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The main objective of this study was to provide an improved method for safety appraisal in Ghana through the development and application of
suitable accident prediction models for unsignalised urban junctions.

A case study was designed comprising 91 junctions selected from the two most cosmopolitan cities in Ghana. A wide range of traffic and road
data together with the corresponding accident data for each junction for the three-year period 1996-1998 was utilized in the model development pro-
cess. Potential explanatory variables, which were tested were largely identified from initial analysis of the accident characteristics and associated
factors. Negative Binomial models of accident frequency were developed separately for T- and X-junctions.

The results showed that the best models based exclusively on traffic exposure functions (i.e. traffic flow) explained 50 per cent more of the
systematic variation in accidents at T-junctions than at X-junctions. In the extended models that included road geometric and other traffic variables it
emerged that the absence of street lighting and dedicated left-turning lanes and the average standard deviation of approach spot speeds of vehicles
on the major road were all positively correlated with accident frequency at both T- and X-junctions. Significantly and contrary to expectation, T-junc-
tions with YIELD control had a much lower accident potential than those with STOP control.

The accident prediction models developed have a potentially wide area of application and their systematic use is likely to improve consider-
ably the quality and delivery of the engineering aspects of accident mitigation and prevention in Ghana.
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1. INTRODUCTION

Road traffic accidents continue to be a major prob-
lem in Ghana, both from the public health and socio-eco-
nomic perspectives. In the ten-year period 1991-2000,
85,867 traffic accidents were recorded and these resulted
in 107,780 casualties of which 25,340 were fatalities1.
And yet these figures may be much higher if it were pos-
sible to account for shortfalls in reporting. The overall
annual cost of road traffic accidents to the national
economy has recently been estimated as US$70 million2.
Thus road accidents are as much a major threat to public
health in Ghana as they are an enormous drain on the na-
tional economy. Improving safety on Ghana’s roads is
therefore a pressing national concern that has already
found expression in the setting-up of the National Road
Safety Commission (NRSC). The Commission has been
tasked to initiate and oversee the implementation of a
more proactive and structured programme of accident re-
duction. The initial efforts in this direction have culmi-
nated in the National Road Safety Strategy and Action
Plan3 both of which underscore the need for data-led in-
terventions and innovative approaches to understanding
the occurrence mechanisms and determining factors of
road accidents and devising strategies to reduce the inci-
dence of accidents on all manner of roads.

It is in furtherance of this strategic approach that
this study was carried out with the express objective of
developing accident prediction models that can be used
in a proactive appraisal of accident potential and identi-
fication of accident-prone locations. In particular, it is also
expected that the establishment of such quantified rela-
tionships between accidents on the one hand, and traffic
flows and site characteristics on the other, would enable
priorities for improvements to be more realistically as-
sessed, thereby ensuring that more judicious use is made
of the usually limited budgetary allocation to road safety
activities. The focus of this study is unsignalised urban
junctions, which currently account for more than 60 per-
cent of all junction accidents in Ghana. In the long-term,
however, it is envisaged that prediction models would be
developed for all types of junction and link sections in
rural as well as urban locations.

2. REVIEW OF PREVIOUS WORK

Although the single event of an accident is almost
impossible to predict, due to its rare and random nature,
researchers have found that aggregation of a large num-
ber of accidents over a sufficiently wide area and/or long
period of time tends to exhibit a level of predictability
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that can be described by means of mathematical/statisti-
cal relationships4. Multivariate accident-prediction mod-
els represent a form of such relationships between
accident frequency and a set of determining factors. These
are empirically derived and vary in form, depending on
the explanatory variables used.

2.1 Functional form of models
The relationship between accidents and traffic flow

as a measure of exposure, in particular, has received con-
siderable attention over the years. Tanner5, for example,
is credited with one of the earliest of such studies on in-
tersections. He suggested that accident numbers were ap-
proximately proportional to the root of the product of the
two-way major road traffic volume and turning flows
from the minor road. Since then, numerous other forms
of relationship, at times conflicting, have been proposed.
For example, “the product of intersecting flow” model
proposed by Hakkert and Mahalel6 and the “product of
flows, each raised to a power less than one” by Leong7,
and Hauer et al8.

McGuigan9 also investigated the “root product
flow” after Tanner5 and “throughput” or “sum of inflows”
relationships and reported that preference for the former
over the latter was not universally justified. The “sum of
inflows” model form, however, has been associated with
some logical inconsistencies10. These relate to the poten-
tial to predict more than zero accidents between conflict-
ing streams of traffic even when one of the flows is zero
and also the possibility of predicting equal numbers of
accidents for a given value of total inflows, irrespective
of the distribution of flows between the major and mi-
nor arms of a junction. In reality, accident frequency will
depend on the relative balance of traffic flows between
the major and minor approaches. Clearly, the variety of
model forms mirrors the continuing confusion regarding
the most appropriate form of exposure index and the dif-
ferences may be rooted in the type, quality and manner
of analysis of the data utilized. This means that conduct-
ing exploratory analysis of the specific data could pro-
vide useful clues as to the best functional form to adopt
for new studies, a logical thing to do, considering that this
particular work is a pioneering effort involving a dataset
with potentially different attributes from those used in
previous studies.

Model forms, which rely solely on traffic flows for
predicting expected accidents are referred to as “coarse”
models. Whilst such models have the advantage of be-
ing simple in form, they are useful only as a rough guide
for identification of unusually hazardous locations, as

well as for the prediction of the effect of traffic flow
changes on accident occurrence. However, relationships
of this nature are more likely to be associative rather than
causal 11. For the purposes of this study, comprehensive
or causal accident prediction models are required, in or-
der to quantify the effect of not only individual treatments
but also the complete set of road characteristics, includ-
ing traffic flows, site features and detailed geometry and
traffic control variables. Therefore, flow-based models,
although useful in their own way are developed and pre-
sented here as intermediate models towards comprehen-
sive modelling.

Comprehensive prediction modelling of accidents
at unsignalised urban junctions, in particular, remains
largely unexplored and therefore, the results of the few
reported studies12,13 may be considered partly tentative
and ought to form the basis for further independent study.
For example, the approach of Summersgill et al11 and
many others in examining the effect of only speed lim-
its, as opposed to actual speed, on accident occurrence
could be improved because, in practice, speed limits are
not necessarily indicative of actual levels of speed ob-
served. In addition to addressing this particular issue, ef-
forts were also made under the current study to include
junctions with dual-carriageway arterial roads, few of
which have been covered by the reported studies.

2.2 Statistical methods
The key tool in the model development process is

multiple regression analysis, two types of which have
been used in the literature surveyed; classical techniques
and the generalised linear modelling approach. Classical
least-squares (ordinary) regression techniques were used
in developing the early accident predictive models9. How-
ever, recent research has shown that ordinary least-
squares regression has some statistical properties that are
undesirable for accident data analysis. These include the
intrinsic assumption of homoscedascity (i.e. equal vari-
ance of the error terms for all values of the predictor vari-
able) and the possibility of predicting accident frequency
with negative values. In reality, accident counts are spo-
radic, discrete and non-negative and their occurrence pat-
tern would be more akin to a Poisson process, like any
count data.

Incidentally, an attribute of the Poisson distribution,
namely that the mean of the predicted variable is equal
to its variance, does not usually hold when a substantial
proportion of a database comprises zero accident counts,
as is often the case in accident prediction modelling. With
over-dispersed data (i.e. when the mean is less than the
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variance), Miaou and Lum14 observe that the Poisson
model tends to produce inaccurate estimates. As a solu-
tion to this problem, the authors recommended the adop-
tion of the Negative Binomial distribution, a more general
probability distribution, which relaxes the constraints on
the mean and variance. In other, more recent studies10,12,
the technique of “generalised linear models”, using the
software package GLIM15 has facilitated the use of more
generalised probability distributions like the Negative
Binomial. The GLIM approach is preferable because,
among other things, it allows the representation of acci-
dent counts as coming from the family of exponential dis-
tributions, from which one can be chosen to correspond
to the data used and it yields maximum likelihood esti-
mates of parameters, i.e. values of parameters that are
most likely to have given rise to the accident data.

It is significant to note that most of the reported
studies on accident prediction modeling have been car-
ried out using data from industrialized countries, where
vehicle-ownership levels are relatively high and road and
traffic conditions vary significantly in many respects from
that in a typical developing country. Therefore, it will be
reasonable to anticipate that the significant explanatory
variables and the size and direction of their influence are
likely to be different in either case. This would under-
score the need for the development of relevant “home
grown” models for a country such as Ghana. It would ap-
pear that little or no work in this direction has been car-
ried out in developing countries because road safety
science in these countries remains largely rudimentary;
little systematic attention is paid to road safety whilst ac-
cident databases are often not comprehensive and cred-
ible enough to meet the standard required for prediction
modeling. These constraints are considerably diminished
in the case of Ghana where sustained efforts over the last
15 years have led to the creation of a highly improved
database and opened up possibilities for rigorous scien-
tific safety analysis.

3. METHODOLOGY

3.1 Data collection
A judiciously selected sample of junctions, strati-

fied mainly by traffic flow and junction features, was cho-
sen to ensure that as wide a range of flows and junction
features as possible would be captured. A purely random
(and unstratified) sample of the same size, arguably,
would not have guaranteed the inclusion of some key

variables likely to have a significant impact on accidents.
An initial list of 130 sites selected from desk studies were
all visited in follow-up reconnaissance surveys during
which some were discarded. Sites were dropped mostly
because they were thought to have undergone some
changes in features that could have affected their safety
status during the study period 1996 to 1998 inclusive.

Other considerations were dictated by the need to
have a critical mass of “typical” junctions for analysis.
The final list of junctions numbered 91, comprising 57
T-junctions and 34 X-junctions. Three basic types of T-
junction were captured; namely, two-way single-carriage-
way minor road without chanellisation / two-way
single-carriageway major road (See Photo T-1), two-way
single-carriageway minor road with channelisation / two-
way single-carriageway major road (See Photo T-2) and

Photo T-1 2-way single carriageway major/minor

Photo T-2 2-way single carriageway major/minor,
island on minor road
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two-way single-carriageway minor road without channel-
isation / dual-carriageway major road (See Photo T-3).
X-junctions on the other hand were of two basic types;
two-way single-carriageway minor road without chan-
nelisation / two-way single-carriageway major road (See
Photo X-1) and two-way single-carriageway minor road
without channelisation / dual-carriageway major road (see
Photo X-2). For each junction detailed information re-
garding accidents, traffic flow and geometric and traffic
control features, among others was gathered, these are
briefly described below.

3.1.1 Accident data
Accident data covering the period 1996-1998 inclu-

sive for the selected junctions were retrieved from the
national accident database at the Building and Road Re-
search Institute. The database is painstakingly compiled
from police files using a standard accident report form,
which contains information on about 90 variables relat-
ing to the time, place, circumstances, the parties involved,
etc. of the accident. Accident types covered include
property-damage as well as person-involved collisions.
Inevitably, the database is subject to some measure of un-
der-reporting but since no extensive studies have been
carried out to estimate the scale, it will be difficult to ac-
count for it in any systematic manner in the current study.
Nonetheless, the data is quite comprehensive and oper-
ates on the Micro-computer Accident Analysis Package
(MAAP5)16 with immense possibilities for data ma-
nipulation and analysis. The very concise location cod-
ing system of the database using a combination of grid-
referencing (X.Y. co-ordinates), a link-node system and
strip maps makes it easy to accurately isolate and ana-
lyze data specific to any particular location on the road
network. A total of 354 and 238 accidents respectively
were recorded for all T- and X-junctions respectively. Thus
the average number of accidents per junction was 6.2 and
7.0 in that order. Pedestrian accidents per junction av-
eraged 40 per cent more at X-junctions than at T-junc-
tions. Table 1 shows the overall frequency distribution
of junctions by the number accidents recorded in the
three-year period 1996-1998.

3.1.2 Traffic flow data
Traffic flow data collected included vehicle counts

classified by type of vehicle and turning movement,
counts of pedestrians crossing all arms of the junctions
and spot speeds of vehicles as they approached the junc-
tion area along the major arms. Vehicles were broadly
classified into three categories, namely, cars, minibuses

Photo T-3  2-way single carriageway minor, dual-
carriageway major

Photo X-1 2-way single carriageway major/minor

Photo X-2 2-way single carriageway minor, dual-
carriageway major
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(“trotro”) and Heavy Goods Vehicles and Buses. Traffic
counts were carried out during the morning and evening
peak periods from 0700 to 0900 hrs and from 1700 to
1900 hrs, respectively. The counts were subsequently
converted into Average Annual Daily Traffic (AADT)
using existing conversion factors. Pedestrian counts were
also carried out concurrently as vehicle counts. No at-
tempt was made to adjust pedestrian traffic for time trends
due to the unavailability of the appropriate conversion
factors.

Figure 1 shows the distribution of junctions by traf-
fic flow (AADT) groups. Vehicle approach spot speeds
were measured using a hand-held radar speed gun. Speeds
were measured of vehicles selected at random until a to-
tal of 40 vehicles were covered for each arm. Signifi-
cantly, a large proportion (56%) of speeds recorded at
T-junctions were above the posted maximum limit of
50km/h. The corresponding figure for X-junctions was 40
percent.

3.1.3 Site and geometric data
Junction inventories were carried out to collect in-

formation relating to the site details. The information col-
lected included junction layout, type of major and minor
roads (i.e. whether single or dual-carriageway), numbers,
type and widths of lanes, types of median or other island,
if any, and dimensions. Other features were types of con-

Table 1 Frequency distribution of junctions by number of accidents recorded

All accidents recorded T-junctions X-junctions
for the period 1996-1998
 inclusive Number of sites Proportion of all sites Number of sites Proportion of all sites

recording the given (%) recording the given (%)
number of accidents number of accidents

0 10 17.6 5 14.7

1 1 1.7 3 8.8

2 2 3.5 0 0

3 5 8.8 3 8.8

4 4 7.0 4 11.8

5 12 21.0 5 14.7

6 3 5.3 0 0

7 5 8.8 4 11.8

8 5 8.8 1 3.0

9 2 3.5 1 3.0

10 1 1.7 0 0

11 1 1.7 1 3.0

12 0 0 2 5.9

13 1 1.7 0 0

14 0 0 1 3.0

15 1 1.7 3 8.8

16 1 1.7 0 0

18 1 1.7 0 0

29 0 0 1 3.0

32 2 3.5 0 0

TOTAL 57 100.0 34 100.0
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trol, including road markings, street lighting and status
of pedestrian crossing facilities. Due to the absence of as-
built drawings for nearly all the sites, it was not possible
to measure the radius of curvature of the entry kerb lines,
which is considered important for junction safety. The
width of the minor roads at the neck of the junctions was
measured and used as a proxy for the latter.  The site geo-
metric and other traffic variables that were of some sig-
nificance in the modeling process are shown in Table 2.

3.2 Model development

3.2.1 Regression analysis
The objective of modeling was to relate the aver-

age 3-year accident frequency at the junctions to the best
set of explanatory variables. A multiple regression ap-
proach was therefore adopted within the framework of
Generalised Linear Models (GLMs). The main advantage
in doing this is that the theory of GLMs allows the varia-
tion in the dependent variable to be separated into the sys-
tematic and random parts15. As a consequence, it is
possible to make structural and distributional assump-
tions, which describe these two types of variations respec-
tively12. The structural assumption indicates that the

expected value of the response variable can be related
through a “link function” to a set of explanatory variables
and their coefficients. On the other hand, random varia-
tion is described by a “random error term” associated with
the model, which reflects the distributional properties of
the response variable. The ordinary linear model tackles
both the distributional and structural assumptions together
and assumes the response variable to be Normally-dis-
tributed, quantitative and continuous and capable of tak-
ing any values. These run counter to the basic properties
of accident counts, which are discrete, non-negative and
generally governed by a non-stationary Poisson process17.
Following the lead established from the review of previ-
ous work the general form of the models developed un-
der this study was:

E(µi) = kQα exp (∑βjXij) ........................................... (1)

where E(µi) is the expected number of accidents
(in 3 years) at the i-th junction,
Q – a general traffic flow function,
k, βj, and α – the model parameters or regression

coefficients to be estimated (βj rep-
resents the regression coefficient
corresponding to the j-th explanatory

Table 2 Other traffic and road variables and factors for both T- and X-junctions

A. CATEGORICAL FACTORS

Symbol Description Levels Number of sites with given features

T-junctions X-junction

ZEX Zebra crossing 1 = present 17 12
2 = absent 40 22

ILM Island on minor road, entry/exit divided on 1 = present 13 0
either side 2 = absent 44 34

ITM Triangular island on minor, two-way entry/exit 1 = present 7 0
on either side 2 = absent 50 34

STL Street lighting 1 = present 27 15
2 = absent 30 19

LFT Left-turning storage lane on major 1 = present 8 9
2 = absent 49 25

TCON Traffic control on minor 1 = stop 27 29
2 = yield 22 4
3 = none 8 1

MED Median on major road 1 = present 17 20
2 = absent 40 14

LANE Number of lanes on major in each direction 1 = one 28 14
2 = two 29 20

B. NON-CATEGORICAL VARIABLES

SSD Average standard deviation of vehicles approach spot speeds (km/h)

JNEC Average width of minor road at neck of junction (m)

MEDW Average width of median on major arms (m)
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variable other than traffic flow),
Xij – the j-th explanatory variable other

than traffic flow for the i-th junction
(i = 1, n; n being the total number of
junctions in the modeling database).

In accordance with the GLM framework Equation
(1) is transformed into the prediction mode using a log-
link function as follows:

ln(E(µi)) = log(k)+ α logQ + (∑βjXij) ........................ (2)

where, all parameters are as defined in Equation (1)
above

By specifying the dependent variable, the model
form, error distribution (in this case Poisson or Negative
Binomial), the potential explanatory variables and the link
function, the model is fitted, as the coefficients (model
parameters) of the specified variables are estimated us-
ing the method of maximum likelihood.

3.2.2 Modelling procedure
To identify the best fitting models, different flow

functions were initially tested, individually and in diverse
combinations on the basis of a Poisson error structure.
By this initial approach, it was possible to determine
whether the fitted models were over-dispersed or not, fol-
lowing an assessment of the scaled deviance (SD) rela-
tive to the degrees of freedom (DF). Over-dispersion was
considered indicated if the SD was at least 1.5 times the
DF i.e. SD>>DF . As expected, in most cases, the mod-
els were over-dispersed relative to the Poisson error struc-
ture and so the next logical step was to specify a Negative
Binomial error structure and refit. At this stage, the over-
dispersion parameter (κ) was estimated automatically by
maximum likelihood, using the GLIM macro NEGBIN.
The model parameters were then assessed for their sta-
tistical significance and contribution to the reduction in
deviance. Following a successful outcome of these assess-
ments, parameters were accepted and the model’s good-
ness-of-fit statistics calculated. This whole process
resulted in the selection of the best 2 or 3 alternative flow-
based models (i.e. models in which only the traffic flow
function is the explanatory variable).

At the next level of modelling, the best flow-based
models were each extended and tested, in turn, with the
simultaneous addition of all other road and traffic vari-
ables. Starting with an initial value of the over-dispersion
parameter equal to the one estimated during the first stage

for the given flow-based model, the comprehensive model
was fitted and the individual parameters assessed for their
significance and contribution to the reduction in deviance.
Insignificant parameters were excluded one by one, start-
ing with the most insignificant and the remaining vari-
ables refitted and reassessed until only the significant
variables were left in the model. Subsequently, the final
value of the over-dispersion parameter (κ) was estimated
iteratively. Starting with the residuals produced by the
initial fit, a new value of κ was estimated and the model
refitted and the process was repeated until satisfactory
closure8,10. From this point, the model’s goodness-of-fit
statistics were calculated and the model was then added
to the list of alternative models.

3.2.3 Model evaluation
Three types of objective assessments were always

made as part of the process of selecting the most appro-
priate and best fitting models. These were tests of sig-
nificance of individual parameters, contribution of the
individual parameters to the reduction in deviance and the
overall goodness-of-fit of the models. These assessments
constituted the key basis for the acceptance or rejection
of models. The specific objective criteria used are dis-
cussed below.

3.2.3.1 Assessment of individual model parameters
Individual model parameters were generally as-

sessed at two levels. The first test was to ensure that the
estimated parameter coefficients were statistically signifi-
cant. Thus, the ratio of the estimated coefficient to its
standard error was required to pass the t-test at the 5 per
cent level of significance. The other aspect was to exam-
ine whether a parameter’s contribution to the reduction
in deviance was significant. In other words, this was to
assess whether the addition of the said parameter to the
model increased the explanatory power of the model sig-
nificantly. According to Summersgill et al11, the differ-
ence in scaled deviance between two nested models with
degrees of freedom df1 and df2 will be distributed like χ2

with (df1 - df2) degrees freedom and can be used to as-
sess the significance of adding one or more terms to a
model. This procedure was applied and, at the required
level of significance (5 per cent), the drop in deviance
following the addition of one parameter should have been
at least 3.84 (χ2 with 1.0d.f.).

3.2.3.2 Explanatory power of the models
To describe how well the developed models fitted

the data overall, two global goodness-of-fit measures
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were used. These measures were part of an extensive list
developed by Fridstrom et al4 for generalised Poisson re-
gression models, which give a measure of the percent-
age of systematic (explicable) variation in the response
variable that is explained by the models. The measures,
the log-likelihood ratio index (ρ2) and the “Freeman-
Tukey R2” (based on the Freeman-Tukey transformation
residuals), were applied in a similar way to the coeffi-
cient of determination (R2), as used in ordinary least-
squares regression.

(a) Log-likelihood Ratio Index (ρρρρρ2)
This parameter is given by the expression:

ρ2 = 1 – [LL(β) / LL(0)] .............................................. (3)

where LL(β) is the log-likelihood value of the fit-
ted model and LL(0) the corresponding value for
the model in which only the constant term is used.

Both LL(β) and LL(0) are the result of the logarith-
mic transformation of the likelihood function of the Nega-
tive Binomial models, which is maximised to obtain the
coefficient estimates for parameters in the models15. The
value 2[LL(β) - LL(0)] is equivalent to the deviance value
discussed in the previous section. By definition, therefore,
ρ2 represents the additional variation in accident fre-
quency explained by the given model relative to the
model with the constant term alone (the “null model”).

(b) The “Freeman-Tukey R2” (R2
FT)

Using the Freeman-Tukey variance stabilising trans-
formation (fi ) and the mean of its normal distribution
function (φi) for a Poisson variable yi with mean λi,
Fridstrom et al7 provide the following expression in
which the deviates (ei = fi –φi) can be estimated from the
corresponding residuals:

ê =  yi +  yi + 1 –  4ŷi + 1√ √ √ .......................................... (4)

where, yi is the observed value of the dependent
variable (in this case, the 3-year accident frequency)
at the i-th junction; the corresponding predicted
value being ŷ

Subsequently, the R2
FT (Freeman-Tukey goodness-

of-fit) measure is expressed as:

R2
FT = 

∑i ( fi – f )2 – ∑i êi 
2 

∑i ( fi – f )2 – n
............................................ (5)

where, ei is the deviate computed for the i-th junc-
tion and n - the total number of junctions. Other pa-
rameters are as described above.

Equation (5) is the result of dividing the ordinary
R2 goodness-of-fit measure for the transformed variables
by the maximally obtainable fit in a perfect Poisson
model. Thus, the ratio provides a measure of the propor-
tion of the systematic variation in accident frequency that
is explained by the fitted model. Although this is one of
many well-established measures of the global goodness-
of-fit of accident prediction models, it is useful to bear
in mind that the derivation is founded on the key prop-
erty of the Poisson distribution, which equates the vari-
ance to the mean. This means that the amount of expected
random variation in the response variable is treated as
though it was constant. This is important because the
scope of random variation is variable and, according to
Mountain et al17, is larger when the expected accidents
are smaller.

4. MODEL RESULTS AND INTERPRETATION

The models were developed separately for X- and
T-junctions. Such grouping of the junctions was to en-
sure that the models would capture more accurately the
apparent differences in accident patterns and risks asso-
ciated with different layout designs. Also, because dif-
ferent exposure functions and variables were usually
involved, it was not always possible to identify one single
“best fit” model. Therefore, as much as possible, a num-
ber of alternative “best models” were selected and are pre-
sented to enable comparison.

4.1 X-junction models
A total of 238 accidents were recorded for all the

34 X-junction sites included in the database for the study
period 1996 to 1998 inclusive. The average number of
accidents per junction was therefore 7.0. The best fitting
models identified for X-junctions are presented in their
linear form in Table 3.

For the coarse (flow-based) models it was ob-
served that most traffic flow functions tested produced
reasonably good statistical fit to the data. However, as
evident from Table 3, flow-functions involving interact-
ing traffic streams like the sum of crossing flow prod-
ucts (CFPD) and encounter flow products (ENCP)
appeared to fit the data a good deal better than the rela-
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tively simple ones like total inflow (TINF) or major road
flow (MAJF) and minor road flow (MINF). Crossing
flow products (CFPD), is obtained by summing up all
products (multiplication) of each pair of traffic flows
(expressed as AADT), whose normal paths through the
junction cross each other. Encounter flows on the other
hand, include crossing as well as diverging and merg-
ing flows. Total inflow produced a considerably better
fit only when specified alongside a flow-function re-

flecting the proportion of minor road traffic inflow.
Thus the three best fitting flow-based models (see sec-
tion 2 of Table 3) in their exponential form were:

A = 1.59x10-3 TINF 0.965 MRSH 0.669 ......................... (6)

A = 1.16x10-3 CFPD 0.496 ........................................... (7)

A = 1.92x10-3 ENCP 0.465 ........................................... (8)

Table 3  Accident prediction models for X-junctions (Total number of accidents=238; number of sites=34)

Model Description Model Terms* Estimated Standard t-statistic Freeman- Log-Likelihood
Coefficient Error of Tukey R2  ratio (ρ2)

Estimate

1. Null model Lk 1.946 0.179 10.872 LL(0) =

Dispersion parameter κ 1.054 0.310 3.400 -204.9**

2. Flow-based models

(a) Lk -6.444 2.834 -2.274 0.27 0.050
LTINF 0.965 0.308 3.133
LMRSH 0.669 0.262 2.553

Dispersion parameter κ 1.595 0.536 2.976

(b) Lk -6.758 2.695 -2.508 0.24 0.043
LCFPD 0.496 0.155 3.200

Dispersion parameter κ 1.518 0.503 3.018

(c) Lk -6.257 2.660 -2.352 0.21 0.040
LENCP 0.465 0.152 3.059

Dispersion parameter κ 1.472 0.483 3.048

3.  Full Models

(a) Lk -5.988 2.529 -2.368 0.89 0.198
LTINF 0.453 0.293 1.546
LMRSH 0.949 0.319 2.975
LFT(2) 1.319 0.428 3.082
MEDW 0.335 0.174 1.925
HGV 0.185 0.076 2.434
JNEC 0.134 0.039 3.436

Dispersion parameter κ 3.595 —

(b) Lk -9.419 2.230 -4.224 0.91 0.223
LCFPD 0.370 0.132 2.803
STL(2) 0.580 0.239 2.427
LFT(2) 0.661 0.286 2.311
HGV 0.190 0.071 2.676
JNEC 0.134 0.036 3.722
SSD 0.100 0.042 2.381

Dispersion parameter κ 4.650 —

(c) Lk -9.111 2.277 -4.001 0.89 0.215
LENCP 0.349 0.134 2.604
STL(2) 0.640 0.246 2.602
HGV 0.183 0.073 2.507
JNEC 0.135 0.038 3.553
SSD 0.100 0.043 2.326
LFT(2) 0.666 0.295 2.258

Dispersion parameter κ 4.250 —

* The prefix "L" indicates that the parameters are still in their logarithmic forms, e.g. LTINF = Log (TINF).
** LL(0) - Log-likelihood value for null model
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where A is the 3-year accident frequency,
TINF – total 24-hour traffic inflow to junction,
CFPD – crossing flow products (i.e. sum of the

products of all crossing flows),
ENCP – encounter flow products (sum of the

products of all encounter flows), and
MRSH – minor road’s share of total junction traf-

fic (i.e. MINF/TINF)

Although these are “all accidents” models (i.e. for
estimating total junction accidents), it was interesting to
observe that the pedestrian flow function (PEDF), a key
exposure variable for pedestrian accidents, was not found
to be significant. This probably had to do, in part, with
the rather rough estimates of pedestrian flows used (only
peak hourly counts of pedestrians) as well as the fact that
pedestrian accidents comprised only 1 in 5 of all acci-
dents at X-junctions. Nonetheless, it was assumed that
pedestrian accidents within the model estimate would be
accounted for by the relevant or associated vehicular traf-
fic as there cannot be a pedestrian accident unless it was
a collision with a vehicle.

Since most variables with potentially significant
impact on accidents are not included in the flow-based
models, such models may only be regarded as relatively
coarse and rough estimators of accident frequency. That
the selected models explained between 20-30 per cent of
the systematic variation in accident frequency underscores
the importance of traffic flow as a major determinant of
accidents. It is evident from all the models that accident
frequency generally increases at a decreasing rate with
traffic flow. In the model represented by Equation 6 ac-
cident frequency was almost proportional to total junc-
tion vehicle inflow (the exponent for this parameter was
close to 1.0) at the same time as it followed the general
trend with respect to the minor road’s share of traffic. In
order to determine causal models, as we set out to do un-
der this study, an extensive list of other traffic variables
and factors describing the junction environment and ge-
ometry had to be tested simultaneously with the best
flow-based models.

The three alternative full (comprehensive) models
obtained out of this process are also presented in their lin-
ear form in Table 3. There is, apparently, not much to
choose between these three models. All of them consis-
tently produced very good t-statistics for individual pa-
rameters, at the same time as explaining about 90 per cent
of the systematic variation in accident frequency. On ac-
count of the explanatory power and fewer degrees of free-
dom utilized, model 3b (see Table 3) was the most

preferred. In the exponential form, this model is:

A = 8.12x10-5 CFPD 0.370 e(0.580STL(2)+0.661LFT(2)+0.190HGV+0.134JNEC+0.100SSD)

........................................................................... (9)
where A is the 3-year accident frequency at X-junc-
tions and the parameters as defined in Table 2.

Apart from the traffic flow function, all the other
variables, which appeared in this model, were consistently
significant in most of the models explored for estimat-
ing total accidents at X-junctions. These variables were,
left turn lane on the major road (LFT), proportion of
heavy goods vehicles and buses as a percentage of total
traffic inflow (HGV) and the standard deviation of aver-
age spot speeds on the major approaches (SSD). The oth-
ers were streetlights (STL) and the average width of the
minor road at the neck of the junction (JNEC). Given
their stability and consistency, these variables could be
considered as representing causal rather than associative
effects.

The preferred model (Equation 9) showed that,
when the impact of the other variables was considered,
the absence of dedicated left-turn lanes on the major road
(LFT(2)) increased accident frequency by a factor of 1.94,
whilst the absence of street lights (STL(2)) resulted in an
increase of 1.79 times. Not surprisingly, the full models
had a much better fit to the data than the flow-based mod-
els. By fitting the extra variables, the explanatory power
of the models increased from between 20 and 30 per cent
to about 90 percent.

Although the log-likelihood ratio values for the
models appeared low, they nonetheless compare rather
favorably with what has been widely reported in the lit-
erature.  It is also useful to remember that the log-likeli-
hood ratio statistic measures the extra amount of variation
in accident frequency explained by the given model, rela-
tive to the model with only the constant term. The devi-
ance measure, proportion of systematic variation explained
and the log-likelihood ratio statistics, as used above, are
important tools that helped to identify generally good
quality models that represented the key features of the
overall data using as few parameters as possible. Impor-
tant as they were, these indicators reflected only the glo-
bal (overall) fit of the models and might not necessarily
have reflected a good local fit to all individual data points
as well. It was necessary therefore, to test how well the
model fitted the individual data points. This could have
been done by plotting a graph of predicted values against
observed and these values should generally be similar and
follow the line of equality. However, such straightforward
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comparison can be misleading since the values of the raw
residuals (differences between predicted and observed
values) could merely be a reflection of the size of the
original observation, thus large residuals could emerge
solely because the original observed values were large.

A more reliable approach involves standardization
of the residuals under a common scale and plotting them
against their Normal ordered statistics with a mean of 0
and standard deviation of 1. In this case residuals (stan-
dardized) lying outside plus or minus 2 (95 percent con-
fidence interval) could be considered poor fits and coming
from a potential outlier18. Such a plot is provided by the
“Normal Q-Q” plot of the GLIM Macro Library and is
presented in Figure 2 for the chosen X-junction full
model. The plot amply demonstrates that the selected
model equally well fitted all individual data points as all
of them lie within the 95 percent confidence interval of
the Normal order statistics. The other important piece of
information from the plot is that the generalized Poisson
assumption used in the modeling process was very ap-
propriate. This is supported by the Filliben correlation
coefficient of 0.95, evidence of a straight-line relation-
ship between the Normal ordered statistics and the trans-
formed residuals.
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Fig.2 Normal Q-Q plot for X-junction full model to
demonstrate the fit to individual data points

4.2 T-junctions models
354 accidents were recorded at all the 57 T-junc-

tion sites in the database for the period 1996-1998 inclu-
sive. This translated into an average 3-year accident
frequency per junction of 6.21. Similar procedures for
model development as used for X-junctions were applied
for selecting the best accident models for T-junctions and
as was the case with the “all accident” models for X-junc-
tions, most of the large variety of vehicle flow functions
tested for T-junctions yielded statistically significant fits

to the data. The pedestrian flow function (PEDF) was
again not significant when combined in the appropriate
form with the vehicle flow functions. The selected mod-
els are presented in their linear form in Table 4 and dis-
cussed below.

The flow-based models were:

A = 5.09x10-4 XPDF 0.552 ......................................... (10)

A = 6.37x10-4 MAJF 0.501 MINF 0.583 ....................... (11)

A = 7.99x10-4 TINF 1.032 MRSH 0.505 ........................ (12)

where A is the expected 3-year accident frequency
at T-junctions,
XPDF – cross product of flows (i.e. product of the

major (MAJF) and minor (MINF) road
daily in flows),

TINF – the total 24-hour traffic inflow to the
junction), and

MRSH – the minor road’s share of total junction
traffic

These models mean that the expected total accident
frequency at T-junctions increased approximately as a
function of the square root of the vehicle exposure func-
tions XPDF, MAJF, MINF and MRSH. The exception
was total junction traffic inflow (TINF), to which the ex-
pected accident frequency was almost directly propor-
tional. The exponent value for the latter variable, as in
Equation (model) 12, does not differ substantially from 1.0.

Of the three alternative models, the one based on
the cross product of flows function (Equation 10) was the
most preferred, because it used one less degree of freedom
than the others and still managed to produce one of the
highest proportion of systematic variation explained (i.e.
37 per cent). The model’s log-likelihood ratio statistic was
also relatively high. The alternative full models involv-
ing extensions of the flow-based models shared similar
characteristics as the core flow-based models. Thus, based
on similar considerations as before, the full model built
on the cross product of flows exposure function (XPDF),
emerged as the preferred one. This model was:

A = 1.01x10-3 XPDF 0.514 e(0.0694SSD-0.465TCON(2)-0.952TCON(3)-0.151MEDW)

......................................................................... (13)

where A is the expected 3-year frequency of acci-
dents at T-junctions,
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TCON(2) – parameter representing traffic control
level 2 (i.e.YIELD) on the minor road,

TCON(3) – level 3 of traffic control on the minor
road (i.e. no control),

MEDW – average width of the median on the
major road and

SSD – average standard deviation of vehicle
spot speeds on the major approaches.

The Normal Q-Q plot for this model as shown in

Figure 3 also demonstrates that apart from meeting the
global goodness of fit measures, the model also fitted the
individual data points very well. It is significant to ob-
serve that two of the three additional variables included
in the model, i.e. traffic control on the minor road and
the average width of the median on the major, had nega-
tive signs to their parameter estimates. This means that
the said parameters were negatively correlated to the ex-
pected accident frequency at T-junctions, in which case
the presence of the stated traffic control type and increas-

Table 4  Accident prediction models for T-junctions (Total number of accidents = 354; number of sites = 57)

Model Description Model Terms* Estimated Standard t-statistic Freeman- Log-Likelihood
Coefficient Error of Tukey R2  ratio (ρ2)

Estimate

1. Null model Lk 1.826 0.131 13.918 — LL(0) =

Dispersion parameter κ 1.218 0.298 4.089 -330.3**

2. Flow-based models

(a) Lk -7.583 1.837 -4.128 0.37 0.063
LXPDF 0.552 0.108 5.102

Dispersion parameter κ 2.154 0.631 3.414

(b) Lk -7.358 1.957 -3.760 0.37 0.064
LMAJF 0.501 0.184 2.720
LMINF 0.583 0.141 4.146

Dispersion parameter κ 2.159 0.633 3.412

(c) Lk -7.132 2.068 -3.449 0.33 0.059
LTINF 1.032 0.226 4.564
LMRSH 0.505 0.149 3.385

Dispersion parameter κ 2.065 0.596 3.465

3.  Flow- geometry-factors

(a) Lk -7.158 1.881 -3.805 0.50 0.096
LMAJF 0.573 0.198 2.894
LMINF 0.480 0.132 3.636
SSD 0.0691 0.0360 1.919
TCON(2) -0.480 0.224 -2.143
TCON(3) -0.953 0.338 -2.820
MEDW -0.166 0.082 -2.024

Dispersion parameter κ 3.008 0.972 3.095

(b) Lk -6.897 1.695 -4.069 0.49 0.096
LXPDF 0.514 0.098 5.245
SSD 0.0694 0.0358 1.939
TCON(2) -0.465 0.223 -2.085
TCON(3) -0.952 0.338 -2.817
MEDW -0.151 0.0703 -2.148

Dispersion parameter κ 2.996 0.967 3.098

(c) Lk -6.962 2.001 -3.479 0.46 0.091
LTINF 1.001 0.216 4.634
LMRSH 0.390 0.148 2.635
SSD 0.0677 0.0367 1.845
TCON(2) -0.493 0.230 -2.143
TCON(3) -0.971 0.342 -2.839
MEDW -0.160 0.084 -1.905

Dispersion parameter κ 2.829 0.895 3.161

* The prefix "L" indicates the natural logarithmic form of the variable, i.e LXPDF = Log (XPDF).
** LL(0) is the log-likelihood value of the null model
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ing values of MEDW would lead to less accident fre-
quency. The specific effects of traffic control as captured
in the model was that, when the type of control at the mi-
nor road was TCON(2), which represented the YIELD
sign, the accident frequency reduced by a factor of 0.63.
On the other hand, TCON(3) (i.e. no control) on the mi-
nor road was associated with a reduction in accident fre-
quency by a factor of 0.39. These effects were relative
to level 1 of traffic control (i.e. TCON(1)), which repre-
sented STOP control on the minor approach road.

This finding, controversial as it might appear, con-
firmed observations made about the relative safety
records of the three types of unsignalised junction con-
trol following initial analysis of the accident characteris-
tics and associated factors27. Thus, the confounding
question about the safety record of STOP control remains
unanswered. The model confirmed that, at least as far as
the modelling database was concerned, STOP control was
associated with the worst impact on accident potential at
T-junctions. It may as well be that the level of control at
the particular junctions might have been stepped up to
STOP control in response to a bad accident situation in
the first place. But since, as is apparent, the intervention
appears not to have improved the situation, it is entirely
appropriate to question the effectiveness of the STOP
control as an accident remedial measure. This is an im-
portant concern as it touches at the heart of long-estab-
lished codes of practice, as set out in safety/accident
warrants, which until now, have taken for granted the
relative safety benefits of increasing the level of control
at unsignalised junctions from no control at all, through
Yield to Stop.

The impact of the other parameters on accident fre-
quency in the model appeared fairly straightforward and

logical. It is not incomprehensible, for example, that, the
width of the median on the major road would be related
to fewer accidents, considering junctions of equivalent
traffic with and without the median. On the other hand,
large values of SSD would suggest wide variability and
extremes in approach speeds of vehicles, leading to less
predictability and poor mutual anticipation between driv-
ers. Such an atmosphere would breed more conflicts and
potentially lead to more accidents.

Interestingly, the proportion of systematic variation
in accident frequency explained by the full models was
only about 10 per cent more than their corresponding
flow-based models and generally only about half the per-
centages achieved for the models for X-junctions. This
was most probably due to the fewer additional parameters
accepted on account of their significance into the full
models for T-junctions. Also, the contribution of the in-
dividual parameters to the reduction in model deviance,
although statistically significant, was generally less than
the levels attained for X-junctions. By implication, there-
fore, accidents at T-junctions are much less dependent on
road geometric and other traffic variables outside the traf-
fic exposure function. Nonetheless, the 50 per cent pro-
portion of systematic variation explained by the full
models was still good by most standards reported in the
literature.

5. CONCLUSION

On the whole, the results of modeling showed that
traffic exposure functions such as the cross product of
flows (XPDF), sum of crossing flow products (CFPD)
and the sum of encounter flow products (ENCP) produced
much better fit to the accident data than simpler flow
functions like the total junction traffic inflow (TINF). The
most influential traffic exposure function for X-junction
accidents was the sum of the crossing flow products
(CFPD), whilst the cross product of minor and major road
traffic inflows (XPDF) influenced accidents at T-junc-
tions most. The best flow-based models for T-junctions
had about one-and-a-half times more “proportion ex-
plained” than those obtained for X-junctions. The three
most consistent additional variables that featured in the
extended accident models for X-junctions were street
lighting and dedicated left–turning lanes, as well as the
average standard deviation of approach spot speeds of
vehicles on the major road. Those for T-junctions were
level of traffic control, average width of the median on

Fig. 3 Normal Q-Q plot for T-junction full model to
demonstrate the fit to individual data points
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the major road and the average standard deviation of ve-
hicle approach spot speeds on the major road. The ab-
sence of street lighting and dedicated left-turning lanes
and the average standard deviation of vehicle approach
spot speeds were all positively correlated with accident
frequency.

Interestingly, the accident potential of T-junctions
that had YIELD or no control was adjudged to be much
lower than that of similar sites with STOP control. This
particular result has cast doubt on the prudence in taking
for granted the safety benefits of increasing junction con-
trol from no control at all through Yield to Stop control
as recommended by the relevant accident/safety warrants.
Given the large variety of variables tested in the model
estimation process, the quality of the models obtained and
the consistency of the additional variables, it can be con-
cluded that the full models developed represented causal
rather than associative relationships. The models can be
used subsequently, therefore, for the reliable prediction
of accident frequency associated with the junction types
and features described. Their use in this manner will fa-
cilitate a more proactive and cost-effective management
of traffic safety and accident blackspots in the urban en-
vironment.
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