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A B S T R A C T

Unnatural glycolipids possessing the diyne moiety in their acyl groups were successfully biosynthesized in the
green sulfur photosynthetic bacterium Chlorobaculum (Cba.) tepidum by cultivation with supplementation of
10,12-heptadecadiynic acid. Monogalactosyldiacylglycerol (MGDG) and rhamnosylgalactosyldiacylglycerol
(RGDG) esterified with one 10,12-heptadecadiynic acid were primarily formed in the cells, and small amounts
of glycolipids esterified with the two unnatural fatty acids can also be detected. The relative ratio of these
unnatural glycolipids occupied in the total glycolipids was estimated to be 49% based on HPLC analysis using a
evaporative light scattering detector. These results indicate that the acyl groups in glycolipids, which play
important roles in the formation of extramembranous antenna complexes called chlorosomes, can be modified
in vivo by cultivation of green sulfur photosynthetic bacteria with exogenous synthetic fatty acids. Visible
absorption and circular dichroism spectra of Cba. tepidum containing the unnatural glycolipids demonstrated
the formation of chlorosomes, indicating that the unnatural glycolipids in this study did not interfere with the
biogenesis of chlorosomes.

1. Introduction

Photosynthetic light-harvesting complexes capture the sunlight
energy and transfer it to the reaction center complexes in the early
stage of photosynthetic events. In most light-harvesting complexes,
photosynthetic pigments such as chlorophylls (Chls), bacteriochloro-
phylls (BChls), and carotenoids are embedded in the protein matrix [1].
The only exception is extramembranous antenna complexes of green
photosynthetic bacteria called chlorosomes [2–5]. Chlorosomes are
ellipsoidal particles with the dimensions of approximately 100–150 nm
length, 30–50 nm width, and 10–25 nm height. The huge number of
BChls c, d, e, and f are densely packed and assembled with no help of
proteins in the interior of chlorosomes [6,7]. The BChl self-aggregates
are surrounded by a lipid layer on chlorosomes. The specific interac-
tions among chlorosomal BChl pigments, namely the coordination
bond of the 31-hydroxy group of one BChl with the central magnesium
in another BChl and the hydrogen bond of the coordinated 31-hydroxy
group with the 13-keto group in a third BChl, play crucial roles in the

pigment self-assemblies in chlorosomes [8,9]. Such unique architecture
has attracted considerable attentions in photobiology and photobio-
physics.

The major components of the envelop of chlorosomes are glycoli-
pids and membranous proteins called Csm proteins [3,5,10–13]. The
green sulfur photosynthetic bacterium Chlorobaculum (Cba.) tepidum
has two types of glycolipids, namely monogalactosyldiacylglycerol
(MGDG) and disaccharide-type rhamnosylgalactosyldiacylglycerol
(RGDG), both of which are attached with various acyl groups
(Fig. 1). In addition, Cba. tepidum possesses ten kinds of Csm proteins,
whose roles in chlorosomes have been studied by means of biochemical
and molecular genetic techniques [14–17]. In contrast to the extensive
researches on the Csm proteins, detailed contributions of glycolipids
for chlorosomes have not been unraveled yet. One possible reason for
little information of glycolipids in chlorosomes comes from difficulties
in separation and characterization of glycolipids from green photosyn-
thetic bacteria. Recently, Tamiaki and coworkers have performed
precise analysis of glycolipids in green photosynthetic bacteria to
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overcome these problems [18–22]. Another problem would originate
from difficulties in alteration of glycolipids in green photosynthetic
bacteria. There is little information, to our best knowledge, on the
genetic approach to glycolipids in green photosynthetic bacteria [23].
The methodology for in vivo modification of glycolipids in green
photosynthetic bacteria will be a clue to investigation of the supramo-
lecular structure and biogenesis of chlorosomes. In this study, we first
report modification of the acyl moieties in glycolipids of Cba. tepidum
using their biosynthetic reactions by supplementation of a commer-
cially available fatty acid 10,12-heptadecadiynic acid, which has a diyne
moiety in the middle of the hydrocarbon chain (the molecular structure
is shown in Fig. 2).

2. Experimental

2.1. Apparatus

Analysis of glycolipids by a HPLC system equipped with an
evaporative light scattering detector (ELSD) was performed with a
Shimadzu LC-20AT pump and an ELSD-LT II detector by the control of
column temperature with a Shimadzu CTO-20AC column oven. HPLC
analysis of BChl c was carried out with a Shimadzu LC-20AT pump and

an SPD-M20A detector. Liquid chromatography-mass spectrometry
(LC-MS) was done with a Shimadzu LCMS-2020 system equipped with
an electrospray ionization probe (ESI). Visible absorption and circular
dichroism (CD) spectra were measured with a Shimadzu UV-2450
spectrophotometer and a JASCO J-820 spectropolarimeter, respec-
tively.

2.2. Cultivation

Pre-cultured cells (1 mL) of the green sulfur photosynthetic bacter-
ium Cba. tepidum ATCC 49652 were inoculated into a freshly prepared
liquid medium (ca. 650 mL), in which 10 mg of 10,12-heptadecadiynic
acid (Tokyo Chemical Industry, Co., Ltd.) was supplemented. Then,
Cba. tepidum was grown in the liquid medium by continuous irradia-
tion with fluorescence lamps (13 μmol s−1 m−2) at 42 °C for 3 days
[24–26].

2.3. Extraction and analysis of glycolipids

Glycolipids were extracted from the harvested cells with a mixture
of 0.1 M acetic acid, methanol, and chloroform, and purified from the
crude extracts by silica-gel chromatography according to the previous
reports [18–22]. Glycolipids obtained were analyzed by ELSD-HPLC
using a reverse-phase column Cosmosil 5C18-AR-II (4.6 mm
i.d.×250 mm) with acetone/25 mM ammonium acetate (pH 6.7) (85/
15, vol/vol) at the flow rate of 0.5 mL min−1. Glycolipids were assigned
by LC-MS as well as the elution patterns reported previously [18–22].

2.4. Extraction and analysis of BChl c

BChl c was extracted from the harvested cells with methanol/
acetone (1/1, vol/vol), followed by filtration. The organic solutions
containing the extracted pigments were diluted with diethyl ether,
washed with NaCl-saturated water, and dried over anhydrous Na2SO4,
followed by evaporation. BChl c obtained was analyzed by HPLC using
a reverse-phase column Cosmosil 5C18-AR-II (6 mm i.d.×250 mm)
with methanol/water (95/5, vol/vol) at the flow rate of 1.0 mL min−1

[24–27].

3. Results and discussion

3.1. Compositions of glycolipids

Glycolipids were extracted from Cba. tepidum cells, which were
grown under the normal conditions and by supplementation of 10,12-
heptadecadiynic acid, and analyzed by ELSD-HPLC. Hereafter the
following abbreviations are used for naturally occurring fatty acids at
the main chain of glycolipids: palmitic (16:0), palmitoleic (16:1),
methylated palmitic (16:Me), and methylene-bridged palmitoleic
(17:cyc) acids. Fig. 3 shows typical elution patterns of glycolipids
extracted from Cba. tepidum grown under the normal conditions and
by supplementation of 10,12-heptadecadiynic acid. Cba. tepidum
grown under the normal conditions possessed six major glycolipids,
which eluted from 18 to 30 min under the present HPLC conditions
(fractions 1–6 in Fig. 3A). These natural glycolipids were analyzed by
LC-MS: the results of their online ESI-MS spectrometry are summar-
ized in Table 1. The present LC-MS analysis and the elution order in
the previous reports [18–22] allowed us to assign the naturally
occurring glycolipids (fractions 1–6) to be RGDG (16:1,16:0), MGDG
(16:1,16:0), RGDG (17:cyc,16:0), MGDG (17:cyc,16:0), MGDG
(16:0,16:0), and MGDG (16:Me,16:0), respectively.

Supplementation of 10,12-heptadecadiynic acid in the liquid med-
ium of Cba. tepidum produced novel glycolipids, which were observed
from 7 to 13 min in the ELSD-HPLC chromatogram (fractions 1′–6′ in
Fig. 3B). The molecular ion peaks of these novel glycolipids were
observed at m/z 906.6, 760.5, 912.6, 766.6, 900.7, and 754.6,
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Fig. 2. Molecular structure of 10,12-heptadecadiynic acid supplemented in the liquid
cultures of Cba. tepidum in this study.
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respectively, in the elution order by LC-MS analysis (Table 1). All the
values corresponded to the calculated values of ammonium adducts [M
+NH4]

+ of glycolipids possessing one or two 10,12-heptadecadiynoyl
moieties. In addition, the fragment ions that lacked the saccharide
moiety were detected as reported earlier [18–22], and these values
were almost the same as the calculated values of the protonated forms
[M1+H]+(Table 1). These results indicate that the exogenous 10,12-
heptadecadiynic acid was attached to glycolipids in Cba. tepidum in
place of natural fatty acids.

The relative ratio of the unnatural glycolipids esterified with 10,12-
heptadecadiynic acid over the total glycolipids in Cba. tepidum cells,

judged from the fraction area in the ELSD-HPLC chromatograms, was
estimated to be 49 ± 5.0% (the average and standard deviation of four
cultures). Surprisingly, approximately half amounts of the unnatural
glycolipids were in vivo synthesized via the biosynthetic pathway of
glycolipids in Cba. tepidum.

Generally, glycolipids are biosynthesized as follows: acyl groups are
attached to a glycerol 3-phosphate by two acyltransferases, namely
glycero-3-phosphate and monoacylglycerol-3-phosphate acyltrans-
ferases, followed by the removal of a phosphate and the subsequent
transfer of galactose to the resulting diacylglycerol [28–30]. The large
amounts of the unnatural glycolipids demonstrated here suggest loose
recognition of fatty acids in the enzymes participating in the biosynth-
esis of glycolipids in Cba. tepidum. The similar chain length of 10,12-
heptadecadiynic acid (17 carbon atoms) to major fatty acids possessing
16 and 17 carbon atoms in glycolipid in Cba. tepidum would result in
smooth recognition in the biosynthetic reactions of glycolipids and
accumulation in cells.

3.2. BChl c composition

BChl c homologs in Cba. tepidum cells grown by supplementation
of 10,12-heptadecadiynic acid as well as those grown under the normal
conditions were analyzed by reverse-phase HPLC (Fig. 4). Four BChl c
fractions were observed in these chromatograms. The fractions were
assigned as 8-ethyl-12-methyl, 8-ethyl-12-ethyl, 8-propyl-12-ethyl,
and 8-isobutyl-12-ethyl homologs of BChl c esterified with farnesol
(denoted as BChl cF) in the elution order [24–27]. The composition of
four BChl cF homologs in cells grown with 10,12-heptadecadiynic acid
was almost the same as that in cells grown under the normal
conditions. No other fraction exhibiting on-line absorption spectra
characteristic of BChl c (λmax=435 and 669 nm in this eluent) was
detected, indicating that no modification of the esterifying group in
BChl c occurred even if Cba. tepidum was grown with exogenous 10,12-
heptadecadiynic acid (Fig. 4B). Therefore, cultivation of Cba. tepidum
with 10,12-heptadecadiynic acid did not affect the biosynthesis of BChl
c in Cba. tepidum.

3.3. Spectral properties

Fig. 5 shows visible absorption spectra of Cba. tepidum cells grown
by supplementation of 10,12-heptadecadiynic acid and under the
normal conditions. Cba. tepidum cells grown in the normal culture
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Fig. 3. HPLC elution patterns of glycolipids in Cba. tepidum grown under the normal
conditions (A) and by supplementation of 10,12-heptadecadiynic acid (B). The glycoli-
pids were eluted on a reverse-phase column 5C18-AR-II (4.6 mm i.d.×250 mm) with
acetone/25 mM ammonium acetate (pH 6.7) (85/15, vol/vol) at a flow rate of
0.5 mL min−1. The chromatograms were normalized at the highest peaks in the
chromatograms.

Table 1
LC-MS results of natural (fractions 1–6 in Fig. 3A) and unnatural glycolipids (fractions
1′–6′ in Fig. 3B) in Cba. tepidum.

Fraction Glycolipids Observed ions (m/z) Calculated values for [M
+X]+

[M+NH4]
+ [M1+H]+ [M+NH4]

+ [M1+H]+

1′ RGDG (diyne,
diyne)

906.6 563.3 906.56 563.40

2′ MGDG (diyne,
diyne)

760.5 563.5 760.50 563.40

3′ RGDG (diyne,
17:cyc)

912.6 569.4 912.60 569.45

4′ MGDG (diyne,
17:cyc)

766.6 n.d. 766.55 569.45

5′ RGDG (diyne,
16:0)

900.7 557.5 900.60 557.45

6′ MGDG (diyne,
16:0)

754.6 557.6 754.55 557.45

1 RGDG (16:1,
16:0)

892.6 549.6 892.64 549.48

2 MGDG (16:1,
16:0)

746.6 549.6 746.58 549.48

3 RGDG (17:cyc,
16:0)

906.4 563.0 906.65 563.50

4 MGDG (17:cyc,
16:0)

760.6 563.6 760.59 563.50

5 MGDG (16:0,
16:0)

748.6 551.5 748.59 551.48

6 MGDG (16:Me,
16:0)

762.7 565.6 762.61 565.51
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Fig. 4. HPLC elution patterns of BChl c in Cba. tepidum grown under the normal
conditions (A) and by supplementation of 10,12-heptadecadiynic acid (B). The pigments
were eluted on a reverse-phase column 5C18-AR-II (6 mm i.d.×250 mm) with methanol/
water (95/5, vol/vol) at a flow rate of 1.0 mL min−1. The chromatograms were recorded
at 435 nm and normalized at the peaks of the fractions of [E,E]BChl cF.
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exhibited the Soret and Qy bands at 460 nm and 750 nm, respectively
(Fig. 5A). In a while, bacterial cells containing the unnatural glycolipids
esterified with 10,12-heptadecadiynic acid exhibited the Soret and Qy

absorption bands at 460 and 749 nm, respectively (Fig. 5B). The peak
positions and the spectral shapes of both the absorption bands, which
were characteristic of BChl c self-aggregates, in Cba. tepidum contain-
ing the unnatural glycolipids were analogous to those in cells grown in
the normal culture. It is worthy noting that no Qy absorption band of
BChl c monomers around 670 nm were detected in the absorption
spectrum of cells containing the unnatural glycolipids (Fig. 5B).

Fig. 6 shows CD spectra of cells grown with 10,12-heptadecadiynic
acid and under the normal conditions. Cba. tepidum grown under the
normal conditions exhibited a reverse S-shaped CD signal around the
Qy region accompanying a slight negative signal at the shorter
wavelength side as well as relatively less intense positive signals around
the Soret region (Fig. 6A). The intense CD signals were characteristic of
the ordered self-assembly of BChl c pigments inside chlorosomes [31–
33]. This CD spectrum in the Qy region is mainly interpreted as type I,
in which type II is mixed [31]. In contrast, the Qy CD signal of Cba.

tepidum grown with this fatty acid was S-shaped (Fig. 6B). This
spectrum is classified into type II [31]. The relative intensity of the
CD signal in the Soret region against the Qy region became smaller than
that of cells grown under the normal conditions. These indicate that the
attachment of the exogenous fatty acid to chlorosomal glycolipids do
not interfere with the formation of chlorosomes in this bacterium, but
some perturbation to mesoscopic structures of the BChl c self-
aggregates might occur by interactions of the farnesyl moieties in
BChl c with the acyl groups in glycolipids. These hydrophobic interac-
tions would play important roles in the biogenesis of chlorosomes, but
no information is so far available because of the spectral silence of both
the esterifying groups in chlorosomal BChl pigments and the acyl
groups in glycolipids. Therefore, the present methodology will be
helpful to introduce the probes in the unclear region in chlorosomes
by metabolic reactions of green photosynthetic bacteria for elucidation
of the unclear regions in chlorosomes. The changes in the Qy CD signals
observed here might originate from changes in chlorosome sizes by
substitution of the acyl groups in glycolipids, since the sizes of
chlorosomes are also responsible for their CD spectra [34–36]. The
effects of unnatural glycolipids on the sizes and shapes of chlorosomes
will be also useful information to understand the chlorosome biogen-
esis in green photosynthetic bacteria.

4. Conclusion

This study first demonstrates in vivo modification of the acyl group
in glycolipids in the green sulfur photosynthetic bacterium Cba.
tepidum grown by supplementation with the synthetic fatty acid
10,12-heptadecadiynic acid. Accumulation of large amounts of the
unnatural glycolipids in Cba. tepidum suggests loose recognition of
fatty acid substrates by enzymes that function in the biosynthetic
pathway of glycolipids in this bacterium. The diyne moiety in the
middle of the acyl group in glycolipid will be useful as probes in
vibrational spectroscopy and reactive groups for polymerization to
study the supramolecular structures and biogenesis of chlorosomes.
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