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Abstract

We consider stochastic equations in Hilbert spaces with singular drift in the framework of [G. Da Prato,
M. Röckner, Singular dissipative stochastic equations in Hilbert spaces, Probab. Theory Related Fields 124
(2) (2002) 261–303]. We prove a Harnack inequality (in the sense of [F.-Y. Wang, Logarithmic Sobolev
inequalities on noncompact Riemannian manifolds, Probab. Theory Related Fields 109 (1997) 417–424])
for its transition semigroup and exploit its consequences. In particular, we prove regularizing and ultra-
boundedness properties of the transition semigroup as well as that the corresponding Kolmogorov operator
has at most one infinitesimally invariant measure μ (satisfying some mild integrability conditions). Finally,
we prove existence of such a measure μ for noncontinuous drifts.
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1. Introduction, framework and main results

In this paper we continue our study of stochastic equations in Hilbert spaces with singular
drift through its associated Kolmogorov equations started in [6]. The main aim is to prove a
Harnack inequality for its transition semigroup in the sense of [16] (see also [1,14,17] for further
development) and exploit its consequences. See also [12] for an improvement of the main results
in [14] concerning generalized Mehler semigroups. To describe our results more precisely, let us
first recall the framework from [6].

Consider the stochastic equation{
dX(t) = (

AX(t) + F
(
X(t)

))
dt + σ dW(t),

X(0) = x ∈ H.
(1.1)

Here H is a real separable Hilbert space with inner product 〈·,·〉 and norm | · |, W = W(t), t � 0,

is a cylindrical Brownian motion on H defined on a stochastic basis (Ω, F , (Ft )t�0,P) and the
coefficients satisfy the following hypotheses:

(H1) (A,D(A)) is the generator of a C0-semigroup, Tt = etA, t � 0, on H and for some ω ∈ R

〈Ax,x〉 � ω|x|2, ∀x ∈ D(A). (1.2)

(H2) σ ∈ L(H) (the space of all bounded linear operators on H ) such that σ is positive definite,
self-adjoint and
(i)

∫∞
0 (1 + t−α)‖Ttσ‖2

HS dt < ∞ for some α > 0, where ‖ · ‖HS denotes the norm on the
space of all Hilbert–Schmidt operators on H .

(ii) σ−1 ∈ L(H).
(H3) F : D(F) ⊂ H → 2H is an m-dissipative map, i.e.,

〈u − v, x − y〉 � 0, ∀x, y ∈ D(F), u ∈ F(x), v ∈ F(y),

(“dissipativity”) and

Range(I − F) :=
⋃

x∈D(F)

(
x − F(x)

)= H.

Furthermore, F0(x) ∈ F(x), x ∈ D(F), is such that∣∣F0(x)
∣∣= min

y∈F(x)
|y|.

Here we recall that for F as in (H3) we have that F(x) is closed, nonempty and convex.
The corresponding Kolmogorov operator is then given as follows: Let EA(H) denote the linear

span of all real parts of functions of the form ϕ = ei〈h,·〉, h ∈ D(A∗), where A∗ denotes the adjoint
operator of A, and define for any x ∈ D(F),

L0ϕ(x) = 1

2
Tr
(
σ 2D2ϕ(x)

)+ 〈
x,A∗Dϕ(x)

〉+ 〈
F0(x),Dϕ(x)

〉
, ϕ ∈ EA(H). (1.3)

Additionally, we assume:
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(H4) There exists a probability measure μ on H (equipped with its Borel σ -algebra B(H)) such
that

(i) μ(D(F)) = 1,
(ii)

∫
H

(1 + |x|2)(1 + |F0(x)|)μ(dx) < ∞,

(iii)
∫
H

L0ϕdμ = 0 for all ϕ ∈ EA(H).

Remark 1.1. (i) A measure for which the last equality in (H4) (makes sense and) holds is called
infinitesimally invariant for (L0, EA(H)).

(ii) Since ω in (1.2) is an arbitrary real number we can relax (H3) by allowing that for some
c ∈ (0,∞)

〈u − v, x − y〉 � c|x − y|2, ∀x, y ∈ D(F), u ∈ F(x), v ∈ F(y).

We simply replace F by F − c and A by A + c to reduce this case to (H3).
(iii) At this point we would like to stress that under the above assumptions (H1)–(H4) (and

(H5) below) because F0 is merely measurable and σ is not Hilbert–Schmidt, it is unknown
whether (1.1) has a strong solution.

(iv) Similarly as in [6] (see [6, Remark 4.4] in particular) we expect that (H2)(ii) can be relaxed
to the condition that σ = (−A)−γ for some γ ∈ [0,1/2]. However, some of the approximation
arguments below become more involved. So, for simplicity we assume (H2)(ii).

The following are the main results of [6] which we shall use below.

Theorem 1.2. (Cf. [5, Theorem 2.3 and Corollary 2.5].) Assume (H1), (H2)(i), (H3) and (H4).
Then for any measure μ as in (H4) the operator (L0, EA(H)) is dissipative on L1(H,μ), hence
closable. Its closure (Lμ,D(Lμ)) generates a C0-semigroup P

μ
t , t � 0, on L1(H,μ) which

is Markovian, i.e., P
μ
t 1 = 1 and P

μ
t f � 0 for all nonnegative f ∈ L1(H,μ) and all t > 0.

Furthermore, μ is P
μ
t -invariant, i.e.,∫

H

P
μ
t f dμ =

∫
H

f dμ, ∀f ∈ L1(H,μ).

Below Bb(H), Cb(H) denote the bounded Borel-measurable, continuous functions respec-
tively from H into R and ‖ · ‖ denotes the usual norm on L(H).

Theorem 1.3. (Cf. [5, Proposition 5.7].) Assume (H1)–(H4) hold. Then for any measure μ as
in (H4) and H0 := suppμ (:= largest closed set of H whose complement is a μ-zero set) there
exists a semigroup p

μ
t (x, dy), x ∈ H0, t > 0, of kernels such that p

μ
t f is a μ-version of P

μ
t f

for all f ∈ Bb(H), t > 0, where as usual

p
μ
t f (x) =

∫
H

f (y)p
μ
t (x, dy), x ∈ H0.

Furthermore, for all f ∈ Bb(H), t > 0, x, y ∈ H0,

∣∣pμ
t f (x) − p

μ
t f (y)

∣∣� e|ω|t
√ ‖f ‖0

∥∥σ−1
∥∥|x − y| (1.4)
t ∧ 1



G. Da Prato et al. / Journal of Functional Analysis 257 (2009) 992–1017 995
and for all f ∈ Lipb(H) (:= all bounded Lipschitz functions on H )∣∣pμ
t f (x) − p

μ
t f (y)

∣∣� e|ω|t‖f ‖Lip|x − y|, ∀t > 0, x, y ∈ H0, (1.5)

and

lim
t→0

p
μ
t f (x) = f (x), ∀x ∈ H0. (1.6)

(Here ‖f ‖0, ‖f ‖Lip denote the supremum, Lipschitz norm of f respectively.) Finally, μ is p
μ
t -

invariant.

Remark 1.4. (i) Both results above have been proved in [6] on L2(H,μ) rather than on
L1(H,μ), but the proofs for L1(H,μ) are entirely analogous.

(ii) In [6] we assume ω in (H1) to be negative, getting a stronger estimate than (1.4) (cf.
[6, (5.11)]). But the same proof as in [6] leads to (1.4) for arbitrary ω ∈ R (cf. the proof of [6,
Proposition 4.3] for t ∈ [0,1]). Then by virtue of the semigroup property and since p

μ
t is Markov

we get (1.4) for all t > 0.
(iii) Theorem 1.3 holds in more general situations since (H2)(ii) can be relaxed (cf. [6, Re-

mark 4.4] and [4, Proposition 8.3.3]).
(iv) (1.4) above implies that p

μ
t , t > 0, is strongly Feller, i.e., p

μ
t (Bb(H)) ⊂ C(H0) (= all

continuous functions on H0). We shall prove below that under the additional condition (H5) we
even have p

μ
t (Lp(H,μ)) ⊂ C(H0) for all p > 1 and that μ in (H4) is unique. However, so far

we have not been able to prove that for this unique μ we have supp μ = H , though we conjecture
that this is true.

For the results on Harnack inequalities, in this paper we need one more condition.

(H5) (i) (1 + ω − A,D(A)) satisfies the weak sector condition (cf. e.g. [10]), i.e., there exists
a constant K > 0 such that〈

(1 + ω − A)x,y
〉
� K

〈
(1 + ω − A)x,x

〉1/2〈
(1 + ω − A)y,y

〉1/2
,

∀x, y ∈ D(A). (1.7)

(ii) There exists a sequence of A-invariant finite dimensional subspaces Hn ⊂ D(A) such
that

⋃∞
n=1 Hn is dense in H .

We note that if A is self-adjoint, then (H2) implies that A has a discrete spectrum which in turn
implies that (H5)(ii) holds.

Remark 1.5. Let (A,D(A)) satisfy (H1). Then the following is well known:

(i) (H5)(i) is equivalent to the fact that the semigroup generated by (1 + ω − A,D(A)) on
the complexification HC of H is a holomorphic contraction semigroup on HC (cf. e.g.
[10, Chapter I, Corollary 2.21]).

(ii) (H5)(i) is equivalent to (1 + ω − A,D(A)) being variational. Indeed, let (E ,D(E )) be the
coercive closed form generated by (1 + ω − A,D(A)) (cf. [10, Chapter I, Section 2]) and
(Ẽ ,D(E )) be its symmetric part. Then define

V := D(E ) with inner product Ẽ and V ∗ to be its dual. (1.8)
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Then

V ⊂ H ⊂ V ∗ (1.9)

and 1 + ω − A : D(A) → H has a natural unique continuous extension from V to V ∗ satisfying
all the required properties (cf. [10, Chapter I, Section 2, in particular Remark 2.5]).

Now we can formulate the main result of this paper, namely the Harnack inequality for p
μ
t ,

t > 0.

Theorem 1.6. Suppose (H1)–(H5) hold and let μ be any measure as in (H4) and p
μ
t (x, dy) as

in Theorem 1.3 above. Let p ∈ (1,∞). Then for all f ∈ Bb(H), f � 0,

(
p

μ
t f (x)

)p � p
μ
t f p(y) exp

[∥∥σ−1
∥∥2 pω|x − y|2

(p − 1)(1 − e−2ωt )

]
, t > 0, x, y ∈ H0. (1.10)

As consequences in the situation of Theorem 1.6 (i.e. assuming (H1)–(H5)) we obtain:

Corollary 1.7. For all t > 0 and p ∈ (1,∞)

p
μ
t

(
Lp(H,μ)

)⊂ C(H0).

Corollary 1.8. μ in (H4) is unique.

Because of this result below we write pt(x, dy) instead of p
μ
t (x, dy).

Finally, we have

Corollary 1.9.

(i) For every x ∈ H0, pt (x, dy) has a density ρt (x, y) with respect to μ and

∥∥ρt (x, ·)∥∥p/(p−1)

p
� 1∫

H
exp

[−‖σ−1‖2 pω|x−y|2
(1−e−2ωt )

]
μ(dy)

, x ∈ H0, p ∈ (1,∞). (1.11)

(ii) If μ(eλ|·|2) < ∞ for some λ > 2(ω ∧ 0)2‖σ−1‖2, then pt is hyperbounded, i.e.
‖pt‖L2(H,μ)→L4(H,μ) < ∞ for some t > 0.

Corollary 1.10. For simplicity, let σ = I and instead of (H1) assume that more strongly
(A,D(A)) is self-adjoint satisfying (1.2). We furthermore assume that |F0| ∈ L2(H,μ).

(i) There exists M ∈ B(H0), M ⊂ D(F), μ(M) = 1 such that for every x ∈ M Eq. (1.1) has a
pointwise unique continuous strong solution (in the mild sense see (4.11) below), such that
X(t) ∈ M for all t � 0 P-a.s.
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(ii) Suppose there exists Φ ∈ C([0,∞)) positive and strictly increasing such that
lims→∞ s−1Φ(s) = ∞ and

Ψ (s) :=
∞∫
s

dr

Φ(r)
< ∞, ∀s > 0. (1.12)

If there exists a constant c > 0 such that〈
F0(x) − F0(y), x − y

〉
� c − Φ

(|x − y|2), ∀x, y ∈ D(F), (1.13)

then pt is ultrabounded with

‖pt‖L2(H,μ)→L∞(H,μ) � exp

[
λ(1 + Ψ −1(t/4))

(1 − ε−ωt/2)2

]
, t > 0,

holding for some constant λ > 0.

Remark 1.11. We emphasize that since the nonlinear part F0 of our Kolmogorov operator is
in general not continuous, it was quite surprising for us that in this infinite dimensional case
nevertheless the generated semigroup Pt maps L1-functions to continuous ones as stated in
Corollary 1.7.

The proof that Corollary 1.9 follows from Theorem 1.6 is completely standard. So, we will
omit the proofs and instead refer to [14,17].

Corollary 1.7 is new and follows whenever a semigroup pt satisfies the Harnack inequality
(see Proposition 4.1 below).

Corollary 1.8 is new. Since (1.10) implies irreducibility of p
μ
t and Corollary 1.7 implies that

it is strongly Feller, a well known theorem due to Doob immediately implies that μ is the unique
invariant measure for p

μ
t , t > 0. p

μ
t , however, depends on μ, so Corollary 1.8 is a stronger

statement. Corollary 1.10 is also new.
Theorem 1.6 as well as Corollaries 1.7, 1.8 and 1.10 will be proved in Section 4. In Section 3

we first prove Theorem 1.6 in case F0 is Lipschitz, and in Section 2 we prepare the tools that
allow us to reduce the general case to the Lipschitz case. In Section 5 we prove two results
(see Theorems 5.2 and 5.4) on the existence of a measure satisfying (H4) under some additional
conditions and present an application to an example where F0 is not continuous. For a discussion
of a number of other explicit examples satisfying our conditions see [6, Section 9].

2. Reduction to regular F0

Let F be as in (H3). As in [6] we may consider the Yosida approximation of F , i.e., for any
α > 0 we set

Fα(x) := 1

α

(
Jα(x) − x

)
, x ∈ H, (2.1)

where for x ∈ H

Jα(x) := (I − αF)−1(x), α > 0,
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and I (x) := x. Then each Fα is single valued, dissipative and it is well known that

lim
α→0

Fα(x) = F0(x), ∀x ∈ D(F), (2.2)∣∣Fα(x)
∣∣� ∣∣F0(x)

∣∣, ∀x ∈ D(F). (2.3)

Moreover, Fα is Lipschitz continuous, so F0 is B(H)-measurable. Since Fα is not differentiable
in general, as in [6] we introduce a further regularization by setting

Fα,β(x) :=
∫
H

eβBFα

(
eβBx + y

)
N 1

2 B−1(e2βB−1)
(dy), α,β > 0, (2.4)

where B : D(B) ⊂ H → H is a self-adjoint, negative definite linear operator such that B−1 is of
trace class and as usual for a trace class operator Q the measure NQ is just the standard centered
Gaussian measure with covariance given by Q.

Fα,β is dissipative, of class C∞, has bounded derivatives of all the orders and Fα,β → Fα

pointwise as β → 0.
Furthermore, for α > 0

cα := sup

{ |Fα,β(x)|
1 + |x| : x ∈ H, β ∈ (0,1]

}
< ∞. (2.5)

We refer to [8, Theorem 9.19] for details.
Now we consider the following regularized stochastic equation{

dXα,β(t) = (
AXα,β(t) + Fα,β

(
Xα,β(t)

))
dt + σ dW(t),

Xα,β(0) = x ∈ H.
(2.6)

It is well known that (2.6) has a unique mild solution Xα,β(t, x), t � 0. Its associated transition
semigroup is given by

P
α,β
t f (x) = E

[
f
(
Xα,β(t, x)

)]
, t > 0, x ∈ H,

for any f ∈ Bb(H). Here E denotes expectation with respect to P.

Proposition 2.1. Assume (H1)–(H4). Then there exists a Kσ -set K ⊂ H such that μ(K) = 1 and
for all f ∈ Bb(H), T > 0 there exist subsequences (αn), (βn) → 0 such that for all x ∈ K

lim
n→∞ lim

m→∞P αn,βm• f (x) = pμ• f (x) weakly in L2(0, T ;dt). (2.7)

Proof. This follows immediately from the proof of [6, Proposition 5.7]. (A closer look at the
proof even shows that (2.7) holds for all x ∈ H0 = supp μ.) �

As we shall see in Section 4, the proof of Theorem 1.6 follows from Proposition 2.1 if we can
prove the corresponding Harnack inequality for each P

α,β
t . Hence in the next section we confine

ourselves to the case when F0 is dissipative and Lipschitz.
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3. The Lipschitz case

In this section we assume that (H1)–(H3) and (H5) hold and that F0 in (H3) is in addition
Lipschitz continuous. The aim of this section is to prove Theorem 1.6 for such special F0 (see
Proposition 3.1 below). We shall do this by finite dimensional (Galerkin) approximations, since
for the approximating finite dimensional processes we can apply the usual coupling argument.

We first note that since F0 is Lipschitz (1.1) has a unique mild solution X(t, x), t � 0, for
every initial condition x ∈ H (cf.[8]) and we denote the corresponding transition semigroup by
Pt , t > 0, i.e.

Ptf (x) := E
[
f
(
X(t, x)

)]
, t > 0, x ∈ X,

where f ∈ Bb(H).
Now we need to consider an appropriate Galerkin approximation. To this end let ek ∈ D(A),

k ∈ N, be orthonormal such that Hn = linear span{e1, . . . , en}, n ∈ N. Hence {ek: k ∈ N} is an
orthonormal basis of (H, 〈·,·〉). Let πn : H → Hn be the orthogonal projection with respect to
(H, 〈·,·〉). So, we can define

An := πnA|Hn

(= A|Hn by (H5)(ii)
)

(3.1)

and, furthermore

Fn := πnF0|Hn, σn := πnσ|Hn.

Obviously, σn : Hn → Hn is a self-adjoint, positive definite linear operator on Hn. Furthermore,
σn is bijective, since it is one-to-one. To see the latter, one simply picks an orthonormal basis
{eσ

1 , . . . , eσ
n } of Hn with respect to the inner product 〈·,·〉σ defined by 〈x, y〉σ := 〈σx, y〉. Then

if x ∈ Hn is such that σnx = πnσx = 0, it follows that

〈
x, eσ

i

〉
σ

= 〈
σx, eσ

i

〉= 0, ∀1 � i � n.

But x =∑n
i=1〈x, eσ

i 〉σ eσ
i , hence x = 0.

Now fix n ∈ N and on Hn consider the stochastic equation{
dXn(t) = (

AnXn(t) + Fn

(
Xn(t)

))
dt + σn dWn(t),

Xn(0) = x ∈ Hn,
(3.2)

where Wn(t) = πnW(t) =∑n
i=1〈ek,W(t)〉ek .

(3.2) has a unique strong solution Xn(t, x), t � 0, for every initial condition x ∈ Hn which is
pathwise continuous P-a.s. Consider the associated transition semigroup defined as before by

P n
t f (x) = E

[
f
(
Xn(t, x)

)]
, t > 0, x ∈ Hn, (3.3)

where f ∈ Bb(Hn).
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Below we shall prove the following:

Proposition 3.1. Assume that (H1)–(H5) hold. Then:

(i) For all f ∈ Cb(H) and all t > 0,

lim
n→∞P n

t f (x) = Ptf (x), ∀x ∈ Hn0 , n0 ∈ N.

(ii) For all nonnegative f ∈ Bb(H) and all n ∈ N , p ∈ (1,∞)

(
P n

t f (x)
)p � P n

t f p(y) exp

[∥∥σ−1
∥∥2 pω|x − y|2

(p − 1)(1 − e−2ωt )

]
, t > 0, x, y ∈ Hn. (3.4)

Proof. (i) Define

WA,σ (t) :=
t∫

0

e(t−s)Aσ dW(s), t � 0.

Note that by (H2)(i) we have that WA,σ (t), t � 0, is well defined and pathwise continuous. For
x ∈ Hn0 , n0 ∈ N fixed, let Z(t), t � 0, be the unique variational solution (with triple V ⊂ H ⊂ V ∗
as in Remark 1.5(ii), see e.g. [13]) to{

dZ(t) = [
AZ(t) + F0

(
Z(t) + WA,σ (t)

)]
dt,

Z(0) = x,
(3.5)

which then automatically satisfies

E sup
t∈[0,T ]

∣∣Z(t)
∣∣2 < +∞. (3.6)

Then we have (see [8]) that Z(t)+WA,σ (t), t � 0, is a mild solution to (1.1) (with F0 Lipschitz),
hence by uniqueness

X(t, x) = Z(t) + WA,σ (t), t � 0. (3.7)

Clearly, since

E sup
t∈[0,T ]

∣∣WA,σ (t)
∣∣2 < +∞, (3.8)

we have

πnWA,σ (t) → WA,σ (t) as n → ∞ in L2(Ω, F ,P), ∀t � 0.

We set Xn(t) := Xn(t, x) (= solution of (3.2)). Defining

WAn,σn(t) =
t∫
e(t−s)Anσn dWn(t), t � 0,
0
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and

Zn(t) := Xn(t) − WAn,σn(t), n ∈ N, t � 0,

it is enough to show that

Zn(t) → Z(t) as n → ∞ in L2(Ω, F ,P), ∀t � 0, (3.9)

because then by (3.7)

Xn(t) → X(t) as n → ∞ in L2(Ω, F ,P), ∀t � 0,

and the assertion follows by Lebesgue’s dominated convergence theorem. To show (3.9) we first
note that by the same argument as above

dZn(t) = [
AnZn(t) + Fn

(
Zn(t) + WAn,σn(t)

)]
dt

and thus (in the variational sense), since A = An on Hn by (3.1)

d
(
Z(t) − Zn(t)

)= [
A
(
Z(t) − Zn(t)

)+ F0
(
X(t)

)− Fn

(
Xn(t)

)]
dt.

Applying Itô’s formula we obtain that for some constant c > 0

1

2

∣∣Z(t) − Zn(t)
∣∣2 �

t∫
0

[
(ω + 1/2)

∣∣Z(s) − Zn(s)
∣∣2

+ ∣∣F0
(
X(s)

)− F0
(
Xn(s)

)∣∣2 + ∣∣(1 − πn)F0
(
X(s)

)∣∣2]ds

� c

t∫
0

∣∣Z(s) − Zn(s)
∣∣2 ds + c

t∫
0

∣∣WA,σ (s) − WAn,σn(s)
∣∣2 ds

+
t∫

0

∣∣(1 − πn)F0
(
X(s)

)∣∣2 ds.

Now (3.9) follows by the linear growth of F0, (3.6)–(3.8) and Gronwall’s lemma, if we can show
that

T∫
0

E
∣∣WA,σ (s) − WAn,σn(s)

∣∣2 ds → 0 as n → ∞. (3.10)

To this end we first note that a straightforward application of Duhamel’s formula yields that

etA|Hn = etAn ∀t � 0.
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Therefore

WA,σ (s) − WAn,σn(s) =
s∫

0

e(t−r)A(σ − πnσπn)dW(r),

and thus

E
∣∣WA,σ (s) − WAn,σn(s)

∣∣2 =
s∫

0

∥∥e(t−r)A(σ − πnσπn)
∥∥2

dr

=
∞∑
i=1

s∫
0

∣∣erA(σ − πnσπn)ei

∣∣2 dr.

Since for any i ∈ N, r ∈ [0, s], the integrands converge to 0, Lebesgue’s dominated convergence
theorem implies (3.10).

(ii) Fix T > 0, n ∈ N and x, y ∈ Hn. Let ξT ∈ C1([0,∞)) be defined by

ξT (t) := 2ωe−ωt |x − y|
1 − e−2ωT

, t � 0.

Consider for Xn(t) = Xn(t, x), t � 0, see the proof of (i), the stochastic equation⎧⎪⎪⎪⎨⎪⎪⎪⎩
dYn(t) =

[
AnYn(t) + Fn

(
Yn(t)

)+ ξT (t)
Xn(t) − Yn(t)

|Xn(t) − Yn(t)|1Xn(t)
=Yn(t)

]
dt

+ σn dWn(t),

Yn(0) = y.

(3.11)

Since

z → Xn(t) − z

|Xn(t) − z|1Xn(t)
=z

is dissipative on Hn for all t � 0 (cf. [17]), (3.11) has a unique strong solution Yn(t) = Yn(t, y),
t � 0, which is pathwise continuous P-a.s.

Define the first coupling time

τn := inf
{
t � 0: Xn(t) = Yn(t)

}
. (3.12)

Writing the equation for Xn(t) − Yn(t), t � 0, applying the chain rule to φε(z) := √
z + ε2,

z ∈ (−ε2,∞), ε > 0, and letting ε → 0 subsequently, we obtain

d

dt

∣∣Xn(t) − Yn(t)
∣∣� ω

∣∣Xn(t) − Yn(t)
∣∣− ξT (t)1Xn(t)
=Yn(t) t � 0,

which yields

d
(
e−ωt

∣∣Xn(t) − Yn(t)
∣∣)� −e−ωt ξT (t)1Xn(t)
=Yn(t) dt, t � 0. (3.13)
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In particular, t �→ e−ωt |Xn(t) − Yn(t)| is decreasing, hence Xn(T ) = Yn(T ) for all T � τn. But
by (3.13) if T � τn then

∣∣Xn(T ) − Yn(T )
∣∣e−ωT � |x − y| − |x − y|

T∫
0

2ωe−2ωt

1 − e−2ωT
dt = 0.

So, in any case

Xn(T ) = Yn(T ), P-a.s. (3.14)

Let

R := exp

[
−

T ∧τn∫
0

ξT (t)

|Xn(t) − Yn(t)|
〈
Xn(t) − Yn(t), σ

−1dWn(t)
〉

− 1

2

T ∧τn∫
0

(ξT (t))2|σ−1(Xn(t) − Yn(t))|2
|Xn(t) − Yn(t)|2 dt

]
.

By (3.14) and Girsanov’s theorem for p > 1,(
P n

T f (y)
)p = (

E
[
f
(
Yn(T )

)])p = (
E
[
Rf
(
Xn(T )

)])p
�
(
P n

T f p(x)
)(

E
[
Rp/(p−1)

])p−1
. (3.15)

Let

Mp = exp

[
− p

p − 1

T ∧τn∫
0

ξT (t)

|Xn(t) − Yn(t)|
〈
Xn(t) − Yn(t), σ

−1dWn(t)
〉

− p2

2(p − 1)2

T ∧τn∫
0

(ξT (t))2|σ−1(Xn(t) − Yn(t))|2
|Xn(t) − Yn(t)|2 dt

]
.

We have EMp = 1 and hence,

ERp/(p−1) = E

{
Mp exp

[
p

2(p − 1)2

T ∧τn∫
0

(ξT (t))2|σ−1(Xn(t) − Yn(t))|2
|Xn(t) − Yn(t)|2 dt

]}

� sup
Ω

exp

[
p

2(p − 1)2

T ∧τn∫
0

(
ξT (t)

)2∥∥σ−1
∥∥2

dt

]

� exp

[∥∥σ−1
∥∥2 pω|x − y|2

(p − 1)2(1 − e−2ωT )

]
.

Combining this with (3.15) we get the assertion (with T replacing t). �
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4. Proof and consequences of Theorem 1.6

On the basis of Propositions 3.1 and 2.1 we can now easily prove Theorem 1.6.

Proof of Theorem 1.6. Let f ∈ Lipb(H), f � 0. By Proposition 3.1(i) it then follows that (3.4)
holds with Ptf replacing P n

t f provided F is Lipschitz. Using that
⋃

n∈N
Hn is dense in H and

that Ptf (x) is continuous on x (cf. [8]) we obtain (3.4) for all x, y ∈ H . In particular, this is true
for P

αn,βn
t f from Proposition 2.1.

Now fix t > 0 and k ∈ N, let

χk(s) := 1

k
1[t,t+1/k](s), s � 0.

Using (3.4) for P
αn,βm
t f , (1.6), Proposition 2.1 and Jensen’s inequality, we obtain for x, y ∈ K

p
μ
t f (x) = lim

k→∞
1

k

t+1/k∫
t

pμ
s f (x) ds

= lim
k→∞ lim

n→∞ lim
m→∞

t+1∫
0

χk(s)P
αn,βm
s f (x) dx

� lim
k→∞ lim

n→∞ lim
m→∞

t+1∫
0

χk(s)
(
P αn,βm

s f p(y)
)1/p

exp

[∥∥σ−1
∥∥2 ω|x − y|2

(p − 1)(1 − e−2ωs)

]
ds

� lim
k→∞ lim

n→∞ lim
m→∞

( t+1∫
0

χk(s)P
αn,βm
s f p(y) exp

[∥∥σ−1
∥∥2 pω|x − y|2

(p − 1)(1 − e−2ωs)

]
ds

)1/p

= (
p

μ
t f p(y)

)1/p exp

[∥∥σ−1
∥∥2 ω|x − y|2

(p − 1)(1 − e−2ωt )

]
,

where we note that we have to choose the sequences (αn), (βn) such that (2.7) holds both for f

and f p instead of f . Since K is dense in H0, (1.10) follows for f ∈ Cb(H), for all x, y ∈ H0,
since p

μ
t f is continuous on H0 by (1.4).

Let now f ∈ Bb(H), f � 0. Let fn ∈ Cb(H), n ∈ N, such that fn → f in Lp(H,μ) as
n → ∞, p ∈ (1,∞) fixed. Then, since μ is invariant for p

μ
t , t > 0, selecting a subsequence if

necessary, it follows that there exists K1 ∈ B(H), μ(K1) = 1, such that

p
μ
t fn(x) → p

μ
t f (x) as n → ∞, ∀x ∈ K1.

Taking this limit in (1.10) we obtain (1.10) for all x, y ∈ K1. Taking into account that p
μ
t is

continuous and that K1 is dense in H0 = supp μ, (1.10) follows for all x, y ∈ H0. �
Corollary 1.7 immediately follows from Theorem 1.6 and the following general result:
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Proposition 4.1. Let E be a topological space and P a Markov operator on Bb(E). Assume that
for any p > 1 there exists a continuous function ηp on E × E such that ηp(x, x) = 0 for all
x ∈ E and

P |f |(x) �
(
P |f |p(y)

)1/p
eηp(x,y) ∀x, y ∈ E, f ∈ Bb(E). (4.1)

Then P is strong Feller, i.e. maps Bb(E) into Cb(E). Furthermore, for any σ -finite measure μ

on (E, B(E)) such that ∫
E

|Pf |dμ � C

∫
E

|f |dμ, ∀f ∈ Bb(E), (4.2)

for some C > 0, P uniquely extends to Lp(E,μ) with PLp(E,μ) ⊂ C(E) for any p > 1.

Proof. Since P is linear, we only need to consider f � 0. Let f ∈ Bb(E) be nonnegative.
By (4.1) and the property of ηp we have

lim sup
x→y

Pf (x) �
(
Pf p(y)

)1/p
, p > 1.

Letting p ↓ 1 we obtain lim supx→y Pf (x) � Pf (y). Similarly, using f 1/p to replace f and
replacing x with y, we obtain(

Pf 1/p(y)
)p �

(
Pf (x)

)
epηp(y,x), ∀x, y ∈ E, p > 1.

First letting x → y then p → 1, we obtain lim infx→y Pf (x) � Pf (y). So Pf ∈ Cb(E). Next,
for any nonnegative f ∈ Lp(E,μ), let fn = f ∧ n, n � 1. By (4.2) and fn → f in Lp(E,μ) we
have P |fn − fm|p → 0 in L1(E,μ) as n,m → ∞. In particular, there exists y ∈ E such that

lim
n,m→∞P |fn − fm|p(y) = 0. (4.3)

Moreover, by (4.1), for BN := {x ∈ E: ηp(x, y) < N}

sup
x∈BN

∣∣Pfn(x) − Pfm(x)
∣∣p � sup

x∈BN

(
P |fn − fm|(x)

)p �
(
P |fn − fm|p(y)

)
epN .

Since by the strong Feller property Pfn ∈ Cb(E) for any n � 1 and noting that Cb(BN) is com-
plete under the uniform norm, we conclude from (4.3) that Pf is continuous on BN for any
N � 1, and hence, Pf ∈ C(H). �
Proof of Corollary 1.8. Let μ1,μ2 be probability measures on (H, B(H)) satisfying (H4). De-
fine μ := 1

2μ1 + 1
2μ2. Then μ satisfies (H4) and μi = ρiμ, i = 1,2, for some B(H)-measurable

ρi : H → [0,2]. Let i ∈ {1,2}.
Since ρi is bounded, by (H4)(iii) and Theorem 1.2 it follows that∫

Lμudμi = 0, ∀u ∈ D(Lμ).
H
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Hence

d

dt

∫
H

etLμudμi =
∫
H

Lμ

(
etLμu

)
dμi = 0, ∀u ∈ D(Lμ),

i.e. ∫
H

p
μ
t udμi =

∫
H

udμi ∀u ∈ EA(H).

Since EA(H) is dense in L1(H,μi), μi is (p
μ
t )-invariant. But as mentioned before, by The-

orem 1.6 it follows that (p
μ
t ) is irreducible on H0 (see [9]) and it is strong Feller on H0 by

Corollary 1.7. So, since μi(H0) = 1, μi = μ. �
Proof of Corollary 1.10. Let

Ã := A − ωI, D(Ã) := D(A),

F̃0 := F0 + ωI.

By (H2), Ã has discrete spectrum. Let ek ∈ H , −λk ∈ (−∞,0], be the corresponding orthonor-
mal eigenvectors, eigenvalues respectively.

For k ∈ N define

ϕk(x) := 〈ek, x〉, x ∈ H.

We note that by a simple approximation (1.5) also holds for any Lipschitz function on H and thus
(cf. the proof of [6, Proposition 5.7(iii)]) also (1.6) holds for such functions, i.e. in particular, for
all k ∈ N

[0,∞) � t �→ ptϕk(x) is continuous for all x ∈ H0. (4.4)

Since any compactly supported smooth function on R
N is the Fourier transform of a Schwartz

test function, by approximation it easily follows that setting

F C∞
b

({ek}
) := {

g
(〈e1, ·〉, . . . , 〈eN , ·〉): N ∈ N, g ∈ C∞

b

(
R

N
)}

,

we have F C∞
b ({ek}) ⊂ D(Lμ) and for ϕ ∈ F C∞

b ({ek})

Lμϕ(x) = 1

2
Tr
[
D2ϕ(x)

]+ 〈
x,ADϕ(x)

〉+ 〈
F0(x),Dϕ(x)

〉
, x ∈ H.

Then by approximation it is easy to show that

ϕk,ϕ
2
k ∈ D(Lμ) and Lμϕk = −λkϕk + 〈ek, F̃0〉,

Lμϕ2 = −2λkϕ
2 + 2ϕk〈ek, F̃0〉 + 2, ∀k ∈ N. (4.5)
k k
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Since we assume that |F0| is in L2(H,μ), by [3, Theorem 1.1] we are in the situation
of [15, Chapter II]. So, we conclude that by [15, Chapter II, Theorem 1.9] there exists a nor-
mal (that is Px[X(0) = x] = 1) Markov process (Ω, F , (Ft )t�0, (X(t))t�0, (Px)x∈H0) with state
space H0 and M ∈ B(H0), μ(M) = 1, such that X(t) ∈ M for all t � 0 Px -a.s. for all x ∈ M and
which has continuous sample paths Px -a.s for all x ∈ M and for which by the proof of [6, Propo-
sition 8.2] and (4.4), (4.5) we have that for all k ∈ N

βx
k (t) := ϕk

(
X(t)

)− ϕk(x) −
t∫

0

Lμϕk

(
X(s)

)
ds, t � 0,

Mx
k (t) := ϕ2

k

(
X(t)

)− ϕ2
k (x) −

t∫
0

Lμϕ2
k

(
X(s)

)
ds, t � 0, (4.6)

are continuous local (Ft )-martingales with βx
k (0) = Mk(0) = 0 under Px for all x ∈ M . Fix

x ∈ M . Below Ex denotes expectation with respect to Px . Since for T > 0

∫
H

T∫
0

Ex

(
1 + ∣∣X(s)

∣∣2)(1 + ∣∣F0
(
X(s)

)∣∣)dsμ(dx)

= T

∫
H

(
1 + |x|2)(1 + ∣∣F0(x)

∣∣)μ(dx) < ∞,

making M smaller if necessary, by (H4)(ii) we may assume that

Ex

T∫
0

(
1 + ∣∣X(s)

∣∣2)(1 + ∣∣F0
(
X(s)

)∣∣)ds < ∞. (4.7)

By standard Markov process theory we have for their covariation processes under Px ,

〈
βx

k ,βx
k′
〉
t
=

t∫
0

〈
Dϕk

(
X(s)

)
,Dϕk′

(
X(s)

)〉
ds = tδk,k′ , t � 0. (4.8)

Indeed, an elementary calculation shows that for all k ∈ N, t � 0,

βx
k (t)2 −

t∫
0

∣∣Dϕk

(
X(s)

)∣∣2 ds

= Mx
k (t) − 2ϕk(x)βx

k (t) −
t∫ (

βx
k (t) − βx

k (s)
)
Lμϕk

(
X(s)

)
ds, (4.9)
0
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where all three summands on the right-hand side are martingales. Since we have a similar formula
for finite linear combinations of ϕ′

ks replacing a single ϕk , by polarization we get (4.8). Note that
by (4.5) and (4.7) all integrals in (4.6), (4.9) are well defined.

Hence, by (4.8) βx
k , k ∈ N, are independent standard (Ft )-Brownian motions under Px . Now it

follows by [11, Theorem 13] that, with Wx = (Wx(t))t�0, being the cylindrical Wiener process
on H given by Wx = (βx

k ek)k∈N, we have for every t � 0,

X(t) = etAx +
t∫

0

e(t−s)AF0
(
X(s)

)
ds +

t∫
0

e(t−s)AdWx(s), P-a.s., (4.10)

that is, the tuple (Ω, F , (Ft )t�0,Px,W
x,X) is a solution to

⎧⎪⎪⎨⎪⎪⎩
Y(t) = etAY (0) +

t∫
0

e(t−s)AF0
(
Y(s)

)
ds +

t∫
0

e(t−s)A dW(s), P-a.s., ∀t � 0,

law Y(0) = δx (:= Dirac measure in x),

(4.11)

in the sense of [11, p. 4].
We note that the zero set in (4.10) is indeed independent of t , since all terms are continuous

in t Px -a.s. because of (H2)(ii) and (4.7).

Claim. We have X-pathwise uniqueness for Eq. (4.11) (in the sense of [11, p. 98]).

For any given cylindrical (F ′
t )-Wiener process W on a stochastic basis (Ω ′, F ′, (F ′

t )t�0,P
′)

let Y = Y(t), Z = Z(t), t � 0, be two solutions of (4.11) such that law(Z) = law(Y ) = law(X)

and Y(0) = Z(0) P
′-a.s. Then by (4.7)

E
′

T∫
0

∣∣F0
(
Y(s)

)∣∣ds = E
′

T∫
0

∣∣F0
(
Z(s)

)∣∣ds = Ex

T∫
0

∣∣F0
(
X(s)

)∣∣ds < ∞ (4.12)

(which, in particular implies by (4.11) and by (H2)(i) that both Y and Z have P
′-a.s. continuous

sample paths). Hence applying [11, Theorem 13] again (but this time using the dual implication)
we obtain for all k ∈ N

〈
ek, Y (t) − Z(t)

〉= −λk

t∫
0

〈
ek, Y (s) − Z(s)

〉
ds

+
t∫

0

〈
ek, F̃0

(
Y(s)

)− F̃0
(
Z(s)

)〉
ds, t � 0, P

′-a.s.

Therefore, by the chain rule for all k ∈ N,
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〈
ek, Y (t) − Z(t)

〉2 = −2λk

t∫
0

〈
ek, Y (s) − Z(s)

〉2
ds

+ 2

t∫
0

〈
ek, Y (s) − Z(s)

〉〈
ek, F̃0

(
Y(s)

)− F̃0
(
Z(s)

)〉
ds, t � 0, P

′-a.s.

Dropping the first term on the right-hand side and summing up over k ∈ N (which is justified by
(4.11) and the continuity of Y and Z), we obtain from (H3) that

∣∣Y(t) − Z(t)
∣∣2 � 2

t∫
0

〈
Y(s) − Z(s), F̃0

(
Y(s)

)− F̃0
(
Z(s)

)〉
ds

� 2ω

t∫
0

∣∣Y(s) − Z(s)
∣∣2 ds, t � 0, P

′-a.s.

Hence, by Gronwall’s lemma Y = Z P
′-a.s. and the Claim is proved.

By the Claim we can apply [11, Theorem 10, (1) ⇔ (3)] and then [11, Theorem 1] to conclude
that Eq. (4.11) has a strong solution (see [11, Definition 1]) and that there is one strong solution
with the same law as X, which hence by (4.7) has continuous sample paths a.s. Now all conditions
in [11, Theorem 13.2] are fulfilled and, therefore, we deduce from it that on any stochastic basis
(Ω, F , (Ft )t�0,P) with (Ft )-cylindrical Wiener process W on H and for x, y ∈ M there exist
pathwise unique continuous strong solutions X(t, x), X(t, y), t � 0, to (4.11) such that

P ◦ X(·, x)−1 = Px ◦ X−1

and

P ◦ X(·, y)−1 = Py ◦ X−1,

in particular, X(0, x) = x and X(0, y) = y and

P ◦ X(t, x)−1(dz) = pt(x, dz), t � 0,

P ◦ X(t, y)−1(dz) = pt(y, dz), t � 0. (4.13)

In particular, we have proved (i). To prove (ii), below for brevity we set X := X(·, x), X′ :=
X(·, y). Then proceeding as in the proof of the Claim, by (1.13) and noting that s−1Φ(s) → ∞
as s → ∞, we obtain

d

dt

∣∣X(t) − X′(t)
∣∣2 � a − Φ0

(∣∣X(t) − X′(t)
∣∣2) (4.14)

for some constant a > 0, only depending on ω and Φ , where Φ0 = 1
2Φ .

Now we consider two cases.
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Case 1. |x − y|2 � Φ−1
0 (2a).

Define f (t) := |X(t) − X′(t)|2, t � 0, and suppose there exists t0 ∈ (0,∞) such that

f (t0) > Φ−1
0 (a).

Then we can choose δ ∈ [0, t0] maximal such that

f (t) > Φ−1
0 (a), ∀t ∈ (t0 − δ, t0].

Hence, because by (4.14) f is decreasing on every interval where it is larger than Φ−1
0 (a), we

obtain that

f (t0 − δ) � f (t0) > Φ−1
0 (a).

Suppose t0 − δ > 0. Then f (t0 − δ) � Φ−1
0 (a) by the continuity of f and the maximality of δ.

So, we must have t0 − δ = 0, hence

f (t0) � f (t0 − δ) = f (0) = |x − y|2 � Φ−1
0 (2a).

So, ∣∣X(t) − X′(t)
∣∣2 � Φ−1

0 (2a), ∀t > 0.

Case 2. |x − y|2 > Φ−1
0 (2a).

Define t0 = inf{t � 0: |X(t) − X′(t)|2 � Φ−1
0 (2a)}. Then by Case 1, starting at t = t0 rather

than t = 0 we know that ∣∣X(t) − X′(t)
∣∣2 � Φ−1

0 (2a), ∀t � t0. (4.15)

Furthermore, it follows from (4.14) that

d
∣∣X(t) − X′(t)

∣∣2 � −1

2
Φ0
(∣∣X(t) − X′(t)

∣∣2)dt, ∀t � t0.

This implies

Ψ
(∣∣X(t) − X′(t)

∣∣2)� 1

2

|x−y|2∫
|X(t)−X′(t)|2

dr

Φ0(r)
� t

4
, ∀t � t0.

Therefore, ∣∣X(t) − X′(t)
∣∣2 � Ψ −1(t/4), ∀t � t0. (4.16)
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Combining Case 1, (4.15) and (4.16) we conclude that∣∣X(t) − X′(t)
∣∣2 � Ψ −1(t/4) + Φ−1

0 (2a), ∀t > 0. (4.17)

Combining (4.17) with Theorem 1.6 for all f ∈ Bb(H) we obtain

(
pt/2|f |(X(t/2)

))2 �
(
pt/2f

2(X′(t/2)
))

exp

[
λ(1 + Ψ −1(t/8))

(1 − ε−ωt/2)2

]
, ∀t > 0

for some constant λ > 0. By Jensen’s inequality and approximation it follows that for all f ∈
L2(H,μ) (

pt |f |(x)
)2 � E

(
pt/2|f |(X(t/2)

))2
�
(
ptf

2(y)
)

exp

[
λ(1 + Ψ −1(t/8))

(1 − ε−ωt/2)2

]
, ∀t > 0, ∀x, y ∈ M. (4.18)

But since H0 = supp μ, M is dense in H0, hence by the continuity of ptf (cf. Corollary 1.7)
(4.18) holds for all x ∈ H0, y ∈ M . Since μ(M) = 1 this completes the proof by integrating both
sides with respect to μ(dy). �
Remark 4.2. We would like to mention that by using [2] instead of [15] we can drop the as-
sumption that |F0| ∈ L2(H,μ). So, by (4.9) and the proof above we can derive (4.8) avoiding to
assume the usually energy condition

t∫
0

∣∣F0
(
X(s)

)∣∣2 ds < ∞, Px-a.s.

Details will be included in a forthcoming paper. We would like to thank Tobias Kuna at this point
from whom we learnt identity (4.9) by private communication.

5. Existence of measures satisfying (H4)

To prove existence of invariant measures we need to strengthen some of our assumptions. So,
let us introduce the following conditions.

(H1)′ (A,D(A)) is self-adjoint satisfying (1.2).
(H6) There exists η ∈ (ω,∞) such that〈

F0(x) − F0(y), x − y
〉
� −η|x − y|2, ∀x, y ∈ D(F).

Remark 5.1. (i) Clearly, (H1)′ implies (H1) and (H5). (H1)′ and (H2)(i) imply that (A,D(A))

and thus also (1 + ω − A,D(A)) has a discrete spectrum. Let λi ∈ (0,∞), i ∈ N, be the eigen-
values of the latter operator. Then by (H2)

∞∑
λ−1

i < ∞. (5.1)

i=1
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(ii) If we assume (5.1), i.e. that (1 + ω − A)−1 is trace class, then all what follows holds with
(H2) replaced by (H2)(i). So, σ−1 ∈ L(H) is not needed in this case.

Let Fα , α < 0, be as in Section 2. Then e.g. by [5, Theorem 3.2] equation (1.1) with Fα

replacing F0 has a unique mild solution Xα(t, x), t � 0. Since there exist η̃ ∈ (ω,∞) and α0 > 0
such that each Fα , α ∈ (0, α0), satisfies (H6) with η̃ replacing η, by [5, Section 3.4] Xα has a
unique invariant measure μα on (H, B(H)) such that for each m ∈ N

sup
α∈(0,α0)

∫
H

|x|mμα(dx) < ∞. (5.2)

That these moments are indeed uniformly bounded in α, follows from the proof of [5, Proposi-
tion 3.18] and the fact that η̃ ∈ (ω,∞).

Let NQ denote the centered Gaussian measure on (H, B(H)) with covariance operator Q

defined by

Qx :=
∞∫

0

etAσetAx dt, x ∈ H,

which by (H2)(ii) is trace class.
Let W 1,2(H,NQ) be defined as usual, that is as the completion of EA(H) with respect to the

norm

‖ϕ‖W 1,2 :=
( ∫

H

(
ϕ2 + |Dϕ|2)dNQ

)1/2

, ϕ ∈ EA(H),

where D denotes first Fréchet derivative. By [7] we know that

W 1,2(H,NQ) ⊂ L2(H,NQ), compactly. (5.3)

Theorem 5.2. Assume that (H1)′, (H2), (H3) and (H6) hold and let μα,α ∈ (0, α0) be as above.
Suppose that there exists a lower semi-continuous function G : H → [0,∞] such that

{G < ∞} ⊂ D(F), |F0| � G on D(F) and sup
α∈(0,α0)

∫
H

G2 dμα < ∞. (5.4)

Then {μα: α ∈ (0, α0)} is tight and any limit point μ satisfies (H4) and hence by Corollary 1.8
all of these limit points coincide. Furthermore, for all m ∈ N∫

H

(∣∣F0(x)
∣∣2 + |x|m)μ(dx) < ∞ (5.5)

and there exists ρ : H → [0,∞), B(H)-measurable, such that μ = ρNQ and
√

ρ ∈ W 1,2(H,μ).
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Proof. We recall that by [3, Theorem 1.1] for each α ∈ (0, α0)

μα = ραNQ; √
ρα ∈ W 1,2(H,NQ) (5.6)

and as is easily seen from its proof, that∫
H

|D√
ρα|2 dNQ � 1

4

∫
H

|Fα|2 dμα. (5.7)

But by (2.3) and (5.4) the right-hand side of (5.7) is uniformly bounded in α. Hence by (5.3)
there exists a zero sequence {αn} such that

√
ραn → √

ρ in L2(H,NQ) as n → ∞,

for some
√

ρ ∈ W 1,2(H,NQ) and therefore, in particular,

ραn → ρ in L1(H,NQ) as n → ∞. (5.8)

Define μ := ρNQ and ρn := ραn , n ∈ N. Since G is lower semi-continuous and μαn → μ as
n → ∞ weakly, (5.2) and (5.4) imply∫

H

(
G2(x) + |x|m)μ(dx) < ∞, ∀m ∈ N. (5.9)

Hence by (5.4) both (H4)(i) and (H4)(ii) follow. So, it remains to prove (H4)(iii).
Since σ is independent of α, to show (5.9) it is enough to prove that for all ϕ ∈ Cb(H),

h ∈ D(A),

lim
n→∞

∫
H

Fh
αn

(x)ϕ(x)μαn(dx) =
∫
H

Fh
0 (x)ϕ(x)μ(dx), (5.10)

where Fh
α := 〈h,Fα〉, α ∈ [0, α0). We have∣∣∣∣ ∫

H

Fh
αn

ϕ dμαn −
∫
H

Fh
0 ϕ dμ

∣∣∣∣
� ‖ϕ‖∞

∫
H

∣∣Fh
αn

− Fh
0

∣∣ρn dNQ +
∫
H

∣∣Fh
0 ϕ
∣∣|ρn − ρ|dNQ. (5.11)

But by (2.3) and (5.4) we have∫
H

∣∣Fh
αn

− Fh
0

∣∣ρn dNQ �
∫

{|G|�M}

∣∣Fh
αn

− Fh
0

∣∣ρn dNQ

+ 2|h|
M

sup
α∈(0,α0)

∫
G2 dμα.
H
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Hence first letting n → ∞ then M → ∞ by (2.2), (5.4) and (5.8) Lebesgue’s generalized domi-
nated convergence theorem implies that the first term on the right-hand side of (5.11) converges
to 0. Furthermore, for every δ ∈ (0,1)∣∣∣∣ ∫

H

Fh
0 ϕ dμαn −

∫
H

Fh
0 ϕ dμ

∣∣∣∣� ∣∣∣∣ ∫
H

Fh
0

1 + δ|Fh
0 |ϕ(ρn − ρ)dNQ

∣∣∣∣
+ δ‖ϕ‖∞

( ∫
H

∣∣Fh
0

∣∣2 dμαn +
∫
H

∣∣Fh
0

∣∣2 dμ

)
. (5.12)

Since by (2.3) and (5.4)

sup
α∈(0,α0)

∫
H

∣∣Fh
0

∣∣2 dμα < ∞,

(H4)(iii) follows from (5.12) by letting first n → ∞ and then δ → 0, since for fixed δ > 0 the
first term in the right-hand side converges to zero by (5.8). �
Example 5.3. Let H = L2(0,1),Ax = �x, x ∈ D(A) := H 2(0,1) ∩ H 1

0 (0,1). Let f : R → R

be decreasing such that for some c3 > 0, m ∈ N,∣∣f (s)
∣∣� c3

(
1 + |s|m), ∀s ∈ R. (5.13)

Let si ∈ R, i ∈ N, be the set of all arguments where f is not continuous and define

f̄ (s) =
{ [f (si+), f (si−)], if s = si for some i ∈ N,

f (s), else.

Define

F : D(F) ⊂ H → 2H , x �→ f̄ ◦ x,

where

D(F) = {x ∈ H : f̄ ◦ x ⊂ H }.
Then F is m-dissipative. Let F0 be defined as in Section 2.

Since A � ω for some ω < 0, it is easy to check that all conditions (H1)′, (H2), (H3), (H6)
with η = 0 hold for any σ ∈ L(H) such that σ−1 ∈ L(H). Define

G(x) :=
{( ∫ 1

0 |x(ξ)|2mdξ
)1/2

if x ∈ L2m(0,1),

+∞ if x /∈ L2m(0,1).

Then {G < ∞} ⊂ D(F) and |F0| = |F0|L2(0,1) � G on D(F). Furthermore, by [6, (9.3)]

sup
α∈(0,α0)

∫
G2 dμα < ∞. (5.14)
H
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Note that from [6, Hypothesis 9.5] only the first inequality, which clearly holds by (5.13) in our
case, was used to prove [6, (9.3)]. Hence all assumptions of Theorem 5.2 above hold and we
obtain the existence of the desired unique probability measure μ satisfying (H4) in this case. We
emphasize that no continuity properties of f and F0 are required. In particular, then all results
stated in Section 1 except for Corollary 1.10(ii) hold in this case.

If moreover there exists an increasing positive convex function Φ on [0,∞) satisfying (1.12)
such that (

f (s) − f (t)
)
(s − t) � c − Φ

(|s − t |2), s, t ∈ R,

then by Jensen’s inequality (1.13) holds. Hence, by Corollary 1.10 one obtains an explicit upper
bound for ‖pt‖L2(H,μ)→L∞(H,μ). A natural and simple choice of Φ is Φ(s) = sm for m > 1.

One can extend these results to the case, where (0,1) above is replaced by a bounded open
set in R

d , d = 2 or 3 for σ = (−�)γ , γ ∈ ( d−2
4 , 1

2 ), based on Remark 1.1(iv).

Before to conclude we want to present a condition in the general case (i.e for any Hilbert
space H as above) that implies (5.4), hence by Theorem 5.2 ensures the existence of a probability
measure satisfying (H4) so that all results of Section 1 apply also to this case. As will become
clear from the arguments below, such condition is satisfied if the eigenvalues of A grow fast
enough in comparison with |F0|. To this end we first note that by (5.1) for i ∈ N we can find
qi ∈ (0, λi), qi ↑ ∞ such that

∑∞
i=1 q−1

i < ∞ and qi

λi
→ 0 as i → ∞. Define Θ : H → [0,∞]

by

Θ(x) :=
∞∑
i=1

λi

qi

〈x, ei〉2, x ∈ H, (5.15)

where {ei}i∈N is an eigenbasis of (1 +ω −A,D(A)) such that ei has eigenvalue λi . Then Θ has
compact level sets and | · |2 � Θ .

Below we set

Hn := lin span {e1, . . . , en}, πn := projection onto Hn,

Ã := A − (1 + ω)I, D(Ã) := D(A), (5.16)

F̃0 := F0 + (1 + ω)I. (5.17)

We note that obviously Hn ⊂ {Θ < +∞} for all n ∈ N.

Theorem 5.4. Assume that (H1)′, (H2), (H3) and (H6) hold and let μα , α ∈ (0, α0), be as above.
Suppose that {Θ < +∞} ⊂ D(F) and that for some C ∈ (0,∞), m ∈ N∣∣F0(x)

∣∣� C
(
1 + |x|m + Θ1/2(x)

)
, ∀x ∈ D(F). (5.18)

Then

sup
α∈(0,α0)

∫
H

Θ dμα < ∞ (5.19)

and (5.4) holds, so Theorem 5.2 applies.
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Proof. Consider the Kolmogorov operator Lα corresponding to Xα(t, x), t � 0, x ∈ H, which
for ϕ ∈ F C2

b({en}), i.e., ϕ = g(〈e1, ·〉, . . . , 〈eN, ·〉) for some N ∈ N, g ∈ C2
b(RN), is given by

Lαϕ(x) := 1

2
Tr
[
σ 2D2ϕ(x)

]+ 〈
x,ADϕ(x)

〉+ 〈
Fα(x),Dϕ(x)

〉
, x ∈ H, (5.20)

where D2 denotes the second Fréchet derivative. Then, an easy application of Itô’s formula shows
that the L1(H,μα)-generator of (P α

t ) (given as before by P α
t f (x) = E[f (Xα(t, x))]) is given

on F C2
b({en}) by Lα . In particular,∫

H

Lαϕ dμα = 0, ∀ϕ ∈ F C2
b

({en}
)
.

By a simple approximation argument and (5.2) we get for α ∈ (0, α0) and

ϕn(x) :=
n∑

i=1

q−1
i 〈x, ei〉2, x ∈ H, n ∈ N,

that also ∫
H

Lαϕn dμα = 0. (5.21)

But for all x ∈ H , with F̃α defined as F̃0 in (5.17), we have

Lαϕn(x) = −2
n∑

i=1

λi

qi

〈x, ei〉2 + 2
n∑

i=1

q−1
i

〈
F̃α(x), ei

〉〈x, ei〉

+
n∑

i,j=1

q−1
i 〈σnei, σnej 〉

� −2Θ(πnx) + 2

(
n∑

i=1

q−1
i

〈
F̃α(x), ei

〉2)1/2( n∑
i=1

q−1
i 〈x, ei〉2

)1/2

+
n∑

i=1

q−1
i |σnei |2

� −2Θ(πnx) + c1
(
1 + |x|m+1 + Θ1/2(x)|x|)+ ‖σ‖2

∞∑
i=1

q−1
i , (5.22)

for some constant c1 independent of n and α. Here we used (2.3) and (5.18). Now (5.21), (5.2)
and (5.22) immediately imply that for some constant c̃1

sup
α∈(0,α0)

∫
H

Θ(x)μα(dx) � sup
α∈(0,α0)

c̃1

(
1 +

∫
H

|x|m+2μα(dx)

)
+ ‖σ‖2

∞∑
i=1

q−1
i < ∞.

So, (5.19) is proved, which by (5.18) implies (5.4) and the proof is complete. �
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