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Abstract

Recently, Hawking radiation of the black hole has been studied using the tunnel effect method. It is found that the radiation spectrum of the black
hole is not a strictly pure thermal spectrum. How does the departure from pure thermal spectrum affect the entropy? This is a very interesting
problem. In this Letter, we calculate the partition function by energy spectrum obtained from tunnel effect. Using the partition function, we
compute the black hole entropy and derive the expression of the black hole entropy after considering the radiation. And we derive the entropy
of charged black hole. In our calculation, we consider not only the correction to the black hole entropy due to fluctuation of energy but also the
effect of the change of the black hole charges on entropy. There is no other hypothesis. Our result is more reasonable. According to the fact that
the black hole entropy is not divergent, we obtain the lower limit of Banados–Teitelboim–Zanelli black hole energy. That is, the least energy of
Banados–Teitelboim–Zanelli black hole, which satisfies the stationary condition in thermodynamics.
© 2006 Elsevier B.V.
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1. Introduction

Black holes have an event horizon from which any matter or
information cannot escape. The loss of the information in hori-
zon region shows that the horizon has a property of entropy.
There are many methods to calculate the entropies of thermo-
dynamic quantities. And each method means that taking the
horizon area of the black hole as an entropy is self-consistent. It
is caused by their similarity [1,2]. When the horizon area of the
black hole has been taken as entropy, the energy and tempera-
ture of the black hole satisfy thermodynamic law. Since Hawk-
ing radiation has been discovered, this similarity is described
quantificationally [3]. But, how to measure the microstate of the
black hole by entropy? This problem has not been solved. At
present, discussing the entropy of black hole–matter coupling
system becomes a meaningful problem. This problem may pro-
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vide a way for solving the difficulty of quantum gravitation.
Many researchers have expressed a vested interest in fixing the
relation between statistical mechanic entropy and thermody-
namic entropy [4–8].

In recent years, string theory and loop quantum gravity
both had succeeded statistically in explaining the black hole
entropy–area law [9,10]. However, which one is perfect? It is
expected to choose it by discussing the quantum correction term
of the black hole entropy. Therefore, studying the black hole
entropy correction value becomes the focus of attention. Many
ways of discussing the black hole entropy correction value have
emerged [11–18]. Based on string theory and loop quantum
gravity, the relationship of the black hole entropy–area is given
by [19].

(1)S = A

4L2
p

+ ρ ln
A

4L2
p

+ O

(
L2

p

A

)
,

where A = 16πL2
pM2 is the area of the black hole horizon,

Lp = √
h̄G is Planck length. Ref. [13] obtained ρ = −1/2 in

four dimension space–time.

https://core.ac.uk/display/82012006?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1
http://www.elsevier.com/locate/physletb
mailto:zhaoren2969@yahoo.com.cn
http://dx.doi.org/10.1016/j.physletb.2006.08.068
http://creativecommons.org/licenses/by/3.0/
http://creativecommons.org/licenses/by/3.0/


R. Zhao, S.-L. Zhang / Physics Letters B 641 (2006) 318–322 319
On the other hand, there has been much attention devoted to
the lower-dimensional gravitation theory region. Recently, the
study of two-dimensional black hole thermodynamics shows
that entropy satisfies the area relation and the second law of
thermodynamics [20–22]. In 1992 Banados, Teitelboim and
Zanelli (BTZ) [23,24] showed that (2 + 1)-dimensional grav-
ity has a black hole solution. This black hole is described by
two (gravitational) parameters, the mass M and the angular
momentum J . It is locally AdS and thus it differs from the
Schwarzschild and Kerr solutions since it is an asymptotically
anti-de Sitter instead of a flat space–time. Additionally, it has
no curvature singularity at the origin. AdS black holes are mem-
bers of this two-parametric family of BTZ black holes, and they
are very interesting in the framework of string theory and black
hole physics [25,26].

Recently, a new explanation for Hawking radiation process
of the black hole is tunnel process. Based on it, the radiation
spectrum is derived. However, this radiation spectrum has a
departure from pure thermal spectrum. How does it affect the
black hole entropy? In this Letter, we calculate the partition
function of BTZ black hole using the radiation spectrum ob-
tained in tunnel process. Furthermore, we derive the entropy of
canonical black hole. In our calculation, there is no the other
hypothesis. We provide a new way for discussing the entropy
of canonical black hole. We take the simple function form of
temperature (c = KB = 1).

2. Canonical partition function

Parikh and Wilczek [27] discussed Hawking radiation by
tunnel effect. They thought that tunnels in the process of the
particle radiation had no potential barrier before particles radi-
ated. Potential barrier is produced by radiation particles itself.
That is, during the process of tunnel effect creation, the energy
of the black hole decreases and the radius of the black hole
horizon reduces. The horizon radius becomes a new value that
is smaller than the original value. The decrease of radius is de-
termined by the value of energy of radiation particles. There
is a classical forbidden band-potential barrier between origi-
nal radius and the one after the black hole radiates. Parikh and
Wilczek skillfully obtained the radiation spectrum of Schwarz-
schild and Reissner–Nordström black holes. Refs. [28–37] de-
veloped the method proposed by Parikh and Wilczek. They
derived the radiation spectrum of the black hole in all kinds
of space–time. Refs. [38–41] obtained radiation spectrum of
Hawking radiation after considering the generalized uncertainty
relation. And Angheben, Nadalini, Vanzo and Zerbini have
computed the radiation spectrum of the arbitrary-dimensional
black hole and obtained the energy spectrum of radiation parti-
cles of general black hole [37,42]
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where, Eb = E − Es , Es is energy of radiated particle,
SMC(E − Es) is entropy of microcanonical ensemble with en-
ergy (E − Es) (namely Bekenstein–Hawking entropy of black
hole with energy (E − Es)). According to the relation of ther-
modynamics, β should be the inverse of the temperature.
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Normalizing the distribution function ρs , we obtain ρs =
1
Zc

e�S , where

(5)Zc =
∑
Es

ρ(E − Es)e
SMC(E−Es)−SMC(E)

is the partition function. For the semi-classical thermal equilib-
rium system, the canonical partition function can be expressed
as

(6)Zc(β) =
∞∫

0

e�S dEs ρ(E − Es),

where ρ(E − Es) is a density of state of ensemble (black hole)
with energy (E − Es). From Ref. [43], we have ρ(E − Es) ≡
eSMC(E−Es).

The canonical entropy is expanded a Taylor series near en-
ergy E,

(7)SMC(E − Es) = SMC(E) − βEs + β2E
2
s + · · · .

When we neglect the higher-order small term, Eq. (6) can be
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where
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is error integral.

3. Canonical entropy

According to the relation between the partition function and
entropy

(9)S = lnZ − β
∂ lnZ

∂β
,
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we obtain that the entropy of the canonical system is
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where
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According to the asymptotic expression of the error function
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Substituting (13) into (11), we derive
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The thermal capacity of the system is
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Then Eq. (14) can be expressed as
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where T is the temperature of the system. When we only con-
sider the logarithmic correction term
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.

In error function, we take the sum k from one to n as the ap-
proximate value of the series. When z is a real number, its error
does not exceed the absolute value of the first term neglected in
the series. Therefore, when C < −1 or C > 1, the first term in
�S is not divergent.
4. Canonical entropy of BTZ black hole

For the non-rotating Banados–Teitelboim–Zanelli (BTZ)
black hole [23]
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where, M is the Arnowitt–Deser–Misner (ADM) mass, J is the
angular momentum (spin) of the BTZ black hole, l2 = 1/Λ2

and Λ is the cosmological constant.
The outer and inner horizon, i.e., r+ (henceforth simply the

black hole horizon) and r− respectively, concerning the positive
mass black hole spectrum with spin (J 	= 0) of the line element
(19) are given by
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,

and therefore, in terms of the inner and outer horizons, the black
hole mass and the angular momentum are given, respectively,
by
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, J = 2r+r−

l
.

The Hawking temperature TH of the black hole horizon is [44]
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In two space–time dimensions we do not have an area law for
the black hole entropy; however, one can use a thermodynamic
reasoning to define the entropy [44]

(23)SMC = 4πr+.

The specific heat of the black hole is given by [45]
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When r+ 
 r−, C ≈ SMC, based on the Eq. (22) TH ≈ SMC
8π2l2

,
then Eq. (18) can be rewritten as
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Based on Eq. (25), when SMC > 1, the entropy is not divergent.
Therefore, we can obtain that the energy of BTZ black hole
satisfies the following condition.

(26)r+ >
1

4π
.

From Eq. (21), when r+ 
 r−, r2+ ≈ Ml2. So when the black
hole energy satisfies M > ( 1 )2, the entropy is not divergent.
4πl
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Otherwise, the entropy is divergent. It means that the black hole
is not at the thermodynamic stationary state. That is, in universe
there is no BTZ black hole with energy that is smaller than this
energy.

According to Eq. (24), when r+ → r−, C → 0, the logarith-
mic term in entropy is divergent. So we obtain that the black
hole is mechanic unstable in this case. BTZ black hole cannot
become an extreme black hole by adjusting the value of J . The
extreme black hole exists at the very start of the universe. This
is consistent with the view of Refs. [46,47].

5. Conclusion and discussion

Ref. [11] obtained the following result, when they discussed
the correction to entropy of Schwarzschild black hole by the
generalized uncertainty relation.

(27)S = A

4
− πα2

4
ln
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4
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+
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Cn

(
A

4

)−n

+ const.

According to Eq. (27), there is a uncertain factor α2 in the loga-
rithmic term in the correction to entropy. However, in our result,
there is no uncertain factor in Eq. (25).

After considering the correction to the black hole thermody-
namic quantities due to thermal fluctuation, the expression of
entropy is [48–50]

(28)S = lnρ = SMC − 1

2
ln

(
CT 2) + · · · .

There is a limitation in the above result. That is the thermal
capacity of Schwarzschild black hole is negative. This leads
to the logarithmic correction term divergent given by Eq. (28).
So this relation is not valid to Schwarzschild black hole. How-
ever, for general four-dimensional curved space–times, when
we take a proper approximation or limit, they can return to
Schwarzschild space–times. This implies that Eq. (28) has not
universality. However, in our result we only request the thermal
capacity satisfies C < −1 or C > 1. According to the discus-
sion to Schwarzschild black hole, we obtain that this condition
may be the condition that the black hole exists.

In addition, the research of the black hole entropy is based
on the fact that the black hole has thermal radiation and the radi-
ation spectrum is a pure thermal spectrum. However, Hawking
obtained that the radiation spectrum is a pure thermal spectrum
only under the condition that the background of space–time
is invariable. During this radiation process, there exist the in-
formation loss. The information loss of the black hole means
that the pure quantum state will disintegrate to a mixed state.
This violates the unitarity principle in quantum mechanics.
When we discuss the black hole radiation by the tunnel ef-
fect method, after considering the conversation of energy and
the change of the horizon, we derive that the radiation spec-
trum is no longer a strict pure thermal spectrum. This method
can avoid the limit of Hawking radiation and point out that the
self-gravitation provides the potential barrier of quantum tun-
nel.

Our discussion is based on the quantum tunnel effect of
the black hole radiation. So our discussion is very reason-
able. We provide a way for studying the quantum correction
to Bekenstein–Hawking entropy. Based on our method, we can
further check the string theory and single Loop quantum gravity
and determine which one is perfect. When the thermal capacity
of the black hole satisfies 0 � C � 1, the logarithmic correc-
tion term of the black hole may be divergent. For general black
hole, it needs further discuss that this divergent implies physics
characteristic.
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