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and wet torrefaction. Dry torrefaction (DT) is thermal treatment of biomass in an inert environment at 
atmospheric pressure and temperatures within the range of 200-300°C [1-3]. Wet torrefaction (WT) may 
be defined as treatment of biomass in a hydrothermal media, or hot compressed water, at temperatures 
within 180-260°C [4, 5]. The two techniques have their own pros and cons. For example, WT is more 
suitable for lower cost biomass resources such as forest residues, agricultural wastes, and even aquatic 
energy crops, which normally have very high moisture content. In addition, WT is capable of reducing the 
ash content of biomass as well, while DT is not. However, WT requires more advanced reactors capable 
to work at elevated pressures, and thus higher investments.  

A quantitative comparison between WT and DT was reported in our previous study [4]. This has been 
performed for different criteria, including fuel properties such as proximate and ultimate analysis, 
grindability, and hydrophobicity. However, a comparison for the reactivity of these fuels in subsequent 
combustion is still missing, which is the motivation and objective of this study. The present work aims at 
investigating and comparing the combustion behaviors and kinetics of spruce wood torrefied by dry and 
wet method on the basis of the same solid product yield. 

2. Materials and methods 

Stem wood from Norway spruce was selected as feedstock since they are the main wood species in 
Norwegian forests. The wood samples, which were cut into cube with 1 cm side, were obtained from a 
local supplier in Trondheim, Norway. DT and WT procedures and characterization methods have been 
reported in our previous studies [2, 4]. Characteristics of raw and torrefied spruce used in this study are 
listed in Table 1. Thermogravimetric analysis (TGA), a proven technique for studying the biomass 
combustion in the kinetic regime [6-9], was employed in this work. TGA data collection was reported in 
another paper [10]. 

Because WT is different from DT in the reaction medium and pressure, it is challenging to carry out 
any comparison between them. However, since torrefaction is basically developed for upgrading of solid 
biomass fuels, the solid yield is a critical indicator. Keeping this in mind, it is reasonable to assume a 
common solid yield as a compatible basis for comparing fuel properties of solids obtained from WT or 
DT of the same biomass source. That was in our previous study that a common solid yield of 74% 
approximately was achieved by either DT in the at 275°C for 60 min, or WT at 222°C for 5 min, as well 
as well WT at 210°C for 30 min, as presented in Table 1. 

Table 1. Characteristics of raw spruce and dry- and wet-torrefied spruce 

Torrefaction condition Solid yielda
Proximate analysis Ultimate analysis 

HHVb

Asha VMa fCa Ca Ha Na Oa

Raw – 0.23 86.50 13.27 50.31 6.24 0.07 43.38 20.42 

DT-275 
(DT, 275 °C, 60 min) 74.0 0.20 75.65 24.15 55.33 5.73 0.09 38.80 22.05 

WT-210 
(WT, 210 °C, 30 min) 73.8 0.08 82.56 17.36 55.27 5.99 0.07 38.67 22.35 

WT-222 
(WT, 222 °C, 5 min) 74.1 0.10 81.51 18.39 55.75 6.05 0.06 38.14 22.64 

a wt%, b MJ/kg

For kinetic modelling, a 4-pseudo-component model was adapted from Branca and Di Blasi [7, 11, 
12] as follows: 
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where Av, Bv, Cv and Dv are the pseudo-components; and Vi (i = 1, 2, 3, 4) is the lumped volatiles and/or 
gases released from the thermal degradation of the respective pseudo-component. 

The conversion rate of these four reactions can be described by the following Arrhenius expression: 

where A is the pre-exponential factor, E is the activation energy of the reaction, R is the universal gas 
constant, T is the absolute temperature, n is the reaction order, and i is for the ith pseudo-component. 
Three first reactions represent the devolatilization of three main biomass components (hemicellulose, 
cellulose and lignin) and thus they are first order. The last reaction represents the char combustion, which 
is nth order.   

The overall conversion rate is the sum of the partial conversions, where ci indicates the mass fraction 
of each pseudo-component in the following equation: 

The optimization of the predicted DTG curves was based on the non-linear least squares method, 
which minimized the sum of the square differences between the experimental and calculated data. The 
objective function is given as: 

where  and  represent the experimental and calculated conversion rates, respectively; and 

N is the number of experimental points. 
The fit quality between actual and modelled data is calculated as: 

.

3. Results and discussions 

3.1. Thermogravimetric analysis  

Figure 1 shows the thermogravimetric (TG) and differential thermogravimetric (DTG) curves for raw 
and torrefied spruce. It can be seen that the wet-torrefied spruce start decomposing from 150°C, which are 
earlier than both raw and dry-torrefied spruce. From 200°C, raw and dry-torrefied spruce are degraded. 
Among the tested samples, raw biomass is degraded fastest, which is due to that the raw biomass contains 
more hemicellulose than any torrefied biomass. Moreover, DTG curves show that the devolatilization 
peak of sample DT-275 is slightly shifted to a lower temperature, while the peaks of raw spruce and wet-
torrefied spruce have similar positions. The peak height of sample WT-210 is the highest and that of 
sample DT-275 is the lowest, raw sample and sample WT-222 have the same heights in between. This 
observation indicates that higher dry torrefaction temperature (275°C) and longer residence time (60 min) 
may result to partial degradation of cellulose and show lower devolatilization peak. 
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Figure 1. TG and DTG curves for raw and torrefied spruce 

In the combustion stage, raw spruce exhibits the lowest peak and its combustion also ends earliest. The 
combustion stage of sample DT-275 shows the highest rate and lasts slightly longer than raw sample but 
still earlier than wet-torrefied samples. Samples WT-210 and WT-222 have similar combustion stages: 
slightly higher rate than raw sample but significantly lower than DT-275; moreover, their combustion 
stage last longest. In addition, between the two wet-torrefied fuels, sample WT-222 has slightly higher 
combustion peak than sample WT-210, which is opposite to the devolatilization peak. 

3.2. Kinetic analysis  

Table 2. Kinetic analysis for raw and torrefied spruce 

Hemicellulose Cellulose Lignin Char Fit quality 

Raw 

E (kJ/mol) 103.80 221.58 66.17 178.48 

99.26% A (s-1) 3.70E+07 2.43E+17 1.33E+03 5.92E+10 
c 0.14 0.42 0.23 0.21 
n 1 1 1 1.01 

DT-275 

E (kJ/mol) - 237.78 72.78 202.75 

97.95% A (s-1) - 1.32E+19 4.25E+03 3.12E+12 
c 0.00 0.36 0.30 0.34 
n - 1 1 1.01 

WT-210 

E (kJ/mol) 47.01 250.49 83.68 127.32 

98.27% A (s-1) 2.88E+02 9.17E+19 3.63E+04 4.27E+06 
c 0.04 0.43 0.20 0.33 
n 1 1 1 1.01 

WT-222 

E (kJ/mol) 51.49 247.92 81.30 134.06 

98.21% A (s-1) 9.53E+02 5.39E+19 2.26E+04 1.43E+07 
c 0.04 0.40 0.22 0.34 
n 1 1 1 1.01 

Table 2 presents the kinetic analysis employing a 4-pseudo-component model for a quantitative 
evaluation of the effects of torrefaction method on the combustion reactivity of wood. A demonstration of 
the fit quality is also given in Figure 2. It can be seen from the table that the contribution factor of 
hemicellulose is reduced from 0.14 in raw spruce to 0.00 in sample DT-275, and 0.04 in sample WT-222 
and WT-210. This indicates that hemicellulose is completely degraded during DT at 275 °C, while a 
small fraction of this component still remains in the fuels after WT at lower temperatures and shorter 
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holding times. The contribution factor of cellulose in wood is decreased but that of lignin is increased by 
DT. However, these changes are unpronounced after WT, i.e contribution factors of cellulose and lignin 
of wet-torrefied wood are quite similar to those for raw wood. Finally, the contribution factors of char in 
all torrefied woods are somehow equal (in the range of 0.33-0.34) and higher than raw wood (0.21). 

Together with the reduction in contribution factor of hemicellulose, the activation energy and pre-
exponential factor of this component are also significantly decreased after WT. The activation energy is 
reduced from 103.80 kJ/mol for raw spruce to 47.01-51.49 kJ/mol for wet-torrefied spruce, while pre-
exponential factor is decreased from 3.70E+07 s-1 for raw spruce to 2.88E+02 and 9.53E+02 s-1. On the 
other hand, the activation energy and pre-exponential factor of cellulose and lignin are increased after 
torrefaction (both dry and wet). This can lead to anticipation that the removal of hemicellulose during 
torrefaction can increase the crystallinity of cellulose and thus increase its activation energy in subsequent 
combustion. In addition, transformation/modification of lignin structure may occur and offer higher 
activation energy to this component. However, the activation energy and pre-exponential factor of 
cellulose and lignin in wet-torrefied fuels are higher than those in dry-torrefied fuel. It means that WT 
may have more effects on the structure modification of the two components than DT. Moreover, opposite 
trends are found for the activation energy and pre-exponential factor of char after DT and WT: they are 
increased after DT but decreases after WT.  
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Figure 2. Curve fitting for raw and torrefied spruce 
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4. Conclusion 

Effects of torrefaction method, WT and DT, on the combustion kinetics of Norway spruce wood were 
thermogravimetrically investigated for samples torrefied in compatible conditions on the basis of a 
common mass yield. The results show that dry-torrefied wood is the least reactive in the devolatilization 
step but the most reactive in the char combustion, compared to wet-torrefied wood. Moreover, the wet-
torrefied spruce has the longest combustion stage, among the tested fuels. 

The kinetic analysis shows a dramatically reduction in the contribution factor of hemicellulose after 
WT, that of cellulose is even down to zero after DT at 275 °C. The contribution factor of cellulose is 
decreased but that of lignin is increased by DT; however, these changes are unpronounced after WT. 
Moreover, the contribution factors of char in torrefied woods are almost equal. The activation energy and 
pre-exponential factor of cellulose and lignin are increased after any torrefaction method, but they are 
higher in wet-torrefied fuels than in dry-torrefied one. Opposite trends are found for the activation energy 
and pre-exponential factor of char after DT and WT: they are increased after DT but decreased after WT. 
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