace this 
definition. A path from v to v’ in G = (V, E) is a word p = v,,vl ... v, in V+ (the set of 
all finite sequences of elements of V of positive length) such that v = v,, , V’ = v, , 
{zliel , vi} E E for all i E [n] and whenever i #j, vi # zli . (Remark: if p is a path in G 
from z, to e, then n = 0; thus a path from v to v is unique.) The edge count of p is n; its 
node count is 1 + n. A cycle in a graph G with vertex set V is a word of edge count 33 
of the form vwv, where v E V, w E V+ and both VW and WV are paths in G; a graph G 
is acyclic if there are no cycles in G. The graph G is connected if for any v, v’ E V, there 
is a path from ZJ to a’. 

We formally record the “popular” definition of “tree.” 

DEFINITION A. A graph G = (V, E), is a tree if G is connected and acyclic. 

PROPOSITION B. For a graph G = (V, E) the following conditions are equivalent. 

(Bl) G is connected and acyclic; i.e., G is a tree. 

(B2) For any vertices a, b E V, there is a unique path from a to b. 

Proof. Since the implication (B2) * (Bl) is easily established we prove only that 
if p, and pa are paths in G from a to b then p, = pa. Suppose the edge counts of p, 
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and pa are e, and es . The proof proceeds by induction on e, + es . The case e, + e, < 2 
is easily disposed of using the parenthetical remark above. 

Suppose now e, + e2 > 3 so that a # b. Suppose too, p, = ulb, p, = u2b, where 
4 , us E V*. Then the word qbu,” (where us ” is the word “uz in reverse order”) which 
has edge count e, + ea would be a cycle if no vertex, other than a, occurred more than 
once in that word. But G is acyclic. Hence there is a vertex z, # a which occurs in ulbu2” 
more than once. Now w # b since no vertex occurs more than once in pi for each i E [2]. 
Making use of the “distinctness” property of pi again, we conclude there is an occurrence 
of w “to the left of b” and one “to the right of b” in ulbu2”. Thus we have 

p, = aw,vw’,b 

p2 = aw,vw’,b. 

By inductive assumption, awp = aw,v and vwllb = vwlZb so that p, = p, . 1 

Let G = (V, E) be a graph and suppose E E V. We call (G, 6) a rooted graph; E is the 
root of (G, l ). Suppose G is connected and acyclic. We define the immediate successor 
relation s C V x V in G as follows: (v 1 , ~a) ES iff the unique path (cf. Proposition B) 
from E to ws is of the form ... nr~s . Now suppose (G, l ) is locally finite i.e., for each 
o E V, the set of w’ E V such that (v, w’) E s, is finite. Let p(e)) be the number of immediate 
successor of o. (Actually “local finiteness” is independent of l ; it may be stated: for 
each TI E V, the number of doubletons e E E such that v E e, is finite.) Suppose further 
that for each D E V, the (finite) set of immediate successors of o is ordered. We then 
define a(~, i) = w’ if w’ is the ith successor of V, i E [p(v)]. We take it as generally known 
that the data (V, p, u, E) satisfies Definition 2.1.2 in the case of singly rooted trees and 
focus attention on the reverse direction. 

Now suppose T = (V, p, u, 6) satisfies Definition 2.1.2 in the case n = 1. We define 
the graph G = (V, E) by taking E = ({a, ZI’> 1 u(o, i) = V’ for some i E [p(o)]} and wish 
to show that G is connected and acyclic. 

We first observe that by the principle of tree induction (cf. 2.1.13) there exists at 
most one function I: V + N satisfying: I(E) = 0, Z(w) = n - Z(u(0, i)) = 1 + n for 
each i E [p(o)]. The proof that there exists at least one function satisfying these conditions 
makes use of (2.1.1), (2.1.2) and (2.1.3). (Th is f unction is sometimes called, level or 
length or depth or . . .; if T is normal Z(o) is the length of v.) To show that G is connected, 
.assume o, V’ E V and suppose Z(o) < Z(V’). W e construct the sequence (of ancestors of VI’) 

(% , q ,212 ,“a, %I) 

with wa = w’ and oi an immediate successor of vi+1 , 0 < i < 7t, Y, = E, (so that n = Z(v’)). 
Let i, 0 < i < n, be the smallest index such that wi is an ancestor of er (such an i exists 
since E is a common ancestor of w and VI’). Then the sequence 

(%,%, v2 ,-774 = wi 9 %+1 ,wi+2 Y..,%+9), P a 0, 

where w,,~ is an immediate successor of wi+l--l for j E [p] and wi+@ = v, is a path in G. 
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It remains to show that G is acyclic. Suppose the contrary so that (vl, vu2 ,..., v,), 
Vl = 0, , n > 4, is a cycle. Since u is injective, either all the (ordered) pairs (vl , vs), 
(v2 , %)Y.., (%I 9 vr) are in the immediate successor relation s or all the reversed pairs 
are in s. Suppose the former. Then I(v,) < Z(vs) < ... < Z(Q) < Z(vJ. The contradiction 
compels the conclusion that G is acyclic. 

APPENDIX II: REPLACING FINITE UNSUCCESSFUL PATHS BY 
INFINITE UNSUCCESSFUL PATHS 

In Subsections 2.2, 2.3, 2.4 certain augmented matrices, the “surmatrices,” were 
used to (faithfully) represent rooted trees and rooted F-trees. When T: 1 -+ 1 is a tree, 
T is represented by the surmatrix (A; a) where A is the set of all labels of paths from 
the root of T to a terminus; a is the set of all labels of paths from the root to a non- 
terminus. In 2.2 and 2.3, both A and a are subsets of Z* where I: = [w]; in 2.4, A and a 
are subsets of Z* where Z = F,, u &al (T’, x [n]). 

If we call a path in a tree from a root to a leaf successful then the elements of A are 
labels of successful paths. The elements of a may be partitioned into the set a, of labels 
of succes$ul paths (which end with a non-terminus) and the set u2 of labels of unsuccessful 
paths (which begin with the root). Thus a, u u2 = a, a, n a2 = G. 

The two cases mentioned above mby be (essentially) subsumed under a single case 
by passing to Y-ranked sets r. The case .?Y = [w] is then replaced by the case r = (y, y,,) 
with P(Y) = hl, ho) = PI. Th en i gets replaced by the “letter” (y, i) so that the “new” 
A u a, C ({r} x [WI)* while u E us gets replaced by uy,, so that the “new” 
a2 c w x [WI)* hJ* 

The main objective of this Appendix is to show that the tree T: 1 + 1 may equally 
well be represented by (A; a, U b) where b is the set of labels of infinite paths in T 
which begin with the root. 

Let Z be any set. As usual Z* devotes the set of all finite sequences (words) of elements 
of .Z while Zm denotes the set of all infinite sequences (functions) f: [u] -+ Z, where 
[w] = {I, 2, 3,...} is th e set of positive integers. Thus an element of Zm may be called 
an “infinite word on Z.” There is a partial ordering < on Z* u ,P: u < v iff u is a 
prefix of v (i.e., u is an initial segment of v). With respect to this ordering all elements 
of Zc” are maximal and two distinct infinite words are incomparable. We write u < v 
if u is a proper pre$ix of v, i.e., u < v and u # v. If X is a set, we write X^ for the set 
of all subsets of X. 

We define the function 

pref: (.Z* U Z*)^ -4 .Z*^ 

pref (M) = (24 E Z* 1 24 < 0, for some v fz M}, MC.?FuP. 

Thus, pref (M) is the set of all finite prefixes of words in M. If M is a singleton consisting 
of v alone, we write “pref (v)” for pref (M). Clearly, 
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PROPOSITION A. M,CM,C.Z*VZ* +prefMICpvefM2_C.Z*. 

A subset F of 15* is prejix closed if F = pref F. Let Pref (Z*) be the set of all prefix 
closed subsets of Z*. 

We define the function 

by the following requirement: for v E 2?‘, F _C .Z* 

v~limF iff pref v _C F. 

The following two propositions are obvious. 

PROPOSITION B. FI C F2 C Z* * lim FI C lim Fg c z*. 

PROPOSITION C. For I C Z”, 1 C lim (prefl). 

Before stating the theorem which leads to our main objective, we require two more 
functions. The function 

max: (2* U Z”)^ -+ Z*^ 

is defined as follows: for MC .Z:* u ,Zm 

max(M)={uEMnZ*Iu<vfornovEM} 

i.e., max(M) is the set of finite words in M which are maximal in M. Clearly, 

PROPOSITION D. F E Pref .Z* + (F - max(F)) E Pref 2”; lim F = lim(F - max(F)) 
for F E Pref Z:*. 

The function 

p: Pref .Z* + (E* U Zlm)A 

is defined by the following, where F C 2*, F = pref F: 

p(F) = max(F) U lim(F). 

THEOREM E. The function TV is injective i.e. for FI , F2 E Pref .Z*, p(F,) = p(F2) => 
FI =F2. 

With A, a, a, , a2 , b as in the beginning of this Appendix, we have A v a is prefix 
closed, max(A u a) = A u a, , a2 = (A u a) - (A u a,) is prefix closed (by Proposi- 
tion D) and b = lim a2 . 
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COROLLARY F. With A, a,, us , b as above, the function which takes (A; a, U a,) 

into (A; a, U b) is injectiwe. 

Proof of Theorem E. Suppose FI , F2 E Pref 2Y and p(F,) = p(F,). Then maxFI = 
max F2 and lim FI = lim F2 . Suppose u E FI . Either u < z, for some v E maxF, or else 
there is an infinite chain: u < u, < ua < ... , ui EF~ , so that the unique v E F,” satis- 
fying ui < v for all i, is in lim FI . In the former case, v E max F, C F2 and so, by prefix 
closure, u E F, . In the latter case, v E h’m F, and u E pref (v) C F, . Thus, in either case, 
u EF~ 3 u EF~ , i.e., FI C F2 . By symmetry we obtain F, C FI which concludes the 
proof. 

We now ask: Which subsets of Z* u .P are in the image of p ? 

THEOREM G. (a) Suppose F u f E Pref Z* and F = max(F u f ). Let g = lim(F u f) 
so that p(F U f) = F U g. Then F C max(F u g) and lim pref (F U g) C g. 

(b) Suppose F C .E*, g _C 23, F C max(F U g), lim pref (F U g) C g. Then 

cl.(pref (F U g)) = F U g- 

Proof. (a) Let u EF. If u $ max(F u g) then u < u ~g for some v and so 
u<w~prefvCFuf. Weconcludeu$max(Fuf) h h w ic contradicts the supposition 
F == max(F u f ). Thus: F C nuzx(F u g). Now: 

pref (F u g) C prefF u pref g 
CprefF~pref(Fuf) 

CFuf. 

Thus: Zim pref(F u g) C Zim(F u f) = g. 

(b) From the supposition F C max(F U g), we conclude F C maxpref (F u g). Now: 

max pref (F u g) C max( pref F u pref g) C max pref F u max pref g 

CFu @ CF. 

Thus: F = max pref (F U g). 

Now, g C lim pref g C lim pref (F u g) while by supposition the opposite inclusion 
holds. Thus g = limpref (F u g) which concludes the proof. 

Observation. As a point of independent interest suggested by the condition 
lim pref (F u g) _C g, F C Z*, g C P, we observe that the condition lim pref g C g, (which 
is implied by the previous condition), i.e., g = lim pref g, is equivalent to the condition 
that g is topologically closed if .Z is given the discrete topology and 2” the induced 
product topology. Explicitly, limpref g Cg iff g is the complement of an arbitrary union 
of sets of the form 

A, x A, x ... x A, x Zm = A, x A, x ... x A, x J!Y x .Z x ... 

where, for each i E [n], Ai C Z. 
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If F,GCZ* and f,gL.Z*uP, we define (I;, f) * (G; g) = (FG; f u Fg). It is 
straightforward but tedious to verify directly that 

PROPOSITION H. The function that takes (A; a, u aJ into (A; a, u b), where 
b = lim a2 = lim(A u a, u aJ, preserves composition (thus giving rise to an isomorphism). 

The above considerations extend without difficulty to the case T: n -+ p and n x p 
augmented matrices. 

Certain trees do not require augmented matrices for their representation. The fact 
that finite trees have a “more efficient” representation was mentioned in Section 2.4. 
There are other trees as well, however, which can be faithfully represented by labels 
of successful paths only. 

DEFINITION. Call a tree T: n -+p biaccessible if every vertex of the tree lies on a 
successful path. (Thus finite trees are biaccessible.) The corresponding notion for 1 x 1 
surmatrices (A; a, u a,) where A u a, U a,) is prefix closed and A u a, = 

max(A u a, u az) is given by the following. 

PROPOSITION I. A tree T: 1 ---f 1 is biuccessible z&f its surrogate (A; a, u a,) satisfies 
a2 c pref (A U a,) or, equivakntly, A U a, U a2 = pref (A U a,). 

PROPOSITION J. Zim a2 C lim pref (A u q) 9 a2 C pref (A U al). 

Proof a. lim a2 C lim pref (A U a,) C lim pref (A u a, U a,) c lim(A U a, U a,) C 
lim a2 so that lim pref (A U al) = lim a2 . Notice that A U a, = mxpref(A U aI) so 

that p(pref (A u al)) = A u a, u lim a2 = p(A u a, u a2) and by the injectiveness 
(Theorem E) of p, we have (A u a0 u aJ = pref (A u a) which proves 3. The opposite 
implication is obvious (Proposition B). 
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