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The failure behaviour of quasi-brittle materials is often time-dependent. This dependence is due to
physical processes taking place at the level of the micro-structure. For a rigorous modeling of the
time-dependent behaviour of that kind of solids, a two-scale approach is well suited. This paper investi-
gates time-dependent damage which microscopic origin is the subcritical micro-crack growth. We
present a two-scale time-dependent damage model completely deduced from small-scale descriptions
of subcritical micro-crack propagation, without any macroscopic assumptions. The passage from the
micro-scale to the macro-scale is done through an asymptotic homogenization approach. At the
micro-scale, the tensile failure due to the subcritical propagation of cracks is the dominant mechanism
of creep observed at the macro-scale. We consider microstructures with cracks evolving in different
subcritical regimes. We assume a complex propagation law that considers three characteristic regimes
of subcritical crack growth, corresponding to different physical processes at the crack tip level. Numerical
simulations of constant strain rate, relaxation and creep tests illustrate the ability of the developed model
to reproduce different regimes of time-dependent damage response.

� 2009 Elsevier Ltd. All rights reserved.
1. Introduction

The problem of distributed subcritical failure must be accu-
rately treated for many applications dealing with the mechanics
of quasi-brittle materials such as glasses, rocks, ceramics or cera-
mic composites. A subcritical criterion of crack propagation consid-
ers that crack may grow for energy lower than the critical limit of
fracture. The rate of crack propagation is usually related to the
stress intensity factor at the crack tips, under mode I (tensile
mode). At the micro-scale, the tensile failure due to the subcritical
propagation of cracks may represent the main micro-mechanism
of creep observed at the macro-scale. This effect can be observed
in many different materials such as rocks, ceramics or glasses
(Miura et al., 2003; Main, 2000; Nara and Kaneko, 2006; Munt
and Fett, 2001).

The constitutive modeling of the time effect on the mechanical
damage behaviour of materials (Betten, 2002; Cristescu and Hun-
sche, 1998; Lemaitre and Desmorat, 2005) can be addressed
according to two distinct approaches: (i) the phenomenological
models are based on internal variables, having empirical characters
for most of them, that are calibrated to fit with experimental
observations (Challamel et al., 2005; Pietruszczak et al., 2004),
(ii) the micromechanics-based approaches are able to capture the
physical micro-mechanisms that produce damage and irreversible
deformations which are partially or totally time-dependent. From
ll rights reserved.

ascalu).
such micro-scale considerations, Abou-Chakra Guery et al. (2009)
developed a model for argillite assuming it as a three-phase com-
posite subject to viscous and damage effects. Also Nadot et al.
(2006) (see also Dartois et al. (2009)) developed a viscoelastic dam-
age model via a scale transition approach in which damage occurs
by grain/matrix debonding.

Experimental observations of fracture propagation (e.g. Ander-
son and Grew, 1977; Meredith and Atkinson, 1985) indicate that
the dependence of fracture propagation rate on the stress intensity
factor in mode I can generally be approximated by a trimodal
behaviour (Fig. 1). In region I, the rate of stress corrosion reaction
control the velocity of the crack growth. The plateau of region II is
mainly determined by the rate of transport of reactive species to
crack tips. In region III, the drastic increase of the velocity of crack
growth up to failure is relatively independent of the chemical envi-
ronment and is controlled by mechanical rupture (Freiman, 1984;
Atkinson and Meredith, 1987). This typical three-mode regime is
characteristics of glasses, ceramics or rocks but is less marked in
metals. In most of the approaches studying the subcritical propaga-
tion of cracks, this complex trimodal behaviour is often approxi-
mated by a single mode. This approximation may be done if the
behaviour of the material is studied in a restricted range of stress
intensity factor, limiting the study in one of the three regions. On
the contrary, for a complete modeling of the problem, from crack
initiation to coalescence of cracks upon failure, the three regions
must be considered.

Previous attempts to make a link between subcritical propaga-
tion of micro-cracks and the macroscopic damage behaviour are
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Fig. 1. Velocity of the crack propagation versus the stress intensity factor. The three
regions are separated by the two characteristic stress intensity factors: KT and Km .
The bold line corresponds the composite law (Eq. (11)).
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very few, e.g. the micromechanical analysis in Okui and Horii
(1997) and Miura et al. (2003). The novelty of the present approach
is many-fold: (i) the new subcritical damage model accounts,
through a compact form of the damage law, for the three regimes
of failure described previously; (ii) it appears to be the first
subcritical model of damage deduced through the mathematical
homogenization method based on asymptotic developments; and
(iii) the subcritical damage laws allow for predictions of size
effects.

Experimental evidences on the trimodal character of the sub-
critical crack propagation are, most of the time, found at the labo-
ratory scale (through Double Torsion Test, for instance). For
applications to geomechanics and geophysics, this scale may be
considered as the microscopic scale. As observed by Scholz
(1972), the macroscopic rock creep is related to the growth of
microfissures by stress corrosion cracking that may create delayed
triggering of earthquakes. In aluminium alloys, Ruckert et al.
(2006) have shown that, within a limited range of stress intensity
factor, very good similarity has been obtained between micro- and
macro-scopic rates of crack growth. One may expect that subcriti-
cal growth take place for micro-cracks at smaller scales. These
observations motivate the consideration of the subcritical growth
of microscopic cracks as one of the origins of the time-dependent
damage behaviour.

A two-scale approach for damage was deduced in Dascalu et al.
(2008) and Dascalu and Bilbie (2007) for brittle damage. A more
general formulation of this model, including non-brittle behav-
iours, was recently given in Dascalu (2009) and a model accounting
for mixed-mode fracture in compression was developed in Franç-
ois and Dascalu (submitted for publication). The main objective
of the present contribution is to deduce a damage model from a
micromechanical description of subcritical crack propagation in
tension and that accounts for the three regimes of failure.

We assume that micro-crack propagation follows an exponen-
tial-type multi-regime subcritical law and we use homogenization
to obtain a macroscopic time-dependent damage model. The pas-
sage from the micro-scale to the macro-scale is done through the
asymptotic homogenization approach (e.g. Benssousan et al.,
1978; Sanchez-Palencia, 1980).

The paper is organized as follows. First, the three-regime
subcritical propagation law is discussed. Then, the mathematical
formulation of the two-scale problem is presented and the
macroscopic damage equations are deduced through the asymp-
totic homogenization procedure. Finally, the ability of the model
to reproduce known time-dependent behaviours for constant
strain rate, relaxation and creep tests is demonstrated
by means of numerical simulations of the local homogenized
response.
2. Subcritical crack growth

Classical fracture mechanics postulates that in a linear elastic
body an isolated crack under tensile loading will propagate in
the medium once a critical mode I stress intensity factor, K IC, has
been reached or exceeded, while for lower values of K I the propa-
gation is not possible. The subcritical criterion considers that crack
propagation is time-dependent and may occur for stress intensity
factor lower than the critical limit of fracture (Atkinson and Mere-
dith, 1987).

The most commonly used equations to describe the relation be-
tween subcritical crack growth and stress intensity factor in mode
I, K I , are the power law (Charles, 1958)

v ¼ V1ðK IÞn ð1Þ

and the exponential law (Wiederhorn and Bolz, 1970)

v ¼ V2 expð�c þ bK IÞ ð2Þ

where V1, V2, n, b and c are positive constants. The distinction be-
tween the performance of the predictions of Eqs. (1) and (2) to de-
scribe subcritical crack growth is often impossible. The range of
variation of K I in the experimental data are generally limited which
makes that both power and exponential laws fit with observations.
However, outside of the range of experimental observations the
predictions of these two constitutive equations may diverge signif-
icantly. Moreover, the previous equations are only valid in a given
region of the trimodal response of the material (Fig. 1), generally
in region I, which makes impossible the simulation of advanced
stages of material rupture (characteristic of region III).

From consideration of atomic theories and reaction rate theo-
ries of crack propagation (including stress corrosion, dissolution,
diffusion, ion-exchange and microplasticity), it is possible to relate
the empirical coefficients of Eqs. (1) and (2) with physical charac-
teristics of the microstructure. Considering crack growth as a suc-
cession of water vapor enhanced rupture of small material element
immediately adjacent to the crack tips, Salganik et al. (1997)
showed that the three regimes of crack propagation can be pre-
dicted, respectively, by the three following equations:

v ð1Þ ¼
v0/

n
0

n
exp �

U001 �X01K I

ffiffiffiffiffiffiffiffiffiffiffiffi
2pdm

p.
kT

0
@

1
A ð3Þ

v ð2Þ ¼
b0p

NAn
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2pmkT
p ð4Þ

v ð3Þ ¼
dm

s0
exp �

U003 �X03K I

ffiffiffiffiffiffiffiffiffiffiffiffi
2pdm

p.
kT

0
@

1
A ð5Þ

where T is the absolute temperature, k is Boltzmann’s constant, X01
is a stress sensitivity factor, s0 � 10�12—10�13 s is a typical period of
atomic fluctuations, /0 is the relative concentration of water in the
gas next to the crack tips, n is the number of molecules of water re-
quired for the water-assisted rupture of a single bridging bond, dm is
the length of the material structure, b0 is the bridging bond length,
NA is the Avogadro number, v0 is the mean velocity of diffusion, m is
the molecular mass of water, p is the partial pressure of water
vapor, U001 and U003 are the zero stress activation energy in regions
I and III, respectively, and X01 and X03 are stress sensitivity factors
in regions I and III. Numerical values of those parameters are re-
ported in Table 1.

Grouping the material and environmental constants by posing:

a¼ v0/n
0

n exp �U001
kT

� �
; b¼ b0p

NAn
ffiffiffiffiffiffiffiffiffiffiffi
2pmkT
p ; c¼ dm

s0
exp �U003

kT

� �
; S1 ¼ X01ffiffiffiffiffiffiffiffi

2pdm

p
kT

and

S3 ¼ X03ffiffiffiffiffiffiffiffi
2pdm

p
kT

, we obtain the following expressions:



Table 1
Material parameters used in the simulations.

E (Pa) m e (m) T (K) n /0 U001 ðJÞ

2� 109 0.3 10�2 325 1 6:32� 10�10 2� 10�19

dm (m) s0 (s) U003 (J) v ð2Þ (m/s) v0 (m/s) X01 (J) X03 (J)

25� 10�4 10�12 2� 10�18 10�8 9� 104 1:27� 10�23 8:28� 10�24
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v ð1Þ ¼ a expðS1K IÞ ð6Þ
v ð2Þ ¼ b ð7Þ
v ð3Þ ¼ c expðS3K IÞ ð8Þ

The three regions are delimited by two characteristic stress inten-
sity factors KT and Km that can be analytically determined accord-
ing to the K I—v equations (6)–(8) of each region:

KT ¼
1
S1

ln
b
a

� �
ð9Þ

Km ¼
1
S3

ln
b
c

� �
ð10Þ

The three distinct velocities (Eqs. (6)–(8)) corresponding to the
three regimes of crack propagation can be composed in a unique
rate of propagation through the following approximate relationship
(Salganik et al., 1997):

v ¼ v ð1Þv ð2Þ
v ð1Þ þ v ð2Þ

þ v ð3Þ ð11Þ

According to the value of K I with respect to KT and Km, v takes the
value v ð1Þ when K I < KT < Km (i.e. v ð3Þ � v ð1Þ � v ð2Þ), the value v ð2Þ
when KT < K I < Km (i.e. v ð3Þ � v ð2Þ � v ð1Þ) or the value v ð3Þ when
KT < Km < K I (i.e. v ð2Þ � v ð1Þ � v ð3Þ). A generic form of the compos-
ite velocity given by the relation (11) is represented in Fig. 1.

This trimodal behaviour of the micro-crack propagation has
several consequences in term of the predicted macroscopic time-
dependent response of materials. (i) In region I, the relation be-
tween velocity of crack propagation (v) and the stress intensity fac-
tor ðK IÞ is logarithmic. It means that v can never be equal to zero,
even for low value of K I. So, in theory, for periods of time tending
to infinity, the material damage may increase even at very low
stress (or strain) level. (ii) The plateau of region II induces a ductile
behaviour of material. In that region, the stress intensity factor (re-
lated to the loading level) may increase without producing an
acceleration of crack propagation. (iii) On the contrary, region III,
attainable for high loading level, is characterized by a brittle rup-
ture of materials.
a

ε

x1

x2

Fig. 2. (a) Micro-fissured medium with locally periodic microstructure, e is the size of a pe
3. Two-scale problem

In this paper, we consider the quasi-static elasto-damage evolu-
tion of the material body. At a given instance of time, the problem
is that of an elastic body containing a large number of micro-
cracks. We suppose that the micro-crack distribution is locally
periodic. Each crack is assumed to be horizontal (parallel to the
x1-axis), straight and of length l. The damage variable d is defined
as the ratio d ¼ l

e between the crack length l and the distance be-
tween the centers of neighbor micro-cracks e or, equivalently,
the size of a periodicity cell (see Fig. 2a).
3.1. Equilibrium problem

We consider the instantaneous equilibrium of the initial heter-
ogeneous medium, that we assume to be a two-dimensional iso-
tropic elastic medium containing a locally periodic array of
micro-cracks. In the solid part Bs ¼ B n C, where B is the whole
body and C the union of all micro-cracks inside B, the momentum
equilibrium is

ore
ij

oxj
¼ 0; in Bs ð12Þ

and the linear elasticity constitutive relation is

re
ij ¼ aijklexklðueÞ ð13Þ

where aijkl is the elasticity tensor. re
ij is the stress field and u� the

displacement field from which the strain tensor is deduced in the
small deformation hypothesis

exijðueÞ ¼ 1
2

oue
i

oxj
þ

oue
j

oxi

� �
ð14Þ

On the crack faces, traction free conditions are assumed:

reN ¼ 0 ð15Þ

where N is a unit normal vector on the crack faces.
d

b

y1

y2

ε
l

1

1

l

riod and l is the local micro-crack length. (b) Unit cell with rescaled crack of length d.
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3.2. Asymptotic homogenization

The locally periodic microstructure is constructed from a refer-
ence unit cell Y (Fig. 2b) referred to microscopic coordinates
ðy1; y2Þ. Rescaled with the small parameter e, the unit cell becomes
the physical period of the material eY . We assume that the micro-
structural length e is small enough with respect to the characteris-
tic dimension of the whole body, so that to distinguish between
microscopic and macroscopic variations. These variations of
mechanical fields at different scales are represented by distinct
variables: x the macroscopic variable and y ¼ x=e the microscopic
variable.

The unit cell Y contains the rescaled crack CY and Ys ¼ Y n CY its
solid part. Following the method of asymptotic homogenization
(e.g. Benssousan et al., 1978; Sanchez-Palencia, 1980), we look
for expansions of ue and re in the form

ueðx; tÞ ¼ uð0Þðx; y; tÞ þ euð1Þðx; y; tÞ þ e2uð2Þðx; y; tÞ þ � � � ð16Þ

reðx; tÞ ¼ 1
e

rð�1Þðx; y; tÞ þ rð0Þðx; y; tÞ þ erð1Þðx; y; tÞ þ � � � ð17Þ

where uðiÞðx; y; tÞ; rðiÞðx; y; tÞ; x 2 Bs; y 2 Y are smooth functions
and Y-periodic in y.

Based on previous works (Leguillon and Sanchez-Palencia,
1982; Sanchez-Palencia, 1980), it can be shown that the substitu-
tion of Eqs. (16) and (17) in the set of expressions (12)–(15), leads
to boundary value problems for the different orders of e, formu-
lated on the unit cell Y. It can be proved that the function
uð0Þ ¼ uð0Þðx; tÞ is independent of y variable, representing the mac-
roscopic displacement field.

For given uð0Þðx; tÞ, for traction-free cracks, we deduce (Leguillon
and Sanchez-Palencia, 1982; Sanchez-Palencia, 1980) the following
boundary-value problem for the function uð1Þ:

o

oyj
aijkleykl uð1Þ

� �� �
¼ 0; in Ys ð18Þ

aijkleykl uð1Þ
� �

Nj ¼ �aijklexkl uð0Þ
� �

Nj; on CY ð19Þ

and with periodicity boundary conditions on the external boundary
of the cell.

The microscopic correction uð1Þ has a linear dependence of the
macroscopic deformations: uð1Þðx; y; tÞ ¼ npqðyÞexpq uð0Þ

� �
ðx; tÞ. Here,

the characteristic functions npqðyÞ are elementary solutions of (18)
and (19), for the particular macroscopic deformations
expq uð0Þ

� �
¼ dpq.

By introducing the mean value operator h�i ¼ 1
jYj
R

Ys
�dy, where

jYj is the area of Y, we can prove (Leguillon and Sanchez-Palencia,
1982; Dascalu et al., 2008) that the macroscopic stress is

Rð0Þij � rð0Þij

D E
¼ CijklðdÞexkl uð0Þ

� �
ð20Þ

as a function of the macroscopic strain ex uð0Þ
� �

where
rð0Þij ¼ aijkl exkl uð0Þ

� �
þ eykl uð1Þ

� �� �
and

CijklðdÞ ¼
1
jY j

Z
Ys

aijkl þ aijmneymn nkl
� �� �

dy ð21Þ

are the homogenized coefficients. The effective constitutive relation
(20) should be used in the macroscopic equilibrium equation which
can be deduced in the form (e.g. Sanchez-Palencia, 1980):

o

oxj
CijklðdÞexkl uð0Þ

� �� �
¼ 0 ð22Þ

Although it is not our intention to consider the influence of the
crack orientations but to focus on the determination of a complex
damage law for a particular crack direction, we note that the pre-
vious formulae are valid for every crack orientation in the period-
icity cell. If we denote by h the angle made by the crack line with
the horizontal direction, then the effective coefficients are func-
tions of d and h : Cijkl ¼ Cijklðd; hÞ. The couple ðd; hÞ completely char-
acterizes the state of damage at a given macroscopic point.

These coefficients Cijkl can be computed by solving the unit cell
problems (18) and (19) for every d, the crack line being assumed
horizontal. In what follows, we consider that the elastic solid ma-
trix is isotropic, of elastic constants E and m. For given couple ðE; mÞ,
the coefficients can be computed for a large number of d 2 ½0;1�
and, by interpolation, we can have polynomial expressions of
CijklðdÞ. For this, polynomials of degree 5 have been used.

The FEAP finite element code (Taylor, 2008) has been used for
the computation of these homogenized coefficients. They are rep-
resented in Fig. 3 as a function of the damage variable d. The pres-
ence of the micro-cracks leads to induced anisotropy, the resulting
effective elastic response being orthotropic. We also note the non-
linear dependence of the homogenized coefficients on the damage
variable d. With an horizontal crack line (direction 11), the loss of
rigidity with the damage variable increase is maximum when the
unit cell is loaded in the vertical direction (22), i.e. perpendicular
to the crack (coefficients C2222 and C1122) while the rigidity is much
less affected when loaded in the horizontal direction (11), i.e. par-
allel to the crack (coefficient C1111). This is characteristic of the
damage-induced anisotropy observed at the macro-scale.

For d ¼ 1, the residual value of C2222 and C1122 is not zero be-
cause the micro-crack tips are assumed to remain in contact, even
for fully damaged state. It produces a residual rigidity of the unit
cell. It explains that, in the numerical simulations (Section 5), the
strain-controlled tests end up with a residual stress value.

4. Damage equations

The effective constitutive law presented in the previous section
enables us to compute the stress–strain behaviour of the material
at a given state of non-evolving damage. In this section, we con-
sider the evolution of micro-cracks and we deduce the correspond-
ing macroscopic evolution of damage.

Our objective is to deduce the equations characterizing the elas-
to-damage evolution around a macroscopic point. Under a given
loading of the macroscopic structure, the resulting local state of
stress leads to the activation of particular families of micro-cracks.
In what follows, we place ourselves in such a macroscopic point
and we assume that in a small vicinity a family of straight micro-
cracks is activated and they are propagating in mode I, symmetri-
cally with respect to their middle-point. Their evolution will be de-
scribed by the composed subcritical law of propagation (11).

To deduce the macroscopic damage equations we will follow
the method developed in Dascalu et al. (2008) and Dascalu
(2009). Let us denote the microscopic energy-release rate Ge,
which depends on the crack length l. The micro-crack propagation
is described by the following relation:

_l ¼ �vðGeÞ ð23Þ

In our particular case, �v is given by (11), when expressed in terms of
the energy release rate. This relation should be completed with the
reduced dissipation inequality:

Df � Ge
_l P 0 ð24Þ

Eqs. (23) and (24) present the general criterion of time-dependent
crack propagation at the micro-scale. For brittle fracture, the Grif-
fith criterion can be considered: _l ¼ 0 when Ge < Gf and _l P 0 when
Ge ¼ Gf , where Gf is the critical fracture energy of the material. This
case was considered in Dascalu et al. (2008) where a brittle damage
model has been deduced. For more complex fracture evolutions, Gf

may be a function of the crack length l and the crack speed _l (e.g.
Freund, 1998). Such general fracture laws have been considered in
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Fig. 3. Homogenized coefficients for horizontal crack orientation for elastic parameters E = 2 GPa and m = 0.3.
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Dascalu (2009), where a general damage model has been obtained
by homogenization. In our particular case, the relation (23) corre-
sponds to a critical fracture energy Gf that depends on the crack
velocity _l.

Our subcritical propagation law _l ¼ vðK IÞ, where the function
vðK IÞ is given by (11), can be written in terms of fracture energy
by using the relation between the stress intensity factor and the
energy release rate, for the mode I propagation:

Ge ¼
1� m2

E
ðK IÞ2 ð25Þ

It was proved in Dascalu et al. (2008) that, for evolving micro-
cracks, we have

Ge

e
¼ Yd � �

1
2

dCijklðdÞ
dd

exkl uð0Þ
� �

exij uð0Þ
� �

ð26Þ

where Yd is the (macroscopic) damage energy release rate. This
relation is entirely deduced from microstructural assumptions,
without any assumptions on the scaling of energy. This scaling with
e is naturally appearing in the derivation of the damage equation
(26). For evolving damage, the previous relation shows that the
microstructural length e makes the link between the surface energy
dissipated during micro-crack propagation and damage energy dis-
sipated per unit volume. This energy scaling property will assure
the presence of the internal length e in the damage laws.

Using (26) from the micro-crack evolution laws (23) and (24),
we deduce the damage law

_d ¼ 1
e

�vðeYdÞ ð27Þ

Dd � Yd
_d P 0 ð28Þ

We remark the presence of the material length in the damage mod-
el given by the relations (27) and (28).

To complete the proof of the thermodynamic compatibility for
the damage model obtained by homogenization, we note that
one can introduce the macroscopic free energy function
Wðexij; dÞ �
1
2

CijklðdÞexkl uð0Þ
� �

exij uð0Þ
� �

ð29Þ

which becomes a potential for the associated thermodynamical
‘‘forces” (Lemaitre and Desmorat, 2005):

Rij ¼
oW
oexij

; Yd ¼ �
oW
od

ð30Þ

Combination of (25) and (26) yields to the expression of the
stress intensity factor

K I ¼ � eE
2ð1� m2Þ

oCijklðdÞ
od

exkl uð0Þ
� �

exij uð0Þ
� �� �1

2

ð31Þ

Substituting K I of Eq. (31) in the composite subcritical law (11) and
considering the definition of the damage variable d ¼ l

e gives us the
following macroscopic damage law in the form of (27):

_d ¼ 1
e

ab expðS1K IÞ
a expðS1K IÞ þ b

þ c expðS3K IÞ
� �

ð32Þ

where K I is expressed according to macroscopic variables through
Eq. (31). In this way, Eq. (32) becomes a macroscopic damage equa-
tion which is coupled with the equilibrium equation (22).

This damage equation accounts not only for the rate effect but
also for the size effect. Indeed, according to Eq. (31), the stress
intensity factor included in the damage equation (32) depends on
the size of the periodic structure, e, and on the damage variable d
(being the ratio between the crack length l and e). So, the devel-
oped model reflects the nonlinear, time- and size-dependent effect
on the damage behaviour of material, as commonly observed in
experiment.

5. Numerical simulations

The time-dependent behaviour of materials can be underlined
by means of various laboratory tests. In particular, quasi-static
compression tests, creep tests or relaxation tests may point out
the same time-dependent properties under different stress and
strain conditions. In this section, numerical results are presented
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for these tests. We simulate the local macroscopic elastic damage
response. The set of material parameters that have been used in
the simulations are reported in Table 1. The simulations have been
made considering tension loading under strain- or stress-con-
trolled conditions in the vertical direction while the horizontal
direction is free of stress. Plane-strain condition is considered in
the third direction. All the simulations start from an undamaged
material ðd0 ¼ 1� 10�9 � 0Þ.

5.1. Numerical integration method

For the analysis of the homogenized response in a macroscopic
point, the input of this system of Eqs. (20) and (32) is the macro-
scopic stress Rð0Þij or strain exkl uð0Þ

� �
, depending on the physical

problem to be studied. Due to the dependency of the elastic mod-
ulus Cijkl on the damage variable d and the form of the damage en-
ergy release rate (26) used to calculate the stress intensity factors,
the problem is highly non-linear. For each time step, the stress-
controlled problem is solved by an iterative procedure as follows:

1. Initialization ðn ¼ 1Þ; dt
0 ¼ dt�1 (if t ¼ 0; d ¼ d0).

2. Cijkl ¼ Cijklðdt
n�1Þ.

3. Prediction of the macroscopic strain: exij;n�1 ¼ C�1
ijkl dt

n�1

� �
Rð0Þij .

4. Determination of the stress intensity factor: K I ¼
K I Cijkl dt

n�1

� �� �
.

5. Update of the damage: _d ¼ f exij;n�1;Cijkl dt
n�1

� �� �
;

dt
n ¼ dt�1 þ _dDt.

6. Update of the homogenized coefficient: Cijkl ¼ Cijkl dt
n

� �
.

7. Calculation of the updated strain: exij;n ¼ C�1
ijkl dt

n

� �
Rð0Þij .
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Fig. 4. Numerical results of a vertical tension test at constant strain rate. Evolution of (a
crack propagation with respect to the stress intensity factor. The three damage regime
amplitudes of the plateau of region II.
8. The convergence of the solution is tested: CONV ¼ ken�en�1k2

kenk2 .

(i) If CONV 6 Tol: Return to point 1 with a new time step
ðt ¼ t þ 1Þ.

(ii) If CONV > Tol: Return to point 2 with n ¼ nþ 1.

where n is the iteration step, t is the time step number, Dt is the
size of the time step, d0 is the initial damage variable and Tol is
the tolerance taken as 10�5.

We note that, because the damage energy release rate (26) is
written in term of macroscopic strain, this procedure becomes triv-
ial in the strain control case.
5.2. Loading at constant strain rate

Under tension tests at constant strain rate, the micro-cracking
depends not only on the strain level, that controls the stress inten-
sity factor at the crack tips, but also on time. The response of the
model under a vertical tension rate of 10�8 s�1 is illustrated in
Fig. 4 in terms of stress, damage and stress intensity factor evolu-
tions with time. Also plotted is the velocity of crack propagation re-
lated to the stress intensity factor through the subcritical law. As
long as the vertical strain increases, the stress intensity factor in-
creases. So doing, the regime of crack propagation starts in region
I until K I reaches KT . At the beginning of this region, the rate of
crack propagation is low, i.e. the damage increases slowly and
the loss of rigidity is relatively limited. So, at the beginning of
the test, the behaviour appears quasi linear. Bold lines reproduce
the response of the material for the material parameters reported
in Table 1. For such parameters, when the stress intensity factor
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overpasses KT (in point A1), the rate of crack propagation becomes
independent of the loading level, as seen in Fig. 4d between points
A1 and B1. That regime is characterized by a constant rate of dam-
age propagation inducing a progressive loss of material rigidity,
that creates the peak and the post-peak softening behaviour ob-
served in Fig. 4a. Finally, when K I reaches Km (at point B1), a sudden
failure appears up to coalescence of micro-cracks (d = 1, point C1).
This numerical simulation clearly shows the trimodal behaviour of
the crack growth rate with respect to the stress intensity factor at
the crack tips. So, the problem is treated completely from crack ini-
tiation (usually in region I) toward constant rate of crack propaga-
tion (region II) leading to failure (in region III).
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The region II induces a ductile behaviour. Indeed, that regime is
mainly controlled by the diffusion rate of the reactive species to
crack tips which cannot diffuse faster than a given value. It avoids
a dramatic increase of the crack velocity, producing a ductile mac-
roscopic response of the material. On the contrary, if the diffusion
rate of the reactive species is unlimited, v ð2Þ tends to infinity and
the behaviour remains in region I until reaching a brittle failure
(point A3 in Fig. 4). Also, the extension of the region II can be lim-
ited by a lower critical value of the stress intensity factor which
control the behaviour in region III. Decreasing the zero stress acti-
vation energy in region III from 2� 10�18 to 1� 10�18, the region III
appears (point B2 in Fig. 4) for lower value of the stress intensity
factor and the extension of the plateau of region II is lower. As a
consequence, the failure is also more brittle (point C2).

Because of the time-dependent behaviour of materials, the
strength is affected by the strain rate of loading _ex22. Usually, faster
is the loading and higher is the strength. When _ex22 is sufficiently
low, the subcritical micro-cracking in the material has enough time
to develop inducing a decrease of the material strength. On the
contrary, a fast loading avoid the development of delayed cracking
which enhances the strength. The developed model reproduces
this effect as shown in Fig. 5. In this example, a loading 10 times
slower decreases the strength of about 15% (from 29 MPa to
24.5 MPa).

The variation of the zero stress activation energy of region I, U001,
translates the curve log v ð1Þ—K I

� �
without changing its slope. For

increasing value of U001, the velocity of crack propagation decreases
for a same K I and the transition between regions I and II ðKTÞ is
shifted to the right. So, when U001 decreases, KT is tending to Km

and region II is progressively disappearing. The distance between
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points A and B decreases which makes the behaviour more brittle
(Fig. 6).

In Fig. 7, the role of internal length variation e on the response
of the tensile test at constant strain rate is shown. The effect of this
parameter is twofold. (i) Under a given strain field and a given
damage level, the stress intensity factor is proportional to e1=2

(Eq. (31)). So, the smaller is the microstructure, the lower is the
stress concentration at the micro-crack tips. In that sense, the de-
crease of e postpones the crack propagation, by increasing the
resistance to failure. Fig. 7b shows that the time (e.g. the vertical
strain) needed to reach region II (characterized by points A) is
increasing when the internal length decrease. (ii) However, the
same velocity of micro-crack propagation produces an higher dam-
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dt ¼ v

e

� �
. So, the two effects of e

are opposite. The first one postpones the failure while the second
one accelerates it which makes that the effect of e on the peak
strength is a complex one.

5.3. Relaxation test

The relaxation test is obtained by keeping a constant strain le-
vel. Even if the sollicitation is not evolving, the micro-crack may
propage under subcritical conditions until complete failure of the
material. Under constant tension loading, the subcritical micro-
crack growth produces a progressive decrease of the rigidity as
long as the damage state increases. As a consequence, the vertical
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stress is gradually relaxing with time, towards the ultimate state,
when the micro-cracks coalesce and the rigidity tends to zero. Un-
der a constant vertical strain ex22 uð0Þ

� �
¼ 0:0273, Figs. 8 and 9

show, respectively, the effect of the variations U001 and e on the ver-
tical stress decrease in parallel with the damage increase. Instanta-
neously, the applied vertical strain generates a vertical stress of
around 60 MPa that is the stress produced by the applied strain
for the undamaged material. For U001 ¼ 2� 10�19, the zero stress
activation energy of region I is so low that the vertical strain of
ex22 uð0Þ

� �
¼ 0:0273 produces a stress intensity factor at the crack

tips, K I, higher than KT which makes that the crack propagation
starts in region II. However, for higher U001, KT is shifted toward
higher K I and the crack propagation starting in region I and the
three distinct regions are now visible with transition in points A,
B and C (Fig. 8).

As explained in the previous section, the increase of e decreases
the rate of damage propagation in region II (before points B in
Fig. 9b) and pushes forward the transition between region II and
III (points B).
5.4. Creep test

As for relaxation tests, under the condition of creep tests (i.e.
keeping a constant stress level), the failure is not governed by
the maximal stress that the material may sustain but rather by
the time needed for the micro-cracks to propagate under subcriti-
cal conditions. Figs. 10 and 11 depict the effect of the variations of
U003 and e on the vertical creep strain in parallel with the damage
increase under a constant tensile vertical stress Rð0Þ22 ¼ 15 MPa.
After an instantaneous vertical strain corresponding to the short-
term response of the material, the time effect makes damage var-
iable increase, successively in regions I, II and III. The lower is U003

and the faster is the transition between regions II and III (points B
in Fig. 10). The modification of U003 does not affect region I. The ef-
fect of the variation of e (Fig. 11) is similar to the ones explained in
the two previous sections.
6. Conclusions

The subcritical growth of micro-cracks is responsible of the
time-dependent behaviour of many quasi-brittle materials. The
subcritical propagation criterion has been applied for cracks at
the micro-scale and up-scaled by the asymptotic homogenization
procedure. A time-dependent macroscopic damage model has been
deduced and the stress–strain response of materials, depending on
time, has been obtained in a macroscopic point. The damage law
contains a microstructural length allowing for the prediction of
size effects.
The subcritical law considers trimodal behaviour of crack prop-
agation with time. The behaviour within those three regions have
been interpreted in terms of physical processes at the crack tip le-
vel, according to Salganik et al. (1997), through microstructural
material parameters.

As long as the micro-cracks grow due to the combined effect of
time and high stresses at the crack tips, the damage increases, the
global rigidity of the material decreases and the subcritical crack
propagation crosses the three regions of failure behaviour, from
crack initiation to coalescence of cracks upon rupture. With the
assumption of trimodal behaviour of crack propagation, there is
no stress (or strain) threshold for the activation of the subcritical
crack growth. As a consequence, in theory, the material creep dam-
age may occur even at very low stress (or strain) level. However,
for infinitely slow strain rate (for controlled strain rate test) or infi-
nitely low constant stress or strain level (for creep or relaxation
tests), the time of failure become infinite.

The evolution of rigidity with respect to damage has been quan-
tified by the means of a series of finite element simulations on a
unit cell with different crack lengths. Numerical simulations of
the effective elasto-damage response have shown the ability of
the model to reproduce the time-dependent behaviour of materi-
als. In particular, tensile test at constant strain rate, creep and
relaxation tests have been simulated. A parametric studies of the
effect of the size of the micro-structure and the level of activation
energies has been carried out. They show the capacity of the model
to be adapted for a large range of different material behaviours. For
each simulation, the trimodal behaviour has been emphasized.
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