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We show that, contrary to the claim made in arXiv:0911.1299, the extended Hořava gravity model pro-
posed in arXiv:0909.3525 does not suffer from a strong coupling problem. By studying the observational
constraints on the model we determine the bounds on the scale of the ultraviolet modification for which
the proposal yields a phenomenologically viable, renormalizable and weakly coupled model of quantum
gravity.

© 2010 Elsevier B.V. Open access under CC BY license.
Building on the seminal works by P. Hořava [1,2], we have re-
cently proposed a power-counting renormalizable model for quan-
tum gravity without Lorentz invariance [3]. Remarkably, the model
is free of the pathologies [4–6,3,7] present in the original Hořava’s
proposal and associated with the additional mode of the gravita-
tional excitations. This is achieved by providing the extra mode
with a proper quadratic action around smooth backgrounds. We
have argued in [3] that this property together with power-counting
renormalizability of the theory ensures that the theory is weakly
coupled all the way up to trans-Planckian energies.1 We also ar-
gued in [3] that with appropriate choice of parameters the the-
ory satisfies phenomenological constraints, and demonstrated this
explicitly for the simplest tests provided by the gravitational po-
tential between static sources (Newton’s law) and homogeneous
cosmology (Friedmann equation).

The consistency of the model presented in [3] has been recently
questioned in [8], where it is claimed that the model suffers from
the same kind of strong coupling problem as the previous ver-
sions of Hořava’s proposal [6,7]. The aim of the present Letter is

DOI of original article: 10.1016/j.physletb.2010.01.054.

* Corresponding author.
E-mail address: pujolas@cern.ch (O. Pujolàs).

1 To be weakly coupled at all energies the model must fulfill the additional re-
quirement that its marginal couplings do not develop Landau poles under the renor-
malization group flow. In other words, the theory must possess a weakly coupled
UV fixed point. The Landau poles, if any, appear at exponentially high energies and
are irrelevant for the purposes of the present Letter.
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to show that this claim is unfounded. We support our arguments
by considering a toy model where the absence of strong coupling
is demonstrated both using the power counting and at the level of
scattering amplitudes. We also analyze in more detail the obser-
vational bounds on the model and determine the window in the
parameter space compatible with phenomenology and weak cou-
pling.

1. Review of extended Hořava gravity

We start by describing briefly the model [3]. We consider the
Arnowitt–Deser–Misner (ADM) decomposition for the metric,

ds2 = (
N2 − Ni N

i) dt2 − 2Ni dxi dt − γi j dxi dx j . (1)

This decomposition defines a foliation of space–time by 3-dimen-
sional space-like surfaces thus splitting the coordinates into
“space” and “time”. We follow [2] and, unlike the case of gen-
eral relativity (GR), consider this foliation structure as physical.
This means that the group of invariance of the theory is not the
full group of 4-dimensional diffeomorphisms, but only its subgroup
consisting of foliation-preserving transformations

x �→ x̃(t,x), t �→ t̃(t). (2)

The action of the model is taken in the form2

2 The 3-dimensional indexes i, j, . . . are raised and lowered using γi j , and covari-
ant derivatives are associated to γi j .
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S = M2
P

2

∫
d3x dt

√
γ N

(
Kij K i j − λK 2 − V[γi j,ai]

)
, (3)

where M P is the Planck mass; Kij is the extrinsic curvature tensor

Kij = 1

2N
(γ̇i j − ∇i N j − ∇ j Ni), (4)

with the trace K ; γ is the determinant of the spatial metric γi j ;
λ is a dimensionless constant. The “potential” term V [γi j,ai] in (3)
depends on the 3-dimensional metric and the lapse N . The latter
enters into the potential through the combination

ai ≡ ∂i N

N
, (5)

which is covariant under the symmetry (2). The dependence of the
potential term on the gradients of the lapse is the key difference
of the model (3) compared to the original Hořava’s proposal [2].

The existence of the preferred foliation structure reflects the
non-relativistic nature of the model: space and time enter into the
theory on different footings. This allows to introduce into the ac-
tion terms with higher derivatives in spatial directions which im-
prove the ultraviolet (UV) behavior of the graviton propagator [2];
at the same time the theory remains second order in time deriva-
tives thus avoiding problems with unitarity. Out of the previous
family of actions (3), one can construct power-counting renormal-
izable theories by considering the scaling transformations [2]

x �→ b−1x, t �→ b−3t, (6a)

N �→ N, Ni �→ b2Ni, γi j �→ γi j. (6b)

Under this scaling, the kinetic part of the action (3) and the opera-
tors of dimension3 6 in V are left unchanged (they are marginal).4

Operators of lower dimensions in V are relevant deformations. Ac-
cording to the standard arguments, considering operators up to
dimension 6 in the potential gives rise to an action which is per-
turbatively renormalizable. Explicitly, the allowed potential term is

V = −ξ R − αaia
i

+ M−2
P

(
A1�R + A2 Rij Ri j + A3ai�ai + A4

(
aia

i)2

+ A5aia j Ri j + · · ·)
+ M−4

P

(
B1�

2 R + B2 Rij R jk Ri
k + B3ai�

2ai + B4
(
aia

i)3

+ B5aia
ia jak R jk + · · ·), (7)

where Rij , R are the Ricci tensor and the scalar curvature con-
structed out of the metric γi j ; � ≡ γ i j∇i∇ j , and ξ , An , Bn are
constants. The ellipses represent other possible operators of di-
mension 4 and 6 which can be constructed out of the metric γi j

and are invariant under 3-dimensional diffeormorphisms.5 In what
follows we set ξ = 1, which can always be achieved by a suitable
rescaling of time. At low energies the potential is dominated by
the operators of the lowest dimension, namely, the terms in the

3 We assign dimension −1 to the space coordinate. Then the dimension of time
is −3, dimensions of the lapse and the 3-dimensional metric are zero, etc.

4 This is true classically. At the quantum level one expects the coefficients in
front of marginal operators to acquire logarithmic running under the renormaliza-
tion group flow.

5 Note that the operators with odd dimensions are forbidden by spatial parity.
Similarly, the terms in the action with one time derivative of ai are excluded by
the time-reversal invariance. We stress that apart from these restrictions one must
consider all operators of dimension up to 6 and compatible with the symmetries
(2) to obtain a renormalizable action. Such operators are numerous and only a few
of them are written explicitly in the above expression. The complete list of terms
providing non-equivalent contributions at the quadratic level is given in [3].
first line of (7). This leads to the recovery in the infrared of the
relativistic scaling dimension −1 for both space and time.

The explicit breaking of 4-dimensional diffeomorphisms down
to the subgroup (2) gives rise to the presence of a new scalar grav-
itational degree of freedom [2,3,6]. Its properties at the quadratic
level were analyzed in [3] where it was shown that the new mode
is free of pathologies at all energies (it is neither a ghost nor a
tachyon) in a wide range of parameters. The proper behavior of
the mode at low energies is ensured by the following choice of
the parameters λ and α (see Eqs. (3), (7))

0 <
λ − 1

3λ − 1
, 0 < α < 2. (8)

The additional mode does not have a mass gap: at low energies it
obeys a linear dispersion relation with a velocity generically differ-
ent from that of gravitons (which is 1 in our choice of units). This
signals the break down of Lorentz invariance down to arbitrary low
energies. As we discuss below, this has phenomenological conse-
quences that ultimately set bounds on the values of the parame-
ters λ and α governing the low-energy physics of the model.

It is convenient to introduce the covariant form of the theory
which we obtain using the method described in [6]. One encodes
the foliation structure of space–time into a new Stückelberg field
φ(t,x) by identifying the surfaces of the foliation with surfaces of
constant φ,

φ(t,x) = const. (9)

The invariance of the theory under reparameterization of the foli-
ation surfaces translates into the invariance under reparamateriza-
tions of φ,

φ �→ f (φ), (10)

where f is an arbitrary monotonous function. The quantities ap-
pearing in the action (3) reduce to the standard geometrical ob-
jects (induced metric, extrinsic and intrinsic curvature) character-
izing the embedding of the hypersurfaces defined by (9) in space–
time. The central object in the construction of these quantities is
the unit normal vector6 uμ . Explicitly,

uμ ≡ ∇μφ√∇νφ∇νφ
. (11)

Note that uμ is automatically invariant under the transforma-
tions (10). Other geometrical quantities associated to the foliation
are constructed out of uμ and its derivatives, see [6] for details. In
this way one obtains the following covariant form of the action (3),

S = − M2
P

2

∫
d4x

√−g
{
(4)R + (λ − 1)

(∇μuμ
)2

+ αuμuν∇μuρ∇νuρ

+ (terms with higher derivatives)
}
. (12)

This action describes a scalar–tensor theory of gravity invariant
under 4-dimensional diffeomorphisms and the symmetry (10). Fur-
thermore, after fixing the gauge φ = t , it is equivalent to the
non-covariant form (3). Thus the covariant (Stückelberg) formalism
makes the presence of the extra scalar degree of freedom explicit.

The first line in (12) contains all the terms with up to two
derivatives acting on uμ and the metric; it describes the low-
energy physics of the model. Note that this low-energy action is
similar to a special case of the Einstein-aether theory (see [9] for

6 The Greek indices μ,ν, . . . are raised and lowered using the 4-dimensional met-
ric gμν , and the covariant derivatives with these indices are understood accordingly.
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a recent review). The difference from the general Einstein-aether
theory is that in our case the vector uμ is, by its definition (11),
hypersurface-orthogonal; i.e. it is characterized by a single scalar
field.7 Besides the low-energy part, the full action of the model
also contains the terms with higher derivatives which we do not
write explicitly. These terms arise from the second and third lines
in the potential (7). Their important effect is to modify the disper-
sion relation of the modes at high energies,

E2 = c2 p2 + p4

M2∗A

+ p6

M4∗B

, (13)

where E and p are the energy and momentum of the modes, and8

c2 =
{

1 for helicity-2 modes,

c2
s ≡ λ−1

α for scalar graviton.
(14)

For simplicity, we assume cs ∼ 1 in what follows. In this case, one
reads off the scales suppressing the higher derivative terms from
(3), (7):

M∗A, M∗B

∼
{

A−1/2
i M P , B−1/4

i M P for helicity-2 modes,
√

αA−1/2
i M P , α1/4 B−1/4

i M P for scalar graviton.
(15)

As we now discuss, the presence of these higher-derivative terms
is crucial to make the theory weakly coupled and renormalizable
in the UV.

2. Would-be strong coupling and its resolution

In the covariant language, the issue raised in [8], can be un-
derstood as follows. Let us expand the low-energy action of the
model (first line in (12)), around the background consisting of the
Minkowski metric and the Stückelberg field linearly depending on
time,

gμν(t,x) = ημν + hμν(t,x), φ(t,x) = t + χ(t,x). (16)

The result has the schematic form

S = M2
P

∫
d4x

[−h�h − α(∂iχ̇ )2 + (λ − 1)(�χ)2

+ (λ − 1)χ̇ (�χ)2 + · · ·],
where, for the sake of the argument, we have written down only
one of the interaction terms. The quadratic part of the perturbed
action remains invariant under the relativistic scaling

x �→ b−1x, t �→ b−1t, (17a)

hμν �→ bhμν, χ �→ χ. (17b)

The interaction terms for both fields have positive dimensions with
respect to this scaling. This means that these interactions would
become strong at a certain scale Λ if no new physics appeared at a
lower scale. Under the assumption (motivated by phenomenological
bounds) |λ − 1| ∼ α 	 1, the covariant formalism with the action
(12) allows to readily identify the scale Λ as

Λ = √|λ − 1|M P ∼ √
αM P . (18)

7 In comparison with [9], we have absorbed one of the free parameters of the
most generic action in a redefinition of time (ξ = 1).

8 To be precise, the lower expressions holds in the “decoupling limit” when
α, |λ − 1| 	 1. See [3] for the exact expression.
The scale (18) has been erroneously interpreted in [8] as the UV
cutoff of the theory where the perturbative description breaks
down. Actually, Λ is only the cutoff of the low-energy approximation.
In the model described above, the would-be strong coupling is ac-
tually not present if the higher-derivative operators (which change
the scaling dimensions of the interactions) enter into the game at
energies lower than (18) (see the related discussion in [2]). For
this to happen the energy scale of UV physics (15), which we col-
lectively denote by M∗ , must be smaller than Λ,9

M∗ �
√

αM P . (19)

Then, the power-counting analysis performed in the ADM frame
(see (6)) shows that under the new scaling the interactions are at
most marginal, meaning that there is no strong coupling at the
scale Λ. We conclude that the correct interpretation of the scale
(18) in the model at hand is that of the scale suppressing the
higher-derivative operators.

Let us illustrate our point by a simple toy model. Consider a
scalar theory with action

S = αM2
P

∫
d4x

{(
ϕ +

∑
n�2

anϕ
n
)[

−� + �3

M4∗

]
ϕ

}
, (20)

where the dimensionless coupling constants an are assumed to be
somewhat smaller than 1. This scalar theory shares all the relevant
properties with our actual gravity theory. At low momenta, |�| 	
M2∗ , the higher derivative terms can be neglected and one obtains
the following low-energy action

Slow E = −αM2
P

∫
d4x

{(
ϕ +

∑
n�2

anϕ
n
)

�ϕ

}
. (21)

Clearly, the invariance of the quadratic part of the action with
respect to the relativistic scaling transformations (17a) sets the
scaling dimension of ϕ to be 1. The action contains irrelevant in-
teractions under this scaling which naïvely become strong at the
scale

Λ = √
αM P . (22)

However, this is not the case provided M∗ < Λ. At momenta above
M∗ the quadratic action is dominated by the term with the highest
number of spatial derivatives,

S(2)

high E = αM2
P

∫
d4x

{
ϕ

[
−∂2

0 + �3

M4∗

]
ϕ

}
. (23)

This is invariant under anisotropic scaling transformations (6a)
with ϕ having scaling dimension zero. Consequently, all the in-
teractions in the full action (20) become marginal at high energies,
and the relative strength of the interaction terms with respect to
the free part is always small.

It is instructive to see explicitly how the terms with higher
derivatives prevent the theory from becoming strongly coupled in
the language of scattering amplitudes. A well-known manifesta-
tion of the breakdown of perturbation theory is the saturation of
unitarity bounds by tree-level amplitudes (see e.g. [10]). From the
low-energy form of the action (20) one would conclude that tree-
level unitarity is violated at the scale (22) and that perturbation

9 One may worry that the choice of M∗ (and Λ) parametrically below M P intro-
duces a fine-tuning in the model. Let us emphasize that this is not the case: having
M∗ well below M P is technically natural. From the point of view of the low-energy
theory, the reason is that the cutoff is set by M∗ , and not M P . Thus, neither M P

nor M∗ receive large corrections.
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theory is no longer valid at higher energies. As we shall now dis-
cuss, this conclusion would be incorrect. This is essentially due to
the peculiar kinematics of theories with anisotropic scaling, sum-
marized by the dispersion relation (13), which makes the unitarity
bound much milder at high energies as compared to the relativistic
case.

To be concrete, we consider the s-channel scattering of two ϕ
quanta with energy E0 in the center of mass frame (which we
assume to coincide with the preferred frame). The optical theorem
yields for the s-wave amplitude10 M(2 → 2),

2 Im M(2 → 2) =
∑

n

(
n∏

i=1

∫
d3 pi

(2π)3

1

2E (pi)

)∣∣M(2 → n)
∣∣2

(2π)4

× δ
(

2E0 −
∑

E (pi)
)
δ(3)

(∑
pi

)
, (24)

where the sum runs over all possible final states. Note that this
relation holds for arbitrary dispersion relation

E = E (p). (25)

Being a sum of positive numbers, the r.h.s. of (24) is larger than
any of the summands. In particular,

2 Im M(2 → 2) �
∫

d3 p

(2π)2

1

4E 2(p)

∣∣M(2 → 2)
∣∣2

× δ
(
2E0 − 2E (p)

)
. (26)

Performing the integrations and using Im M � |M| one obtains
the bound on the absolute value of the amplitude,

∣∣M(2 → 2)
∣∣ � 16π E ′(p0)

E2
0

p2
0

, (27)

where p0 is related to the energy E0 of the incoming particles
by the dispersion relation (25). This bound simplifies when the
dispersion relation is given by a power-law, E (p) = pz/Mz−1∗ ,

|M| � 16π z[E0/M∗]3(z−1)/z. (28)

For relativistic particles, z = 1, this takes the familiar form |M| �
16π . However, for the case of anisotropic scaling with z > 1 the
bound (28) is less restrictive and allows the power-law growth of
the amplitude with energy.

Let us check that in the model (20) the bound (27) is satis-
fied. The dispersion relation E (p) = p

√
1 + (p/M∗)4 interpolates

between z = 1 and z = 3 at low and high energies respectively.
The leading contribution to the tree-level amplitude comes from
the diagram

which is estimated as

M(2 → 2) ∼ E2
0

αM2
P

, (29)

where each vertex contributes a factor E2
0/

√
αM P and the propa-

gator 1/E2
0. At low energies, p 	 M∗ , the bound (27) reduces to

the condition

p2

αM2
P

� 1.

10 We stick to the ‘relativistic’ normalization of the 1-particle states |p〉 ≡√
2E (p)a†

p|0〉. This choice leads to conventional expressions for the amplitudes at
low energies where the relativistic dispersion relation is recovered.
Naïvely, this would imply the breakdown of tree-level unitarity at√
αM P . However, if

√
αM P � M∗ , the low-energy approximation

fails and the bound reads instead (for p � M∗)

M2∗ � αM2
P , (30)

which is indeed satisfied. Thus, we recover the same result that
was derived from the scaling analysis (Eq. (19)): there are no sig-
nals that perturbation theory is breaking down at the scale

√
αM P .

A few remarks are in order. The above arguments do not ex-
clude the possibility that some marginal coupling of the theory de-
velop a Landau pole when loop corrections are taken into account.
If this turns out to be the case, the theory will become strongly
coupled in the deep UV (thus spoiling the UV-completeness of the
proposal). Even in this case, though, this would happen at an ex-
ponentially high energy. For example, in the case of the toy model
(20) one can estimate this scale as

ΛLandau ∼ M∗ exp

[
1

β(an(M∗))γ

]
,

where β and γ are numerical coefficients of order 1. Certainly, the
presence or absence of Landau poles in the extended Hořava model
(3) is an important open issue requiring a detailed renormalization
group analysis of the theory.

Another basic issue concerning the consistency of the theory (3)
at the quantum level is to demonstrate the absence of anomalies in
the symmetry (2). We hope to return to these issues in the future.

3. Observational bounds on the UV scale

The weak coupling condition (19) does not allow to take the
parameters α, |λ − 1| to zero. As already emphasized in [3], this
implies that the model does not possess a GR limit in the IR, since
inevitably a gapless scalar polarization persists down to the low-
est energies. On the other hand, from the remarkable success of
GR in the description of low-energy gravitational physics, one ex-
pects the phenomenological constraints to put upper bounds on
the parameters α and |λ − 1|, and hence on M∗ . Thus the real
physical question is whether it is possible to comply with observa-
tions without lowering the scale Λ to an unacceptable level.

From the fact that the low-energy form of the action (12) cor-
responds to a special case of the Einstein-aether theory [9] one
expects that the phenomenology of the two models may be sim-
ilar. This expectation is supported by the results [3] for the weak
gravitational field of static sources (at rest in the preferred frame)
and for the expansion of the Universe. Similarly to the case of
Einstein-aether theory, static sources in the model (3) give rise to a
linear metric which has the same form as in GR with the Newton’s
constant11

G N = (
8π M2

P (1 − α/2)
)−1

. (31)

Importantly, this implies that the PPN parameter γ PPN has its GR
value, γ PPN = 1. The cosmological expansion in the model (3)
is governed by the standard Friedmann equation with the effec-
tive gravitational constant Gcosm = G N , which again coincides with
the situation in the Einstein-aether theory. The phenomenologi-
cal constraint |Gcosm/G N − 1| � 0.13 [11] sets a mild bound [3]:
α, |λ − 1| � 0.1.

11 The expression (31) is obtained under the assumption that matter couples uni-
versally to the metric gμν . A more general situation compatible with low-energy
Lorentz invariance in the matter sector is coupling it to the universal effective met-
ric geff

μν = gμν + βuμuν , where β is a dimensionless parameter. This modification
preserves the GR form of the weak gravitational field but changes the expression
for the Newton’s constant.
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Following the guide of the Einstein-aether, one expects the
most stringent constraints on the model (3) to come from the ob-
servational bound on the PPN parameter αPPN

2 which characterizes
the preferred frame effects due to Lorentz violation (see [12] for
the precise definition).12 The detailed study of the PPN corrections
in the model (3) will be reported elsewhere13 [14]; here we only
sketch the estimate for αPPN

2 . This parameterizes an angular depen-
dent contribution to the Newtonian potential produced by a source
moving with velocity v with respect to the preferred frame,

ΦN = − G Nm

r

(
1 + αPPN

2

2
v2 sin2 θ

)
,

where m is the mass of the source, and θ is the angle between the
radial vector and the velocity of the source with respect to the pre-
ferred frame, cos θ = r̂ · v̂. From the physical point of view, this con-
tribution is due to the interaction via the Lorentz-violating scalar
mode associated with the vector uμ in the action (12) (cf. discus-
sion in [15]). The result (31) for static gravitational field shows that
for α 	 1 the scalar-exchange amplitude is suppressed by α. Thus
we conclude that14

αPPN
2 ∼ α. (32)

The bound on αPPN
2 following from the observed alignment of the

rotation axis of the Sun with the ecliptic [12] gives

α, |λ − 1| � 4 × 10−7,

where we again assume α and |λ−1| to be comparable. This trans-
lates into the bound on the suppression scale for higher-derivative
operators

M∗ � 1015 GeV. (33)

To our knowledge, this is the strongest upper bound arising from
gravitational physics.

The lower bound on M∗ from purely gravitational physics is
very mild. Direct tests of Newton’s law at the distances ∼ 10 μm
imply [12]

M∗ � 0.1 eV. (34)

A stronger bound may be obtained under the additional assump-
tion that M∗ also sets the suppression scale for terms with higher
powers of momentum p in the dispersion relations of the mat-
ter fields, specifically, of photons. Timing of active galactic nuclei
[16] and gamma ray bursts [17] constrains the value of such terms.
Note that odd powers of p can be forbidden (at least, in electrody-
namics) by imposing parity. Then, the leading contribution to the
dispersion relation has the form p4/M2∗ which yields [16,17]

M∗ � 1010–1011 GeV. (35)

Let us stress that, unlike the upper bound (18), this lower bound
is model dependent: it relies on the assumption that the UV mod-
ification to the dispersion relation for photons appears at the same
scale as that for scalar graviton. This need not hold in some for-
mulations of the theory.

12 The constraint due to the absence of gravitational Cherenkov emission by high-
energy cosmic rays [13] is easily evaded by setting the velocity of the scalar graviton
(as well as that of the helicity-2 mode) larger or equal than the maximal velocity
of matter particles.
13 The details of the PPN calculations in the model (3) are different from the

Einstein-aether case due to the absence of the transverse vector mode.
14 An explicit computation [14] yields αPPN

2 = α(α−λ+1)/2(λ−1) = α(c−2
s −1)/2,

where cs is defined in (14). This coincides with (32) when cs is of order one.
It is worth emphasizing the difference between the situation
in the model (3) and that in Horava’s original proposal, both in
its projectable and non-projectable versions [2]. In both versions,
the strong coupling scale calculated within the low-energy effec-
tive theory is so low that the introduction of any new physics
at that scale is phenomenologically unacceptable. Indeed, as dis-
cussed in [6], in the non-projectable case the strong coupling scale
for the additional mode is inversely proportional to the curvature
radius of the background. It goes to zero for flat, cosmological and
static backgrounds, invalidating the proposal.

In the projectable case it was shown [3,7] that the scalar gravi-
ton mode is unstable at large wavelengths. The requirement that
the rate of the instability is smaller than the age of the Uni-
verse (in order not to spoil standard cosmology) gives the bound
|λ − 1|1/2 � H0/M∗ , where H0 is the present value of the Hub-
ble parameter and M∗ is the suppression scale of the higher-
derivative operators [3,7]. On the other hand, M∗ must be smaller
than the strong coupling scale of the low-energy theory, which
in this case is [7,14] |λ − 1|3/4M P . This gives the lower bound
M∗ � (H3

0 M2
P )1/5 � (100 m)−1. Comparing this with the experi-

mental bound (34), one concludes that the projectable case in the
weakly coupled regime is ruled out.

To sum up, we have shown that the claim [8] about the pres-
ence of strong coupling problem in the model (3) is unfounded.
The absence of strong coupling is actually a built-in feature of the
model. It suffices for the scale M∗ suppressing the higher deriva-
tive operators to be slightly lower than the naive strong coupling
scale calculated in the low-energy theory. The observational con-
straints on deviations of gravity from GR place an upper bound
M∗ � 1015 GeV. Under the additional (model dependent) assump-
tion that this scale is common for gravity and matter sectors one
obtains a lower bound M∗ � 1010–1011 GeV. Within this range, to
the best of our knowledge, the model is compatible with the ex-
isting data. Thus, so far, the model is a phenomenologically viable
candidate for a renormalizable quantum theory of gravity. Need-
less to say, whether the theory is truly renormalizable (anomaly
free) and UV complete remains an important open issue. Another
major question is the mechanism for the recovery of Lorentz in-
variance in the matter sector at low energies (see [18,19] for the
detailed discussion of the problem).
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[2] P. Hořava, Phys. Rev. D 79 (2009) 084008, arXiv:0901.3775 [hep-th].
[3] D. Blas, O. Pujolas, S. Sibiryakov, arXiv:0909.3525 [hep-th].
[4] C. Charmousis, G. Niz, A. Padilla, P.M. Saffin, JHEP 0908 (2009) 070, arXiv:

0905.2579 [hep-th].
[5] M. Li, Y. Pang, arXiv:0905.2751 [hep-th].
[6] D. Blas, O. Pujolas, S. Sibiryakov, JHEP 0910 (2009) 029, arXiv:0906.3046 [hep-

th].
[7] K. Koyama, F. Arroja, arXiv:0910.1998 [hep-th].
[8] A. Papazoglou, T.P. Sotiriou, arXiv:0911.1299 [hep-th].
[9] T. Jacobson, PoS QG-PH (2007) 020, arXiv:0801.1547 [gr-qc].

[10] J.M. Cornwall, D.N. Levin, G. Tiktopoulos, Phys. Rev. D 10 (1974) 1145;



D. Blas et al. / Physics Letters B 688 (2010) 350–355 355
J.M. Cornwall, D.N. Levin, G. Tiktopoulos, Phys. Rev. D 11 (1975) 972 (Erratum).
[11] S.M. Carroll, E.A. Lim, Phys. Rev. D 70 (2004) 123525, arXiv:hep-th/0407149.
[12] C.M. Will, Living Rev. Rel. 9 (2005) 3, arXiv:gr-qc/0510072.
[13] J.W. Elliott, G.D. Moore, H. Stoica, JHEP 0508 (2005) 066, arXiv:hep-ph/

0505211.
[14] D. Blas, O. Pujolas, S. Sibiryakov, in preparation.
[15] H.C. Cheng, M.A. Luty, S. Mukohyama, J. Thaler, JHEP 0605 (2006) 076, arXiv:

hep-th/0603010.
[16] J. Albert, et al., MAGIC Collaboration, Other Contributors Collaboration, Phys.
Lett. B 668 (2008) 253, arXiv:0708.2889 [astro-ph].

[17] Fermi GBM/LAT Collaborations, arXiv:0908.1832 [astro-ph.HE], see also http://
gammaray.nsstc.nasa.gov/gbm/grb/GRB090510/supporting_material.pdf.

[18] J. Collins, A. Perez, D. Sudarsky, L. Urrutia, H. Vucetich, Phys. Rev. Lett. 93
(2004) 191301, arXiv:gr-qc/0403053.

[19] R. Iengo, J.G. Russo, M. Serone, JHEP 0911 (2009) 020, arXiv:0906.3477 [hep-
th].

http://gammaray.nsstc.nasa.gov/gbm/grb/GRB090510/supporting_material.pdf
http://gammaray.nsstc.nasa.gov/gbm/grb/GRB090510/supporting_material.pdf

	Comment on "Strong coupling in extended Horava-Lifshitz gravity" [Phys. Lett. B 685 (2010) 197]
	Review of extended Horava gravity
	Would-be strong coupling and its resolution
	Observational bounds on the UV scale
	Acknowledgements
	References


