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ABSTRACT In biochemical networks, reactions often occur on disparate timescales and can be characterized as either fast or
slow. The quasi-steady-state approximation (QSSA) utilizes timescale separation to project models of biochemical networks
onto lower-dimensional slow manifolds. As a result, fast elementary reactions are not modeled explicitly, and their effect
is captured by nonelementary reaction-rate functions (e.g., Hill functions). The accuracy of the QSSA applied to deterministic
systems depends on howwell timescales are separated. Recently, it has been proposed to use the nonelementary rate functions
obtained via the deterministic QSSA to define propensity functions in stochastic simulations of biochemical networks. In this
approach, termed the stochastic QSSA, fast reactions that are part of nonelementary reactions are not simulated, greatly
reducing computation time. However, it is unclear when the stochastic QSSA provides an accurate approximation of the original
stochastic simulation. We show that, unlike the deterministic QSSA, the validity of the stochastic QSSA does not follow from
timescale separation alone, but also depends on the sensitivity of the nonelementary reaction rate functions to changes in
the slow species. The stochastic QSSA becomes more accurate when this sensitivity is small. Different types of QSSAs result
in nonelementary functions with different sensitivities, and the total QSSA results in less sensitive functions than the standard or
the prefactor QSSA. We prove that, as a result, the stochastic QSSA becomes more accurate when nonelementary reaction
functions are obtained using the total QSSA. Our work provides an apparently novel condition for the validity of the QSSA in
stochastic simulations of biochemical reaction networks with disparate timescales.
INTRODUCTION
In both prokaryotes and eukaryotes, the absolute number of
a given reactant is generally small (1,2), leading to high
intrinsic noise in reactions. The Gillespie algorithm is
widely used to simulate such reactions by generating sample
trajectories from the chemical master equation (CME) (3).
Because the Gillespie algorithm requires the simulation
of every reaction, simulation times are dominated by the
computation of fast reactions. For example, in an exact
stochastic simulation, most time is spent on simulating the
fast binding and unbinding of transcription factors to their
promoter sites, although these reactions are of less interest
than transcription, which is slower. Thus, the Gillespie algo-
rithm is frequently too inefficient to simulate biochemical
networks with reactions spanning multiple timescales (4,5).

Recently, the slow-scale stochastic simulation algorithm
(ssSSA) was introduced to accelerate such simulations
(4,5) (Fig. 1). The main idea behind the ssSSA is to use
the fact that fast species equilibrate quickly. Thus, we can
replace fast species by their average values to derive effec-
tive propensity functions. These average values can be
obtained by applying a quasi-steady-state approximation
(QSSA) (6–8) or quasi-equilibrium approximation (9,10)
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to the CME. When using the ssSSA we only need to simu-
late slow reactions, greatly increasing simulation speed
with no significant loss of accuracy (4–10). However, the
utility of the ssSSA is limited by the difficulty of calculating
the average values of fast species, which requires knowledge
of the joint probability distribution of the CME (4–7,10).

To estimate the average value of the fast species, Rao and
Arkin (6) proposed using the fast species concentration at
quasi-equilibrium in the deterministic system. In such
a stochastic QSSA, the deterministic QSSA is used to
approximate the propensity functions obtained via the
ssSSA (Fig. 1). Thus, nonelementary macroscopic rate func-
tions (e.g., Hill functions) are used to derive the propensity
functions in the same way as elementary rate functions
(i.e., those obtained directly from mass action kinetics).
Several numerical studies supported the validity of the
stochastic QSSA in systems as diverse as Michaelis-Menten
enzyme kinetics, bistable switches, and circadian clocks
(6,7,11,12). These studies provided evidence that the sto-
chastic QSSA is valid when timescale separation holds
(13–15). Therefore, stochastic simulations of biochemical
networks are frequently performed without converting the
nonelementary reactions to their elementary forms (16–18).
Moreover, rates of the individual elementary reactions
that are jointly modeled using Michaelis-Menten or Hill
functions are rarely known, making the use of stochastic
http://dx.doi.org/10.1016/j.bpj.2014.06.012
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FIGURE 1 The validity of the stochastic QSSA. Under timescale separa-

tion, the full ODE and full CME can be reduced using the deterministic

QSSA and ssSSA, respectively. By changing the concentration (X) to the

number of molecules (nX) with the relationship X ¼ nX/U (U: the volume

of the system), the elementary rate functions in the full ODE can be

converted to propensity functions. These are the same as the propensity

functions of the full CME, which are derived from collision theory (36).

However, the validity of propensity functions derived from nonelementary

rate functions (e.g., Hill functions) of the reduced ODE is unclear. To see

this figure in color, go online.
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QSSA tempting. However, relatively recent studies have
demonstrated that, in contrast to the deterministic QSSA,
timescale separation does not generally guarantee the
accuracy of the stochastic QSSA (13–15). The stochastic
QSSA can often lead to large errors even when timescale
separation holds. This raises the question: When is the
stochastic QSSA valid?

Here, we investigate the conditions under which the
stochastic QSSA is accurate (Fig. 1). We first examine
three of the most common reduction schemes: standard
QSSA (sQSSA), total QSSA (tQSSA), and prefactor QSSA
(pQSSA). We find that the accuracy of the stochastic QSSA
depends on which reduction scheme is used to derive
its deterministic counterpart. Specifically, the stochastic
tQSSA is more accurate than the stochastic sQSSA or
pQSSA (we refer to each stochastic QSSA by the name of
its deterministic counterpart, i.e., in the stochastic tQSSA,
propensities are derived from the ordinary differential
equations (ODEs) obtained via the deterministic tQSSA).
All three methods relate the fast species concentration
in quasi-equilibrium to the slow species concentration. For
FIGURE 2 Deterministic QSSA. (A) In the model of a genetic negative feedba

to the DNA promoter site (DA). Reversible binding between F andDA is much fas

correctly approximate the dynamics of the full system, but both the tQSSA and t

aration between the variables. To see this figure in color, go online.
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the tQSSA, this expression is less sensitive to changes
in the slow species than either its sQSSA or pQSSA counter-
parts. We find that for parameters that decrease sensitivity,
the stochastic sQSSA and pQSSA also become more accu-
rate. We explain these observations by proving that, as
sensitivity decreases, the approximate propensity functions
used in the stochastic QSSA converge to the propensity
functions obtained using ssSSA (Fig. 1). Furthermore, we
use a linear noise approximation (LNA) to show that the
accuracy of the stochastic QSSA is determined by both
separation of timescales and sensitivity.

In sum, our results indicate that the stochastic QSSA
is valid under more restrictive conditions than the deter-
ministic QSSA. Importantly, we identify these conditions,
and provide a theoretical foundation for reducing stochastic
models of complex biochemical reaction networks with
disparate timescales.
RESULTS

The different types of deterministic QSSA

The term ‘‘QSSA’’ is used to describe a number of related
dimensional reduction methods. We first review three com-
mon QSSA schemes using the example of a genetic negative
feedback model (19,20). The full model, depicted in Fig. 2
A, can be described by the system of ODEs,

_M ¼ aMDA � bMM; (1)

_P ¼ aPM � bPP; (2)
_F ¼ aFP� bFF� kf FDA þ kbDR; (3)
_DR ¼ kf FDA � kbDR � bFDR; (4)
_DA ¼ �kf FDA þ kbDR þ bFDR; (5)
where the transcription of mRNA (M) is proportional to
the concentration of DNA promoter sites that are free of
the repressor protein (DA). The mRNA is translated into
ck loop, the repressor protein (F) represses its own transcription by binding

ter than other reactions. See Table S1 for parameters. (B) The sQSSA fails to

he pQSSA provide accurate approximations due to complete timescale sep-
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cytoplasmic protein (P). The free repressor protein (F)
is produced at a rate proportional to the concentration of
P. The free repressor can bind to a promoter site and change
the DNA to its repressed state (DR). All species, except for
DNA, are subject to degradation (bi), with the bound and
free repressors degrading at the same rate. As can be seen
in Eqs. 4 and 5, total DNA concentration (DT ¼ DA þ DR)
is conserved. See Table S1 in the Supporting Material for
the descriptions and values of parameters.

Standard QSSA (sQSSA)

Binding (kf) and unbinding (kb) between F and DA are
much faster than the remaining reactions (Fig. 2 A and
see Table S1). Thus, Eqs. 4 and 5 equilibrate faster than
Eqs. 1–3, which leads QSS equations for the fast species
( _DR ¼ 0 and _DA ¼ 0). By solving these QSS equations,
we obtain the equilibrium values of fast species (DR and)
in terms of slow species (F), as

DRðFÞ ¼ DTF

Fþ Kd

; (6)

DAðFÞ ¼ DTKd
; (7)
Fþ Kd

where Kd¼ (kbþ bF)/kf. These QSS solutions can be used to

close the remaining equations (Eqs. 1–3) giving the reduced
system:

_M ¼ aM

DTKd

Fþ Kd

� bMM; (8)

_P ¼ aPM � bPP; (9)
_F ¼ aFP� bF

�
Fþ DTF

�
: (10)
Fþ Kd

This approach is known as the classical or standard QSSA

(sQSSA) (21–23). Previous studies have shown that the
sQSSA leads to reductions that correctly predict steady
states, but may not correctly describe the dynamics (24,25).
Indeed, whereas the original system (Eqs. 1–5) relaxes to a
limit cycle, the reduced system (Eqs. 8–10) exhibits damped
oscillations (Fig. 2 B).

Total QSSA (tQSSA)

The inaccuracy of the sQSSA results from treating F as
a slow variable, even though it is affected by both slow
(production and degradation) and fast (binding and un-
binding to DNA) reactions (25). This problem can be
solved by introducing the total amount of repressor, R h
F þ DR, instead of F. As a result, it only depends on slow
reactions:

_M ¼ aMDA � bMM; (11)
_P ¼ a M � b P; (12)
P P

_R ¼ aFP� bFR; (13)
_DR ¼ kf ðR� DRÞDA � kbDR � bFDR; (14)
_DA ¼ �kf ðR� DRÞDA þ kbDR þ bFDR: (15)
By solving the QSS equations for the fast species ( _DR ¼ 0

and _DA ¼ 0), we obtain the equilibrium values of DR and
DA in terms of R:

DRðRÞ ¼ 1

2

�
DT þ Rþ Kd �

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðDT � R�KdÞ2þ 4DTKd

q �
;

(16)

D ðRÞ¼ 1
�
D � R� K þ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðD � R�K Þ2 þ 4D K

q �
:
A

2
T d T d T d

(17)

Substituting these QSS solutions to close the remaining
equations (Eqs. 11–13), we arrive at the reduced system
_M ¼ aMDAðRÞ � bMM; (18)

_P ¼ aPM � bPP; (19)
_R ¼ aFP� bFR: (20)
This approach is known as the total QSSA (tQSSA) (26–28).
Due to the complete timescale separation between variables,

the tQSSA leads to a reduced system (Eqs. 18–20) that
correctly captures the dynamics of the full system (Fig. 2
B). However, unlike the recognizably Michaelis-Menten-
like form of sQSS solutions (Eqs. 6 and 7), the correspond-
ing tQSS solutions (Eqs. 16 and 17) are unfamiliar and
unintuitive.

Prefactor QSSA (pQSSA)

The reduced system obtained with the tQSSA can be trans-
formed into a more intuitive form. Expressing Eqs. 18–20
using the original free protein variable, F, and using
_R ¼ vR=vF _F, we obtain

_M ¼ aM

DTKd

Fþ Kd

� bMM; (21)

_P ¼ aPM � bPP; (22)
pðFÞ _F ¼ aFP� bF

�
Fþ DTF

�
; (23)
Fþ Kd

where
pðFÞhvR

vF
¼ vF

vF
þ vDR

vF
¼ 1þ DTKd

ðFþ KdÞ2
: (24)
Biophysical Journal 107(3) 783–793
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This approach is known as the prefactor QSSA (pQSSA)
(24,25). We note two important things about Eqs. 21–23:

1. The system is identical to that obtained using the sQSSA
(Eqs. 8–10), except for the prefactor p(F). Therefore,
the two reductions have the same fixed points, but their
dynamics are different. The prefactor is always >1, and
corrects the inaccuracy in the dynamics that is introduced
in the sQSSA (Fig. 2 B).

2. Because the pQSSA and tQSSA lead to equivalent
systems (Eqs. 21–23 and Eqs. 18–20), the resulting
dynamics are identical, up to a change of variables.
In sum, due to complete timescale separation between
variables, reduced ODE models obtained using the
tQSSA or the pQSSA approximate the dynamics of the
original system more accurately than the sQSSA.
Stochastic QSSA

We have derived the reduced system of a genetic negative
feedback model (Eqs. 1–5) using three types of the QSSA.
These different reductions result in different propensity
functions in the stochastic QSSA. We now investigate how
the accuracy of the stochastic QSSA depends on the choice
of the reduction.

For discrete stochastic simulations, we need to convert
the concentration of a reactant to the absolute number
of molecules (Fig. 1). For instance, the concentration of
mRNA, M, and the number of mRNA molecules, nM, are
nDA

nDT

¼ 1

2nDT

�
nDT

� nR � KdUþ
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðnDT

� nR � KdUÞ2 þ 4KdUnDT

q �
z

8>><
>>:

1 nR ¼ 0

0:993939 nR ¼ 1

0:98789 nR ¼ 2

« «

: (26)
related by M ¼ nM/U, where U represents the volume of
the system. In this study, we choose U ¼ 1 for simplicity,
so that the numerical values of the concentration and the
number of molecules are equal. Using this type of relation,
we obtain the propensity functions of the reactions from
the corresponding macroscopic rate functions of the full
and the three reduced ODE models (see Tables S2–S5).
The results of stochastic simulations with these propensity
functions are shown in Fig. 3 A. Similar to the determin-
istic simulations (Fig. 2 B), the simulations using the sto-
chastic sQSSA exhibit faster oscillations than the full
system, and simulations using the stochastic tQSSA
correctly predict the dynamics of the full system
(Fig. 3 A). The deterministic reductions obtained using
the tQSSA and the pQSSA are equivalent (Fig. 2 B).
This suggests that their stochastic counterparts will also
behave similarly. However, this is not the case: Simulations
Biophysical Journal 107(3) 783–793
using the stochastic pQSSA do not provide an accurate
approximation of the full system (Fig. 3 A). In particular,
the fraction of active DNA, nDA

=nDT
, which determines the

transcription rate of mRNA, exhibits large jumps when using
the stochastic sQSSA and pQSSA, in contrast to the stochas-
tic tQSSA (Fig. 3 A).

This surprising behavior of nDA
=nDT

when using the sto-
chastic sQSSA and pQSSA is a result of the sensitive depen-
dence of this ratio on the number of free repressor, nF,

nDA

nDT

¼ KdU

nF þ KdU
z

8>><
>>:

1 nF ¼ 0

0:2 nF ¼ 1

0:11 nF ¼ 2

« «

; (25)

which is derived from the nonelementary form of the sQSS
solution (Eq. 7). Only a few molecules of transcription

factor are needed to strongly repress transcription. There-
fore, when the QSS solution (Eq. 7) is used to derive
nDA

=nDT
(Eq. 25) in the case of the stochastic sQSSA or

pQSSA, the stochastic simulations become extremely sensi-
tive to fluctuations in nF when nF is small. This is the cause
of the large jumps seen in Fig. 3 A and the disagreement be-
tween the dynamics of the reduced and the original systems.
The stochastic pQSSA leads to additional errors because the
prefactor defined by Eq. 24 is also sensitive to fluctuations
in nF (Fig. 3 A).

However, in the stochastic tQSSA, the ratio nDA
=nDT

,
which is derived from the tQSS solution (Eq. 17), is less
sensitive to changes in the total amount of repressor, nR:
As a result, the ratio nDA
=nDT

does not exhibit large
jumps, and the dynamics of the original system are approx-
imated accurately when using the stochastic tQSSA
(Fig. 3 A).

The sensitivity of the ratio nDA
=nDT

to changes in nF de-
pends on system parameters. We expect that when this
sensitivity is small, the stochastic sQSSA or pQSSA become
more accurate. One way to reduce such sensitivity is to in-
crease Kd in Eq. 25. As Kd increases, the deterministic sys-
tem ceases to oscillate and asymptotically approaches a
fixed point, so that we can measure the coefficient of varia-
tion (CV) of nM at equilibrium to describe the variability in
the system. As shown in Fig. 3 B, as Kd increases and the
sensitivity of Eq. 25 decreases, the stochastic sQSSA and
pQSSA become more accurate. Furthermore, the stochastic
tQSSA is accurate at all values of Kd due to the low sensi-
tivity of Eq. 26.



FIGURE 3 Stochastic QSSA. (A) Whereas the deterministic pQSSA and tQSSA are equivalent (Fig. 2 B), simulation results of the stochastic pQSSA and

tQSSA do not agree. In particular, the amount of active DNA, described by Eqs. 25 and 26, exhibits large jumps when using the sQSSA and the pQSSA, but

not the tQSSA. (Red) Results of the deterministic simulation of the full system; (blue) results of the stochastic simulations. (B) As Kd increases, the sensitivity

of the QSS solution (Eq. 25) decreases, which results in more accurate simulations of the stochastic QSSA. The coefficient of variation (CV) of mRNA (nM) at

its steady state is estimated with 25,000 independent simulations for each system. Each simulation is run until 20 h of reaction time to ensure the system is in

the stationary state. To see this figure in color, go online.
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The accuracy of the stochastic QSSA depends on
the sensitivity of the QSS solution

We next provide a more complete analysis of the relation-
ship between the sensitivity of the QSS solution and the ac-
curacy of the stochastic QSSA. In our model, the reversible
binding between free repressor protein and DNA,

Fþ DA #
kf

kb
DR; (27)
is much faster than other reactions. The amount of active
DNA is governed by this fast reaction and determines the

dynamics of the slow process, specifically the transcription
of mRNAwith propensity function aMnDA

. Previous studies
have shown that, assuming timescale separation, this propen-
sity function can be approximated by an effective propensity
function, aMhnDA

i (4,5,10). This approach is known as the
ssSSA (Fig. 1). Here, the average, h,i is defined by

hxih
XN
x¼ 0

xPðxjSÞ; (28)
where P(xjS) is the stationary probability distribution of x
given a fixed state, S, of slow species. That is, we compute

the average of the fast species in quasi-equilibrium. Hence,
hnDA

i is the mean of the steady-state distribution of active
DNA evolving only through fast reactions, with slow species
‘‘frozen’’ in time. The main idea behind the ssSSA is that nDA

quickly relaxes to hnDA
i, so that over slow timescales nDA

can
be replaced with hnDA

i (Fig. 1) (4,5,10). However, hnDA
i is

usually unknown, so the stochastic QSSA approximates
hnDA

i with a QSS solution. One can estimate the error in
using either the sQSS solution nDA

ðnFÞ (Eq. 25) or the
tQSS solution nDA

ðnRÞ (Eq. 26) to approximate hnDA
i by
equating moments (12) (see the Supporting Material for
details). For the stochastic sQSSA and pQSSA, this leads to

hnDA
iznDA

ðhnFiÞ þ VarðnDA
Þ

nDA
ðhnFiÞ

dnDA
ðhnFiÞ

dhnFi ; (29)

and for the stochastic tQSSA, we arrive at
hnDA
iznDA

ðnRÞ þ VarðnDA
Þ

nDA
ðnRÞ

dnDA
ðnRÞ

dnR
: (30)

Here, nDA
ðhnFiÞ in Eq. 29 agrees with the expression for

nDA
ðnFÞ derived from the sQSS solution (Eq. 25) because
hnFi approximates nF under slow timescale. The errors of
both the sQSS and tQSS solutions above depend on the
Fano factor of the fast species, VarðnDA

Þ=nDA
; because the

QSS solutions agree with hnDA
i under the moment closure

assumption (see the Supporting Material for details). That
is, the error in the stochastic QSSA arises mainly from
ignoring the variance of fast variables, which will vanish
along with random fluctuations in the limit of large system
size. Interestingly, the magnitude of the error depends on the
sensitivity of the QSS solution. In particular, for dnDA

=dnR;
the sensitivity of the tQSS solution (Eq. 26), is small
because ����dnDA

dnR

���� ¼
����dnDR

dnR

����<1;

regardless of parameter choice. This explains the accuracy

of the stochastic tQSSA (Fig. 3). However, the sensitivity
of the sQSS solution ðdnDA

ðhnFiÞ=dhnFiÞ can be large (Eq.
25). Equation 29 implies that the accuracy of the stochastic
sQSSA and pQSSA deteriorates as dnDA

ðhnFiÞ=dhnFi in-
creases, which explains our previous simulation results
(Fig. 3). From Eqs. 29 and 30, we can also compare the
Biophysical Journal 107(3) 783–793
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errors of the two approximations obtained with the sQSSA
and the tQSSA:

hnDA
i � nDA

ðhnFiÞ
hnDA

i � nDA
ðnRÞ z

dnDA
ðhnFiÞ

dhnFi
�

dnDA
ðnRÞ

dnR

¼ dnR
dhnFi ¼ 1þ dhnDr i

dhnFi>1:
(31)

This inequality follows from the observation that hnDR
i

increases monotonically with hnFi. Equation 31 indicates
that the tQSSA provides a better estimate of hnDA

i than
the sQSSA or the pQSSA. More generally, the tQSS solu-
tion has lower sensitivity than sQSS or pQSS solutions if
the components of the total variable used in the tQSSA
have a positive, monotonic relationship with the variable
used in the sQSSA or the pQSSA. That is, let us assume
that T ¼ T1 þ T2 þ . þ Tn is the total variable used in
the tQSSA (e.g., R) and T1 is the slow variable used for
the sQSSA and the pQSSA (e.g., F). If dTi/dT1 > 0 for all
i ¼ 2,.n, then the tQSS solution always has lower sensi-
tivity than the sQSS solution or the pQSS solution. Widely
used QSS solutions, such as Hill functions, satisfy this
condition.

In summary, the nonelementary form of the QSS solu-
tions derived using the sQSSA and the tQSSA provide
estimates of the first moment of the fast species under a
moment closure assumption, but with different choices of
coordinates (Fig. 1). The error introduced by truncating
higher moments depends on the sensitivity of the QSS
solutions in both cases. These results are generalized to
any system in which reversible binding reactions are faster
than other reactions. The proof of the following theorem
can be found in the Supporting Material.

Theorem

Assume that a biochemical reaction network includes a
reversible binding reaction with a dissociation constant
Kd ¼ kb/kf,

Sþ F#
kf

kb
C; (32)

that is faster than the other reactions in the system. Let T h
S þ C and U h F þ C. If Var(nC) << nTnU, then hnCi and

hnFi satisfy

hnCiznCðnTÞ þ VarðnCÞ
nFðnTÞ

dnCðnTÞ
dnT

; (33)

hnFiznFðnTÞ þ VarðnFÞ dnFðnTÞ
; (34)
nFðnTÞ dnT

where nC(nT) is the solution of the tQSS equation, nC
2 –
(nU þ nT þ KdU) nC þ nUnT ¼ 0, and nF(nT) ¼ nU –
nC(nT). Similarly,
Biophysical Journal 107(3) 783–793
hnCiznCðhnSiÞ þ VarðnCÞ
nFðhnSiÞ

dnCðhnSiÞ
dhnSi ; (35)

hnFiznFðhnSiÞ þ VarðnFÞ dnFðhnSiÞ
; (36)
nFðhnSiÞ dhnSi

where nC(hnSi) is the solution of the sQSS equation, (hnSi þ
KdU)nF þ nUhnSi ¼ 0, and nF(hnSi) ¼ nU – nC (hnSi).
Michaelis-Menten enzyme kinetics

We first apply our theorem to Michaelis-Menten enzyme
kinetics (21,29) under the assumption that the product of
the reaction can revert-back to substrate. This example
was recently used to explore the accuracy of the stochastic
sQSSA (14). The deterministic model is described by

_S ¼ �kf SEþ kbCþ ksP; (37)

_C ¼ kf SE� kbC� kpC; (38)
_P ¼ kpC� ksP; (39)
where the total enzyme concentration, ET h C þ E, is con-

stant. In this system, the free enzyme (E) reversibly binds
substrate (S) to form the complex (C). The complex irrevers-
ibly dissociates into product (P) and free enzyme. The prod-
ucts can be converted back to substrate, and hence the
substrate concentration is not equal to zero in steady state.
We assume that binding (kf) and unbinding (kb) between S
and E are much faster than the other reactions (see Table
S6 for the details of parameters). Then, using conservation,
ST h S þ C þ P and solving the QSS equation ( _C ¼ 0), we
obtain the sQSSA system,

_S ¼ �kpCðSÞ þ ksðST � S� CðSÞÞ; (40)

where
CðSÞ ¼ ETS

Km þ S
;

Km ¼ �
kb þ kp

�	
kf :
Next, if we define ThSþ C, we obtain the tQSSA system,
_T ¼ �kpCðTÞ þ ksðST � TÞ; (41)

where ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiq

CðTÞ ¼

ET þ Km þ T � ðET þ Km þ TÞ2 � 4ETT

2
:

In the stochastic QSSA, by chaining the concentration to the
number of molecules in these QSS solutions (Eqs. 40

and 41), we approximate the average of fast species at
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quasi-equilibrium (hnCi). Then, we can derive the relative
errors of these approximations according to Eqs. 33 and 35:

hnCi � nCðnTÞ
hnCi z

1

hnCi
VarðnCÞ
nEðnTÞ

dnCðnTÞ
dnT

; (42)

hnCi � nCðhnSiÞ 1 VarðnCÞ dnCðhnSiÞ

hnCi zhnCi nEðhnSiÞ dhnSi : (43)

Similar to Eq. 31,

dnC=dnS
dnC=dnT

>1

regardless of parameter choice. For illustration, we select
two sets of parameters: for the first

dnC=dnS
dnC=dnT

z1

(Fig. 4 A), and for the second
dnC=dnS
dnC=dnT

[1

(Fig. 4 B). As expected from Eqs. 42 and 43, with the first
FIGURE 4 The stochastic QSSA of enzyme kinetics. (A and B) The dis-

tribution of Tof 20,000 independent stochastic simulations of the full model

(Eqs. 37–39) for parameter sets having similar sensitivities (A) and different

sensitivities (B) of sQSS and tQSS solutions (see Table S6 for parameters).

Each simulation is run for 15,000 s of reaction time to ensure the system is

in equilibrium. (C and D) The errors of QSS solutions used to approximate

hnCi for a given T. (Blue circles and red squares) Relative errors of the tQSS
solution (left side of Eq. 42) and the sQSS solution (left side of Eq. 43).

(Orange and green lines) Estimates of the relative errors (right sides of

Eqs. 42 and 43). (E and F) The ratio between the errors with sQSS and

tQSS solutions in panels C andDmatches the ratio between the sensitivities

of the sQSS and tQSS solutions. (G and H) Relative errors of the CVof the
choice of parameters, tQSS and sQSS solutions give compa-
rable results in estimating hnCi (Fig. 4 C). With the second
parameter set, the sQSS solution leads to much larger errors
than the tQSS solution (Fig. 4 D). Furthermore, Eqs. 42 and
43 predict that the error ratio depends on the ratio of sensi-
tivities of the sQSS and tQSS solutions, i.e.,

dnC=dnS
dnC=dnT

:

This prediction is supported by our simulations (Fig. 4, E

slow species when the stochastic sQSSA (Eq. 40) and tQSSA (Eq. 41) are

used. To see this figure in color, go online.

and F). Along with successful estimation of hnCi when pa-
rameters are chosen so that

dnC=dnS
dnC=dnT

z1;

the stochastic simulations of slow variables using both the

sQSSA (Eq. 40) and the tQSSA (Eq. 41) become accurate
(Fig. 4 G). However, for the parameters such that

dnC=dnS
dnC=dnT

[1;

the stochastic sQSSA results in much larger error than the

stochastic tQSSA (Fig. 4 H).
Genetic negative feedback loop with protein
dimerization

Next, we consider a more complex system that includes
multiple fast reversible binding reactions. We adopt a model
of the l-repressor protein cI of phage-l in Escherichia coli
(30,31), in which a dimeric protein represses its own tran-
scription. The slow reactions in the model consist of tran-
scription, translation, and degradation:

DA


!aM
DA þM; (44)

M


!aP
M þ P; (45)
Biophysical Journal 107(3) 783–793
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M


!bM f; (46)
P


!bP f; (47)
where DA is free DNA, M is mRNA, and P is monomeric
protein. See Table S7 for the details of parameters. The
fast reactions of the model are the dimerization of monomer
and the binding of the dimer to the DNA,

Pþ P#
kf 1

kb1
P2; (48)

P þ D #
kf 2

D ; (49)
FIGURE 5 Genetic negative feedback loop with protein dimerization.

(A and B) ðdnDA=dnPÞ=ðdnDA=dnTÞ and ðdnP2
=dnPÞ=ðdnP2

=dnTÞ, ratios be-
tween the sensitivities of sQSS and tQSS solutions for nDA

and nP2
at equi-
2 A
kb2

R

where P2 is dimeric protein and DR is DNA bound to the
dimer. By applying the QSSA to these two fast reactions,
we obtain the sQSS solutions for P2 and DA in terms of P,

P2ðPÞ ¼ P2
	
K1;

DAðPÞ ¼ K2
;

librium of two parameter sets (see Table S7 for parameters). (C–F) Relative

errors of the averages of fast species simulated using the stochastic QSSA.

Here, hnDi and hnP2
i are the average of nD and nF at equilibrium. (G and H)

Relative errors of CVof a slow species, n , at equilibrium. The results were
K2 þ P2ðPÞ

where K1 ¼ kb1/kf1 and k2 ¼ kb2/kf2. If we define T h P þ

M

obtained from 50,000 independent simulations. Each simulation is run until

5000 s for the first parameter set and 15,000 s for the second parameter set

of reaction time to ensure the system is in the stationary state. To see this

figure in color, go online.
2P2þDR and assume DR� T, we obtain the tQSS solutions
for P2 and DA in terms of T:

P2ðTÞzK1 þ 4T �
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
K2

1 þ 8K1T
p
2

;

DAðTÞ ¼ K2
:

K2 þ P2ðTÞ

We use these QSS solutions to derive the propensity func-
tions for the stochastic sQSSA and tQSSA. When the sensi-
tivities of the sQSS solutions are much larger than those of
the tQSS solutions (Fig. 5 A), the stochastic sQSSA pro-
duces much larger errors in the average value of the fast
variables, than the stochastic tQSSA (Fig. 5, C and E). As
a result, the stochastic sQSSA results in a larger error in
the CV of the slow variable, nM, than the stochastic tQSSA
(Fig. 5 G). When the sensitivities of the sQSS solutions are
reduced by changing parameters (Fig. 5 B), the stochastic
sQSSA more accurately predicts the average value of fast
variables, (Fig. 5, D and F). Hence, the relative error in
the CV of the slow variable, nM, decreases (Fig. 5 H).
Linear noise approximation under slow
timescales

We have shown that the accuracy of the stochastic QSSA
depends on both the sensitivity of the QSS solution and
the variance of fast species (Eqs. 33–36). However, the
Biophysical Journal 107(3) 783–793
variance of fast species is usually unknown. Here, we derive
the error in the variance of slow species simulated with the
stochastic QSSA without using the variance of fast species.
For this, we use an LNA that allows the estimation of the
variance of variables in a monostable system when the
number of molecules is not too small (13–15,32). Thus,
with LNA, we can estimate the variance of slow species
in the stochastic QSSA and compare it with the original
system.

Consider a two-dimensional deterministic system that
consists of a slow species, S, and a fast species, F,

_S ¼ uðS;FÞ; _F ¼ vðS;FÞ: (50)

If the system is monostable, the corresponding LNA is

given by

_hS ¼ uShS þ uFhF þ
1ffiffiffiffi
U

p SS
ffiffiffi
A

p
~GðtÞ; (51)

_h ¼ vFh þ vFh þ 1ffiffiffiffip SF
ffiffiffi
A

p
~GðtÞ; (52)
F S F

U

whose solutions, hs and hF, provide approximations for

the size of fluctuation of S and F from their steady state.
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SS and SF are stoichiometry matrices involving the variable
S and F, respectively; A is a diagonal matrix whose entries
are the elements of macroscopic rate functions; and uS, uF,
vS, and vF are components of the Jacobian at the steady
state. Furthermore, ~GðtÞ is a vector of Gaussian noise
whose elements, Gi(t) for i ˛ {S, F}, satisfy hGi(t)i ¼
0 and hGi(t) Gj(t

0)i ¼ dijd(t – t
0
), where dij and d(t) are

the Kronecker and Dirac d-functions, respectively. Because
the solutions of the LNA (hS and hF) are multivariate
Gaussian probability distributions, we can approximate
the variance of S and F, which is difficult to obtain from
the original full CME (13–15,32). Recently, Thomas
et al. (15) showed that when timescale separation holds,
the effective stochastic description of intrinsic noise in
the slow species can be described by the slow-scale LNA
(ssLNA):

_hS ¼ �
uS � uFv

�1
F vS

�
hS þ

1ffiffiffiffi
U

p �
SS � uFv

�1
F SF

� ffiffiffi
A

p
~GðtÞ:

(53)

From this ssLNA, the variance of slow species (sS) can be
derived by solving the Lyapunov equation (32),

sS ¼ S0AS0�1

2JU
; (54)

where S
0 ¼ SS � uFvF

�1 SF and J ¼ uS � uFvF
�1 vS.

Thomas et al. (15) also derived the LNA corresponding to
the reduced deterministic system with the QSSA:

_hS ¼ �
uS � uFv

�1
F vF

�
hS þ

1ffiffiffiffi
U

p SS
ffiffiffi
A

p
~GðtÞ: (55)

This is the LNA of the reduced stochastic model obtained
via the stochastic QSSA. In contrast to the ssLNA, the diffu-
sion term of this LNA does not have uFvF

�1 SF. Thus, the
LNA corresponding to the stochastic QSSA (Eq. 55) pre-
dicts the variance of slow species (sS), which is different
from Eq. 54 of the ssLNA, as

sS ¼ SSAS
�1
S

2JU
; (56)

where J¼ uS� uFvF
�1 vS. Because uFvF

�1 SF represents the
contribution of the fast species to the variation of the slow
species (15), the difference between Eqs. 54 and 56 indi-
cates that the stochastic QSSA does not include the contri-
bution of fast species to the variation of slow species. This
is consistent with our moment analysis, which shows that
the error of the stochastic QSSA stems from ignoring the
variance of the fast species. Furthermore, uFvF

�1, which
determines the error in sS (Eq. 56) simulated with the sto-
chastic QSSA, can be directly calculated from the Jacobian
of the deterministic system. Thus, by calculating uFvF

�1 of
the deterministic system used in the tQSSA or sQSSA, we
can estimate the accuracy of sS simulated with the stochas-
tic tQSSA or sQSSA.

If we define ThSþ F, then from Eq. 50, it follows that

_T ¼ uðS;FÞ þ vðS;FÞhuðT;FÞ; (57)

_F ¼ vðS;FÞhvðT;FÞ: (58)
Then, the error in the diffusion term of the LNA correspond-
�1
ing to the stochastic tQSSAwill be uFvF . Implicit differen-

tiation of the tQSS equation gives

dFðTÞ
dT

¼ �vT
vF
:

From this, we can find the error in the diffusion term of the
LNA corresponding to the stochastic tQSSA:

uF
vF

¼ �uF
vT

dFðTÞ
dT

: (59)

Note that the error depends on the sensitivity of the tQSS
solution, dF(T)/dT. In the example of Michaelis-Menten

enzyme kinetics (Eqs. 37 and 38), the right side of Eq. 59
becomes

kp
kf E

dCðTÞ
dT

:

This will be small because dC(T)/dT % 1 and kp/kfE � 1
due to timescale separation. This indicates that the stochas-
tic tQSSAwill accurately approximate the variance of slow
species as long as timescale separation holds (Fig. 4).

In a similar way, we can derive the error-of-diffusion term
in the LNA corresponding to the stochastic sQSSA (see the
Supporting Material for details):

�uF þ vF
vS

dFðSÞ
dS

: (60)

The error in the diffusion term of the stochastic sQSSA also

depends on the sensitivity of the sQSS solution, dF(S)/dS. In
the example of Eqs. 37 and 38, Eq. 60 becomes

kp þ ks
kf E

dCðSÞ
dS

:

Due to timescale separation, kp þ ks=kf ET � 1:However, in

contrast to dC(T)/dT % 1, dF(S)/dS can be very large de-
pending on the parameter choice. Thus, even with timescale
separation, the stochastic sQSSA cannot provide an accurate
approximation for the variance of slow species if dC(S)/dS is
large. Furthermore, from Eqs. 59 and 60, we can show that
the ratio between these errors depends on

dFðSÞ=dS
dFðTÞ=dT;
Biophysical Journal 107(3) 783–793
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similar to Eq. 31 (see the Supporting Material for details). In
summary, LNA analysis shows that the sensitivity of the
QSS solution and timescale separation determine the error
in the variance of slow species simulated with the stochastic
QSSA.
DISCUSSION

Various deterministic QSSAs have been used to reduce ODE
models of biochemical networks (21–29). Recently, the
macroscopic reaction rates obtained using deterministic
QSSAs have been used to derive approximate propensity
functions for discrete stochastic simulations of slowly chang-
ing species (Fig. 1). Because this stochastic QSSA does not
simulate rapidly fluctuating species, it greatly increases
computation speed. The implicit assumption underlying
this approach is that the stochastic QSSA is valid whenever
its deterministic counterpart is valid, i.e., whenever timescale
separation holds (6,11,12,17,19). If this were true, both the
stochastic pQSSA and tQSSA would be equally accurate
because their deterministic counterparts are dynamically
equivalent (Fig. 2). However, our simulations show that
this is not always true and the stochastic tQSSA is more
accurate than the stochastic pQSSA (Fig. 3 A).

We find that the accuracy of the stochastic QSSA is deter-
mined not only by timescale separation, but also by the
sensitivity of the QSS solution, which relates the fast species
and the slow species at quasi-equilibrium (Fig. 3 B). Specif-
ically, our analysis of the moment equations shows that the
sensitivity of QSS solutions determines how accurately the
propensity functions obtained with the stochastic QSSA
approximate the effective propensity functions obtained
via the ssSSA (Fig. 4). This indicates that the propensity
functions obtained from nonelementary reaction rate func-
tions (e.g., Hill function) are accurate only when their sensi-
tivity is low, which provides an apparently novel condition
for the validity of the stochastic QSSA. The error in the sto-
chastic QSSA also depends on the variance of fast species,
which is usually unknown. Therefore, low sensitivity does
not guarantee the accuracy of the stochastic QSSA if the
variance of fast species is too large.

To address this problem, we also derived the error for the
stochastic QSSA using LNA and noted that it does not
depend on the variance of fast species. We showed that for
a monostable, two-dimensional system, the low sensitivity
of the QSS solution is a sufficient condition for the accuracy
of stochastic QSSA as long as timescale separation holds. It
will be interesting to test whether the low sensitivity of the
QSS solution is a sufficient condition in systems that are
more complex.

Whereas the stochastic QSSA uses the QSS solutions to
eliminate fast reactions (4,6–8,10), other methods (e.g.,
recursion relations) have been proposed to eliminate fast
reactions (9,10,14,33–35). These other methods could be
used as alternatives when the stochastic QSSA is inaccurate
Biophysical Journal 107(3) 783–793
(i.e., if the sensitivity of QSS solution is large). Finally,
while the stochastic tQSSA is more accurate than the
sQSSA or pQSSA, it is often difficult to find a closed
form of the tQSS solution, and it needs to be calculated
numerically (27,28). It will be important to understand
how numerical calculation of the tQSS solutions affects
computation time when using the stochastic tQSSA.
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