
A Formal Framework for Interactive Agents

Carolyn L. Talcott1,2

Computer Science Laboratory
SRI International

Menlo Park, CA 94025, USA

Abstract

This paper proposes a formal framework and architecture for specification and analysis of interactive agents.
The framework can be used to explore the design space, study features of different points in the design space,
and to develop executable specifications of specific agents and study their interactions with the environment.
A long term goal is development of reasoning principles specialized to different regions of the design space.

Keywords: interaction, coordination, distributed object reflection, policy, autonomy

1 Introduction

The question of interaction versus algorithms as models of computation was raised
by Wegner in [19]. Since then there has been much discussion of both philosophical
and mathematical distinctions (c.f. [20,10,11]).

We are interested in what new issues arise, and how to take advantage of the fact
that interaction goes beyond turing computability in designing interactive agents.
For example, interactive agents can be concerned with issues such as survivability
and situation awareness that are not relevant to an algorithm. An interactive agent
may not only be aware of its surroundings, it may also affect its environment. It
may need to negotiate, cooperate, or compete. We propose the following features
to consider in the design of interactive agents.

• An agent has a boundary consisting of points of interaction with the environ-
ment. From the outside only what crosses the boundary is visible. Interaction
points could be sensors, such as light detectors or thermometers, effectors such as
switches or dials, or message queues for exchange of messages with other agents.

1 The work was partially supported by NSF grant CCR-023446.
2 Email: clt@cs.stanford.edu

Electronic Notes in Theoretical Computer Science 203 (2008) 95–106

1571-0661 © 2008 Elsevier B.V.

www.elsevier.com/locate/entcs

doi:10.1016/j.entcs.2008.04.088
Open access under CC BY-NC-ND license.

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by Elsevier - Publisher Connector

https://core.ac.uk/display/82011748?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1
mailto:clt@cs.stanford.edu
http://www.elsevier.com/locate/entcs
http://creativecommons.org/licenses/by-nc-nd/3.0/

• An agent has actions that it can execute. It may also have goals, knowledge
(about its environment and itself), policies constraining actions, or strategies for
achieving goals.

• Internally an agent may have multiple concurrent activities; observing and pro-
cessing sensory information; refining goals to subgoals, choosing actions, execut-
ing actions; evaluating and analyzing results: did actions have expected effect?
updating knowledge by learning and inference;

• Interactivity means internal processes must be interruptible.

This richness of concerns and features leads to the questions of principles for de-
signing interactive agents. In this paper we present initial ideas for an architecture
and formal framework for design, specification, and analysis of interactive agents.
The framework is based on rewriting logic and a reflective model of coordination for
managing an agents activities. New forms of interaction are introduced to model
both message and channel/signal based interactions, and to pave the way for mod-
eling continuous interactions. The compositional interaction semantics of [18,7] is
extended. The aims of the framework include:

• a higher level means of specifying and understanding agent behavior
• a place to classify agents with different ‘skills’
• a formal design space to represent a variety of design decisions and to study

trade-offs resulting from decisions such as adaptability vs. predictability;

One advantage of the proposed framework are that specifications are executable,
allowing prototyping of designs at many stages. In addition, they are formally
analyzable using the Maude rewriting logic system, and connections with other
formal systems.

Section 2 is a brief overview of motivations and formal foundations for the frame-
work. Section 3 describes the formal architecture and section 4 briefly describes the
interaction semantics. In section 5 we analyze two agent systems using the formal
framework. Section 6 summarizes and discusses future directions.

2 Background

To provide some context we give an overview of the autonomous agent systems
whose analysis formed a starting point for the current work. This is followed by a
brief introduction to the underlying formalisms: rewriting logic and the Reflective
Russian Dolls (RRD) model of distributed object reflection.

2.1 Autonomous Agent Systems

The Policy And GOal based Distributed Architecture (PAGODA) (see http://
pagoda.csl.sri.com) is a framework for specifying systems of autonomous agents.
The
PAGODA architecture was inspired by the study of architectures developed for
autonomous space systems, especially the Mission Data Systems (MDS) architecture

C.L. Talcott / Electronic Notes in Theoretical Computer Science 203 (2008) 95–10696

http://pagoda.csl.sri.com
http://pagoda.csl.sri.com

[9] and its precursors. Two essential features of MDS are goal-oriented operation
and state variables that hold all the system knowledge. An executable specification
of a simple Robot on a Grid (GridBot) based on the MDS architecture is described
in [8].

A PAGODA system is a collection of PAGODA nodes under the control of a
distributed node coordinator (DC). A PAGODA node is a collection of components
coordinated by a node coordinator (NC). Both coordinators are policy-based. The
job of the NC is to make sure components only get the messages they need and
expect, and in the order expected. It also takes care of event notification, and
logging certain events for self-evaluation and diagnostics. The job of a DC is to
control dissemination of knowledge collected locally, deciding what to share, when,
with whom. Coordination in PAGODA is discussed in more detail in [17]. A
PAGODA reasoner based on soft constraint solving is described in [21].

2.2 Rewriting Logic

Rewriting logic [13] is a logical formalism designed for modeling and reasoning about
concurrent and distributed systems. It is based on two simple ideas: states of a
system are represented as elements of an algebraic data type; and the behavior of
a system is given by local transitions between states described by rewrite rules.
A rewrite rule has the form t ⇒ t′ if c where t and t′ are terms representing a
local part of the system state, and c is a condition on the variables of t. This
rule says that when the system has a subcomponent matching t, such that c holds,
that subcomponent can evolve to t′, possibly concurrently with changes described by
rules matching other parts of the system state. The process of application of rewrite
rules generates computations (also thought of as deductions). Maude (http:
//maude.cs.uiuc.edu) is a system based on rewriting logic used for developing,
prototyping, and analyzing formal specifications.

2.3 Reflective Russian Dolls

Reflective Russian Dolls (RRD) [14] is a formal model of distributed object reflection
based on rewriting logic. The model combines logical reflection with a structuring
of distributed objects as nested configurations of meta-objects (a la Russian Dolls)
that can reason about and control their sub-objects. This model can be used to
develop formal specifications of interaction as well as architectural, and behavioral
aspects of distributed object-based systems. In this formalism, a coordinator is an
object with a distinguished attribute that holds a nested configuration of objects
and messages. The nested configuration could itself consist of base-level objects
or coordinators each with their configuration of coordinated objects. The rewrite
rules for a coordinator object control delivery of messages in its contained configura-
tion. In [16] a special form of RRD called policy based coordination (PBRD) was
introduced. Here each coordinator has three additional distinguished attributes:
a policy, a policy state, and a queue of messages pending delivery to the nested
configuration. In this case coordinator rewrite rules interpret the policy attributes,

C.L. Talcott / Electronic Notes in Theoretical Computer Science 203 (2008) 95–106 97

http://maude.cs.uiuc.edu
http://maude.cs.uiuc.edu

selecting a message to process and specifying what to do with it.

3 Framework for Interactive Agents

The proposed formal representation of interactive agents uses the PBRD coordi-
nation model as a starting point. PBRD is extended by giving interaction labels
to rules specifying basic interaction steps; refining the notion of object interface;
and specifying rules for interaction between an agent and its environment, includ-
ing propagation of environment interactions through the nested object hierarchy.
A compositional interaction semantics is derived from the executable semantics of
interactive agents.

An alternating display, adapted from [1], is used as a running example to illus-
trate the structure and rules for interactive agents. This agent has three interaction
points, two from which it reads sensors (say time and temperature) and one on
which it writes a bitmap for display. The coordinator ensures that the display
alternates between the two sensors. This example illustrates basic object behav-
ior and use of sensors and effectors as well as message passing. We also use it to
illustrate interaction patterns and different forms of composition.

3.1 Structure of Interactive Agents

We work in the context of a module IA that declares language and syntax for RRD
objects, as well as sorts and operations for policies and interaction points. The
following is a brief summary. Interactive Agents are formalized as PBRD objects
having the form

[a : A | {C}, policy: P, policyState: pS, pending: pQ, atts | ips]

where a is the agents object identifier and A is it class identifier, a subclass of
InteractiveAgent, and ips is the agents set of interaction points. Between the vertical
bars are the agents attributes: {C} is the set of activities coordinated by a—a con-
figuration (set) of interactive objects; P is the agents coordination policy; pS is its
policy state; pQ is a queue of messages pending delivery; atts is a set of additional
agent specific attributes. The nesting terminates with base-level objects, interactive
objects whose configuration attribute is empty. For base-level objects the policy,
policyState, and pending attributes are not used and can be omitted.

3.2 Rules of interaction

We consider four types of interaction point: i(id,mQ) (message input), o(id,mQ) (mes-
sage output), r(id,v) (read a value), and w(id,v) (write a value). Here id is the name
or identifier, mQ is a message queue, and v is a value. This notation is also used
to denote interactions that label transitions and form the basis of the interaction
semantics.

C.L. Talcott / Electronic Notes in Theoretical Computer Science 203 (2008) 95–10698

Rules for basic agent interactions.
A basic interaction rule describes response to a message msg in an input queue.

There are two flavors—one silent, and one that writes a new value to a write inter-
action point. In both cases the message is removed from the input queue. A silent
rule has the form

[a : A | atts | i(id,msg mQ), ips]
=[]=>
[a : A | atts | i(id,mQ), ips1]

and a rule that writes has the form

[a : A | atts | i(id,msg mQ), w(ix,u), ips]
=[w(ix,v)]=>
[a : A | atts | i(id,mQ), w(ix,v), ips1]

where in both cases ips1 differs from ips at most by adding messages to queues of
output interaction points. Between the []s is the transition’s interaction label where
[] is the silent interaction.

Example: Reader and Writer agents.
The activities of an alternating display are instances of sensor reader and display

writer objects. A reader, or, knows the name of its sensor, sid, and to whom it should
report, od. When or receives a tick message or<-tick it sends the sensor reading, and
sends itself another tick. This is expressed by the following rule.

[or : Reader | display : od, sensor: sid, atts
| i(in,or<-tick iQ), o(out,oQ), r(sid,t)]

=[]=>
[or : Reader | display : od, sensor: sid, atts

| i(in,iQ), o(out,oQ od<-sensed(sid,t) or<-tick), r(sid,t)]

where iQ and oQ are message queues. A writer simply computes a bitmap and writes
it to the display. The previously written bitmap is recorded in w(disp,obmap).

[od : DispA | | i(in,od<-sensed(sid,t) iQ), w(disp,obmap)]
=[w(disp,bmap)]=>
[od : DispA | | i(in,iQ), w(disp,bmap)]
if bmap := mkBmap(sid,t)

Coordination rules.
Coordination policies are specified by axioms for a function next that determines

the next coordination actions. The axioms are of the form

next(P,pS,pQ) = {dnQ, outQ, pS1, pQ1} if cond

where P is a policy, pS is a policy state, and pQ is a queue of interactions pending
processing. These interactions are of the form u(o,ix,msg) (up from the output o(ix,-)

of object o) or i(ix,msg) (a message received in the coordinators input queue i(ix,-)).
On the right, dnQ and outQ are lists of delivery actions of the form (o,ix,mQ). Those in

C.L. Talcott / Electronic Notes in Theoretical Computer Science 203 (2008) 95–106 99

dnQ are for delivery to nested objects and those in outQ are for delivery to external
objects. The rule for policy interpretation is the following.

[a : A | {C}, policy: P, policyState: pS, pending: pQ, atts
| ips] =[]>

[a : A | {C1}, policy: P, policyState: pS1, pending: pQ1, atts
| ips1]

if {dnQ, outQ, pS1, pQ1} := next(P,pS,pQ)
/\ C1 := deliver(C,dnQ)
/\ ips1 := emit(ips,outQ)

where pS1 and pQ1 are updated policy state and pending interaction queues, respec-
tively. For (o,ix,mQ) in dnQ, deliver(C,dnQ) adds mQ to the input interaction point with
identifier ix of the object with identifier o, while messages in outQ are added to output
interaction points by emit(ips,outQ).

There is a coordinator rule that moves messages from output interaction points
in the nested configuration to the pending queue, and one that moves messages in
its receptionist queues (input queues with identifier that of a nested object input
queue visible to the environment) to the pending queue.

Alternating display coordinator policy.
The policy altP for the alternating display agent has a policy state of the form

(od,oQ) where od is the name of the display object and oQ is a queue of reader object
ids (thus it will work for alternation of any number of sensor inputs). Alternation
of messages to the display is expressed by

next(altP,(od,(o1 o2 ...)), pQ0 u(o1,out,od<-sensed(s,t)) pQ1)
=

{(od,in,od<-sensed(s,t)),nil,(od,(o2 ... o1)), pQ0 pQ1}
if pQ0 contains no elements of the form u(o1,out,od<-sensed(s1,t1))

while tick messages to enable reading are delivered as soon as they reach the front
of the pending queue.

next(altP,(od,(o1 o2 ...)), u(o,out,o<-tick) pQ1)
=

{(o,in,o<-tick,nil,(od,(o2 ... o1)), pQ1}

An alternating display agent does not exchange messages with any other agents.
It only reads time and temperature sensors and writes to the display. Thus it has
three interaction points: r(time,-), r(temp,-), w(disp,-) (we use - to indicate unspeci-
fied value). The initial configuration of an alternating display agent looks like the
following

[a : AltDisplay |
{ [o1 : Reader | display: od, sensor: time,

| i(in,o1<-tick), o(out,nil), r(time,t0)]
[o2 : Reader | display: od, sensor: temp,

| i(in,o2<-tick), o(out,nil), r(temp,t1)]

C.L. Talcott / Electronic Notes in Theoretical Computer Science 203 (2008) 95–106100

[od : DispA | | i(in,nil), w(disp,blank)] },
policy: altP, policyState: (od,o1 o2), pending: nil

| r(time,t0), r(temp,t1), w(disp,blank)]

According to the coordination and behavior rules, o1 and o2 will output sensed

messages. The message from o1 will be delivered to od first, then the message from
o2. Tick messages will be delivered to o1 (o2) after their sensed messages are delivered,
and the process repeats.

Rules for interaction with environment.
The underlying rewriting logic semantics says that silent transitions of a nested

configuration lift to transitions of the whole agent. Messages from external agents
are placed in the queues of input interaction points where they can be taken from
the queue by the agent.

[a : A | { C }, atts | ips, i(ix,iQ)]
=[i(ix,msg)]=>

[a : A | { C }, atts | ips, i(ix,iQ msg)]

Dually messages to external agents are placed in the queues of output interaction
points, and removed by the environment (not shown).

Read/write interaction points are for sensing and effecting the agents exterior.
An agent may silently read values from read interaction points. The value is only
changed by the environment. This change is seen by all nested agents with this
interaction point.

[a : A | { C }, atts | ips, r(ix,v)]
= [r(ix,u)] =>
[a : A | { pushRead(C,ix,u) }, atts | ips, r(ix,u)]

An agent may write new values into write interaction points, to affect the en-
vironment. A write interaction is propagated to the containing agent (formalized
using conditional rewriting).

C =[w(ix,v)]=> C1

[a : A | { C }, atts | ips, w(ix,u)]
=[w(ix,v)]=>

[a : A | { C1 }, atts | ips, w(ix,v)]

4 Interaction Semantics

An interaction path is a (possibly infinite) sequence of interactions. Each com-
putation of an agent (allowed by the rewrite rules) gives rise to an interaction
path consisting of the sequence of (non-silent) interactions labeling the transitions
(rewrite rule applications). The semantics of an interactive agent is thus the set
of interaction paths of its possible computations. This definition derives from ear-
lier work developing interaction semantics for actors [18,7] ideas from Timed Data

C.L. Talcott / Electronic Notes in Theoretical Computer Science 203 (2008) 95–106 101

Stream semantics for the Reo coordination model [2] and signal event semantics
[12]. Interaction semantics is similar in spirit to the Interactive Stream Languages
of [10]. The ideas are also related to work on interfaces of reactive and concurrent
systems such as, for example, [5,6]. As an example, a possible interaction path of
the alternating display is

r(time,600)
r(time,700)
r(temp,20)
w(disp,mkBmap(time,600))
w(disp,mkBmap(temp,20))
r(temp,21)
r(time,800)
w(disp,mkBmap(time,800))
w(disp,mkBmap(temp,21))

Since reads are controlled by the environment, there may be reads that are not
observed by the Reader and thus not reflected in the display sequence, for example
700 is not displayed.

Interaction semantics is compositional both vertically and horizontally. The
semantics of the horizontal (parallel) composition of two systems is done by zipping
compatible paths one from the semantics of each system. Two paths are compatible
if their subsequences of complimentary interactions, such as out/write in one and
in/read in the other match. In the composed path, these interactions interactions
become silent transitions and disappear, and the remaining interactions are merged.
(See [18] for details in the case of horizontal, actor-actor composition, and [7] for
vertical, actor-metaactor, composition.) For example, consider the semantics of a
system S1 consisting of the two readers, and another S2 consisting of the display
writer. A compatible pair of interaction paths for these systems is

S1: S2:
r(time,600)
r(time,700)
r(temp,20)
o(od,sensed(time,600)) i(od,sensed(time,600))
r(time,800)

w(disp,mkBmap(time,600))
o(od,sensed(time,700) i(od,time(700))

w(disp,mkBmap(time,700))
r(temp,21)
o(od,sensed(temp,20)) i(od,sensed(temp,20))
...

w(disp,mkBmap(temp,20))
...

Composing this pair results in an interaction path for the parallel composition S1

S2.

C.L. Talcott / Electronic Notes in Theoretical Computer Science 203 (2008) 95–106102

r(time,600)
r(time,700)
r(temp,20)
w(disp,mkBmap(time,600))
r(time,800)
w(disp,mkBmap(time,700))
r(temp,21)
w(disp,mkBmap(temp,20))
....

Notice that this path does not satisfy the alternation requirement. Such is life.
To treat a coordinator (meta-object) as a separate component independent of its

nested configuration, conceptually, we replace its configuration attribute by interac-
tion points, one for each messaging interface of a contained object. For this purpose
we introduce up and down interactions. Up interactions of a coordinator have the
form u(o,ix,msg) and synchronize with interactions o(ix,msg) of an object with iden-
tifier o. (These appear in the pending interaction queue in the composed system.)
Down interactions of a coordinator have the form d(o,ix,msg) and synchronize with
interactions i(ix,msg) of an object with identifier o.

The requirements for an alternating display coordinator can be expressed as a
relation AltIO on the interactions of the coordinatees (similar to Abstract Behavior
Type specifications of sets of Timed Data Stream [1]) as follows

θ ∈ AltIO ⇔ π(θ, d(od, in,−))(2i) = π(θ, u(ot1, out,−))(i)∧
π(θ, d(od, in,−))(2i + 1) = π(θ, u(ot2, out−))(i)∧
ix(θ, u(ot1, out,−), i) < ix(θ, d(od, in,−), 2i)∧
ix(θ, u(ot2, out,−), i) < ix(θ, d(od, in,−), 2i + 1)

where π(θ, d(od, in,−)) is the subsequence of messages of interactions d(od, in,msg)
occurring in θ, and ix(θ, d(od, in,−), i) is the index in θ of the ith element of
π(θ, d(od, in,−)). Similarly for π(θ, u(oj , in,−)) and ix(θ, u(otj , out,−), i).

The claim is that composing a coordinator satisfying AltIO with a system such
as S1 S2 will result in an alternating display. In this case composition is placing the
system into the coordinators configuration attribute.

5 Goal-based autonomous agents

As a small step towards using the interactive agent framework to analyze agent
structure we consider the kinds of activities that might make up a goal-based au-
tonomous agent and related design points. We use these to analyze two autonomous
agent systems. The activities we consider are: knowledge manager (KM), estimator,
controller, goal achiever, analyzer, and monitor.

A KM encapsulates knowledge: models, policies, history, situation/context It
accepts requests to modify the knowledge base and queries to retrieve information
from the knowledge base.

C.L. Talcott / Electronic Notes in Theoretical Computer Science 203 (2008) 95–106 103

An estimator deals with reading sensors and converting what is read into higher
level data. It could just be an identity function, but provides a means for inter-
acting with lower level sensors, for example by converting a voltage reading to a
temperature, pressure, or liquid level. An estimator may proactively read sensor
information and tell the KM its interpretation, or it may only read upon request.
A controller converts basic action requests to effects on the environment, setting
knobs or switches, turning motors on or off, etc..

A goal achiever accepts goal requests (constraints to be satisfied, something to
be achieved) and produces responses which contain basic actions to perform and
assumptions made in choosing these actions. A goal achiever may (should) use
knowledge from the KB to decide on a course of action. It may reach decisions by
some form of reasoning (planning, constraint solving, search), or by a simple table
lookup.

An analyzer derives new knowledge from information already in the knowledge
base, or corrects existing knowledge. It can request ‘experiments to be done’ to
gather more information. A learner is an example of an analyzer. The learner’s
objective is typically to fill in or correct model parameters. A trust manager is
another kind of analyzer. It observes interactions with other agents and builds
trust models, (X can be trusted for Y with confidence L) that might be used by
a goal achiever, or other analyzers. Yet another kind of analyzer, which we call a
thinker, builds new models, or refines existing models by drawing inferences from
existing knowledge and observations.

A monitor ’s job is checking assumptions that are expressed as constraints on
observables: functions of sensor readings and messages received. It may make
periodic checks, or only upon specific request. It may always report (for logging
in KB) the results of a check, or only report when a check fails. Typically the
assumptions are generated by a goal achiever, but an analyzer could also make
hypotheses to be checked.

Using the above notions we can characterize the two autonomous agent sys-
tems mentioned in Section 2: the MDS based GridBot; and the PAGODA software
defined radio (SDR).

The GridBot has a single goal achiever (called a goal elaborator). Its remaining
activities are organized by state variable. For each state variable there is a knowl-
edge manager (the state variable itself), a sensor, an estimator, and a controller.
The simple GridBot has just three state variables: its motion base (for moving
and turning); a camera, and a battery. Coordination is done by a scheduler. In
general MDS schedulers have a policy that specifies how frequently to visit each
state variable, and for each visit a fixed order of executing steps of the associated
activities.

The PAPGODA SDR has a single knowledge base that stores goals, situation
information (for example, mission phase and status), environment information, a
model of how knob settings effect the radio’s performance, and a history of actions
and sensor readings. All sensor/effector interaction points are encapsulated in the
HAL (Hardware Abstraction Layer). HAL handles all requests for actions (knob

C.L. Talcott / Electronic Notes in Theoretical Computer Science 203 (2008) 95–106104

settings) and sensor reading. There is one reasoner (for which two implementations
exist) that accepts goals and sends knob settings to the HAL and monitoring tasks
to the monitor. There is a learner that can be activated to learn initial model pa-
rameters or correct existing parameters. The PAGODA coordination policy ensures
that goal requests, knob settings, sensor readings and monitor reports are logged
in the knowledge base and that the learner is notified of events of interest to it. It
also ensures that goal requests to the monitor are serialized. Otherwise activities
go on concurrently.

6 Conclusion and Future Work.

We have described an architecture and formal framework for specifying and ana-
lyzing interactive agents. The main ideas are policy-based coordination of multiple
agent activities and the notion of interaction points. The compositional semantics
of actors and reflective objects is extended to the richer interaction mechanisms.

Broy’s characterization of components as functions that transform data streams
[4,3] is similar in spirit to interaction path semantics. The former focuses on data
flow while the latter on interaction events and supports modeling dynamic intercon-
nections and richer composition mechanisms. The Abstract Behavior Type seman-
tics of Reo using Timed Data Streams (TDS) [2,1] is much closer to our enriched
interaction semantics, although Reo is concerned with channel-based communica-
tion while our approach is concerned with messages and signals. In [15] a mapping
between interaction paths and TDS is sketched for the special case of buffered chan-
nels in Reo.

There are several interesting directions for future work. The extension of actor
interaction semantics drew on ideas from Timed Data Streams [2] and work on
signal semantics and causal interfaces [12]. An in depth comparison of these and
other semantic models for interaction is needed.

There are a number of variations on the details of the interaction semantics
described here that should be understood. For example single interactions could be
replaced by sets of concurrent interactions where order is undetermined; considering
continuous signals driving read/write interactions rather than discrete changes; and
adding a notion of time.

Last but not least is developing logical rules and principles for inferring emerg-
ing behavior of interactive agents. This goes hand in hand with developing design
principles. One of the motivations for policy based coordination is to set the stage
for compositional reasoning, that is being able to use constraints enforced by coor-
dination policies to be able to simplify reasoning about the coordinated activities.

References

[1] F. Arbab. A behavioral model for composition of software components. L’Objet, 12:33–76, 2006.

[2] F. Arbab and J.J.M.M Rutten. A coinductive calculus of component connectors. In WADT’02, volume
2755 of LNCS, pages 34–55, 2002.

C.L. Talcott / Electronic Notes in Theoretical Computer Science 203 (2008) 95–106 105

[3] M. Broy and G. Stefanescu. The algebra of stream processing functions. Theoretical Computer Science,
258, 2001.

[4] M. Broy and K. Stolen. Specification and development of interactive systems, volume 62 of Monographs
in Computer Science. Springer-Verlag, 2001.

[5] L. de Alfaro and T. A. Henzinger. Interface automata. In Ninth Annual Symposium on Foundations
of Software Engineering (FSE), pages 109–120. ACM Press, 2001.

[6] L. de Alfaro and T. A. Henzinger. Interface theories for component-based design. In 1st Intl. Workshop
on Embedded Software, volume 2211 of LNCS. Springer-Verlag, 2001.

[7] G. Denker, J. Meseguer, and C. L. Talcott. Rewriting semantics of distributed meta objects and
composable communication services. In Third International Workshop on Rewriting Logic and Its
Applications (WRLA’2000), volume 36 of Electronic Notes in Theoretical Computer Science. Elsevier,
2000.

[8] G. Denker and C. L. Talcott. Formal checklists for remote agent dependability. In Fifth International
Workshop on Rewriting Logic and Its Applications (WRLA’2004), volume 117 of ENTCS. Elsevier,
2004.

[9] D. Dvorak, R. Rasmussen, G. Reeves, and A. Sacks. Software Architecture Themes In JPL’s Mission
Data System. In IEEE Aerospace Conference, USA, 2000.

[10] D. Goldin, S. Smolka, P. Attie, and E. Sonderegger. Turing machines, transition systems, and
interaction. Information and Computation Journal, 194(2):101–128, 2004.

[11] D. Goldin and M. Viroli, editors. Foundations of Interactive Computation (FInCo 2005), volume 141
of ENTCS. Elsevier, 2005.

[12] E. A. Lee. Concurrent semantics without the notions of state or state transitions. In Formal Modeling
and Analysis of Timed Systems, LNCS, pages 18–31. Springer, 2006.

[13] J. Meseguer. Conditional Rewriting Logic as a unified model of concurrency. Theoretical Computer
Science, 96(1):73–155, 1992.

[14] J. Meseguer and C. L. Talcott. Semantic models for distributed object reflection. In European
Conference on Object-Oriented Programming, ECOOP’2002, volume 2374 of LNCS, pages 1–36, 2002.

[15] S. Ren, M. Sirjani, and C. Talcott. Comparing three coordination models: Reo, arc, and rrd, 2007. in
preparation.

[16] C. Talcott. Coordination models based on a formal model of distributed object reflection. In 1st
International Workshop on Methods and Tools for Coordinating Concurrent, Distributed and Mobile
Systems (MTCoord 2005), 2005.

[17] C. Talcott. Policy-based coordination in pagoda: A case study. In 2nd International Workshop on
Methods and Tools for Coordinating Concurrent, Distributed and Mobile Systems (MTCoord 2005),
2006.

[18] C. L. Talcott. Composable semantic models for actor theories. Higher-Order and Symbolic
Computation, 11(3):281–343, 1998.

[19] P. Wegner. Why interaction is more powerful than algorithms. CACM, May 1997.

[20] P. Wegner and D. Goldin. Computation beyond turing machines. CACM, April 2003.

[21] M. Wirsing, G. Denker, C. Talcott, A. Poggio, and L. Briesemeister. A rewriting logic framework for soft
constraints. In Sixth International Workshop on Rewriting Logic and Its Applications (WRLA’2006),
ENTCS. Elsevier, 2006.

C.L. Talcott / Electronic Notes in Theoretical Computer Science 203 (2008) 95–106106

	Introduction
	Background
	Autonomous Agent Systems
	Rewriting Logic
	Reflective Russian Dolls

	Framework for Interactive Agents
	Structure of Interactive Agents
	Rules of interaction

	Interaction Semantics
	Goal-based autonomous agents
	Conclusion and Future Work.
	References

