
The Journal of Logic and Algebraic Programming 79 (2010) 550–577

Contents lists available at ScienceDirect

The Journal of Logic and Algebraic Programming

j o u r n a l h o m e p a g e : w w w . e l s e v i e r . c o m / l o c a t e / j l a p

Termination in higher-order concurrent calculi<,<<

Romain Demangeona,∗, Daniel Hirschkoff a, Davide Sangiorgi b

a
Équipe PLUME, Laboratoire de l’Informatique du Parallélisme (LIP), ENS Lyon, 46 allée d’Italie, F-69364 Lyon Cedex, France

b
Dipartimento di Scienze dell’Informazione, Università di Bologna, Mura Anteo Zamboni, 7, I-40126 Bologna, Italy

A R T I C L E I N F O A B S T R A C T

Article history:

Available online 15 July 2010

Keywords:

Concurrency theory

Process algebra

Ttermination

Type systems

Higher-order calculi

π-calculus

We study termination of programs in concurrent higher-order languages. A higher-order

concurrent calculus combines features of the λ-calculus and of the message-passing con-

current calculi. However, in contrast with the λ-calculus, a simply-typed discipline need not

guarantee termination and, in contrast withmessage-passing calculi such as theπ-calculus,

divergence can be obtained even without a recursion (or replication) construct.

We first consider a higher-order calculus where only processes can be communicated.

We propose a type system for termination that borrows ideas from termination in Rewriting

Systems (and following the approach to termination in theπ-calculus in [3]).We then show

how this type system can be adapted to accommodate higher-order functions in messages.

Finally, we address termination in a richer calculus that includes localities and a passivation

construct, as well as name-passing communication. We illustrate the expressiveness of the

type systems on a few examples.

© 2010 Elsevier Inc. All rights reserved.

1. Introduction

A system is terminating when it cannot perform an infinite number of reduction steps. Termination is a difficult property

to ensure: typically, the termination of a rewriting system is not decidable in the general case. Theproblemof terminationhas

been widely studied in sequential languages, including higher-order ones such as the λ-calculus, exploiting static analyses,

and especially type systems.

Ensuring termination for concurrent and mobile systems is even more challenging, as such systems are rarely confluent.

The presence of mobility, under the form of an evolving topology of communication (new communication endpoints can

be created, information travels across the system along dynamically evolving connections), adds even more complexity to

the task. Previous works on this subject [3,9,14] rely on type systems to ensure termination in a concurrent context, in the

setting of the π-calculus (π) [10]. In some of these systems, weights are assigned to π-calculus channels, and typability

guarantees that, at each reduction step that involves the firing of a replicated term, the total weight associated to the process

decreases.

In thiswork, wewant to address the problem of termination in languages that include powerful primitives for distributed

programming. The most important primitive that we focus on is process passing, that is, the ability to transmit an entity of

computation along messages. We therefore study higher-order concurrent languages, and focus on the higher-order π-

calculus, HOpi [8], as working formalism to analyse termination in this setting.

To our knowledge, there exists no result on termination for higher-order concurrent processes. In some sense, formalisms

like HOpi combine features from both the λ-calculus and theπ-calculus, and ensuring termination in such a setting involves

the control of difficulties related both to the higher-order aspects and to the concurrency aspects of the model.

< This article expands on the talk given at the 20th Nordic Workshop on Programming Theory, NWPT 2008, Tallinn, 19–21 Nov. 2008.
<< Work supported by the FP7 ICT integrated project 231620 HATS and the French ANR projects CHoCo and Complice.∗ Corresponding author.

E-mail addresses:Romain.Demangeon@ens-lyon.fr (R.Demangeon),Daniel.Hirschkoff@ens-lyon.fr (D.Hirschkoff),Davide.Sangiorgi@cs.unibo.it (D. Sangiorgi).

1567-8326/$ - see front matter © 2010 Elsevier Inc. All rights reserved.

doi:10.1016/j.jlap.2010.07.007

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by Elsevier - Publisher Connector

https://core.ac.uk/display/82011401?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1
http://dx.doi.org/10.1016/j.jlap.2010.07.007
http://www.sciencedirect.com/science/journal/15678326
www.elsevier.com/locate/jlap
http://dx.doi.org/10.1016/j.jlap.2010.07.007

R. Demangeon et al. / Journal of Logic and Algebraic Programming 79 (2010) 550–577 551

In contrast with name-passing concurrent languages such as the π-calculus, where recursion (or a similar operator such

as replication) is needed in order to build non-terminating programs, in HOpi, similarly to the λ-calculus, non-termination

can show up already in the fragment without recursion. As an example, consider the following process:

Q0 = P0 | a〈P0〉, where P0 = a(X).(X | a〈X〉).
P0 receives a process on channel a, spawns the receivedprocess and emits a copy of this process on a again. In turn,Q0 consists

of a copy of P0 emitted on a, in parallel with an active copy of P0. Q0 can only reduce to itself, giving rise to a divergence.

Another difference with the situation in the λ-calculus is related to typing. In the λ-calculus, termination can be ensured

by adopting a type discipline, such as that of the simply-typed λ-calculus, which rules out recursive types. On the other

hand, the HOpi processQ0 is typablewithout resorting to recursive types (Q0 is a process of simply-typed HOpi, where name

a is used to carry processes, and X, Y are process variables).

To sum up, calculi like HOpi combine ideas from π-calculus and λ-calculus, and in both these calculi termination has

been studied (using type systems). We cannot however directly adapt existing ideas. On the one hand, the type systems for

termination in the π-calculus essentially impose constraints on the recursion (or replication) operators; we cannot directly

adopt the idea in HOpi because HOpi has no recursion. On the other hand, the type systems for termination in the λ-calculus
put constraints on self-applications, notably by forbidding recursive types. We cannot directly adopt these either, because

of non-terminating examples like the one above.

The goal of this paper is to study type disciplines for higher-order concurrent calculi that allow us to rule out non-

terminating programs such as process Q0 above, while retaining a non-trivial expressiveness.

A solution to follow this program could be to exploit the standard encoding of HOpi in π [10], that respects termination,

and use it, together with existing type systems for π , to infer termination in HOpi. However this would not be applicable in

extensions of HOpi that are not encodable inπ (or that appear difficult to encode), for instance, in distributed versions of the

calculus. If one wishes to handle models for distributed computing (including explicit locations and mobility of locations),

the techniques and type systems for termination should be directly formulated on HOpi. Further, a direct formulationwould

allow one to make enhancements of the techniques that are tailored to (and therefore more effective on) higher-order

concurrency. We nevertheless analyse the approach via the encoding in the π-calculus in Section 2.3, to compare it with

our system in terms of expressiveness.

In this paper, we first (Section 2) analyse termination in HOpi2, a higher-order calculus where processes are the only

values exchanged. We propose a type system for termination using techniques from term-rewriting, in which termination

is guaranteed by a decreasing weight associated to processes. This is also the approach followed in [3] for termination in

the π-calculus. The technical details and the proofs are however rather different, for the reasons outlined earlier (e.g., name

passing vs process passing, absence of replication or recursion). We present the basic type system and its soundness proof

(Section 2.2), and provide an analysis of its expressiveness (Section 2.3).

The system for HOpi2 is a starting point, from which we build a similar type system for HOpiω , a richer higher-order

calculus where the values communicated also include higher-order functions (Section 3 – the names HOpi2 and HOpiω are

inspired from [10]). The additional constructs for functions have to be controlled in order to rule out diverging behaviours.

In Section 4, we further extend our framework to analyse termination in a richer calculus, called HOpi !ω . The type system
for HOpi !ω goes beyond those of Sections 2 and 3, both because the calculus includes specific constructs, and because the

analysismade using types is finer.We illustrate the flexibility of our approach by studying an encoding of the choice operator

(Section 4.3), which involves non-trivial backtracking mechanisms that are difficult to analyse.

In Section 5, we explore another path in the analysis of the expressiveness and the flexibility of the system of Section 2.

We indeed study termination in Paπ , a calculus that extends HOpi2 with π-calculus-like name passing, and with powerful

primitives such as explicit localities and passivation. Passivation is the operation of capturing a running computation in a

preemptive way, in order to be able to modify the process being executed (for instance to discard, duplicate or update it).

We provide several examples to illustrate the expressive power given by the combination of primitives in Paπ . Analysing

and controlling interaction in Paπ is a challenging task. We discuss how the ideas we developed to control process passing

in HOpi2 can be combined with the approach to name passing of [3] in order to guarantee termination.

This paper extends [7]. The presentation we give here is more complete: we include the detailed proofs of our results,

which were omitted for lack of space in [7]. Moreover, the developments we present in Section 4 (calculus HOpi !ω and its

type system, typing the encoding of choice) were only sketched in the reference mentioned above.

2. HOpi2

This section is dedicated to the study of HOpi2, a basic higher-order process calculus, with processes as the only commu-

nication values (the index 2 in HOpi2 is inherited from the notation in [10, Part V]).

2.1. The calculus

We shall use symbols P,Q , R, S for processes, X, Y for process variables and names a, b, c for channels.

552 R. Demangeon et al. / Journal of Logic and Algebraic Programming 79 (2010) 550–577

Table 1

Laws of structural congruence.

Table 2

Reduction relation in HOpi2.

The grammar for processes of HOpi2 is the following:

P ::= 0
∣∣ P|P ∣∣ a〈P〉.P ∣∣ a(X).P

∣∣ X
∣∣ (νa) P.

X (resp. a) is bound in a(X).P (resp. (νa) P). Structural congruence (≡) is defined as the smallest equivalence relation that

satisfies the laws of Table 1 and that is closed under contexts.We shall omit trailing occurrences of 0 in processes of the form

a〈P〉.0. Reduction is defined by the rules of Table 2. P[Q/X] stands for the capture avoiding substitution of variable X with

process Q in P. A process P is terminating if there exists no infinite sequence of reductions emanating from P. We suppose

that all processes we shall manipulate obey a Barendregt convention: all bound names are pairwise distinct and different

from all free names.

Reusing notations. In the following sections of the paper, we shall examine different calculi, and introduce in each case

a dedicated type system for termination. These process calculi represent enrichments of HOpi2. We will often reuse the

notations and conventions we introduce (for terms, operational semantics and type system) for HOpi2. When doing so, the

process calculus we will be dealing with should be clear from the context. Only when necessary, that is, when reasoning

about processes belonging to different calculi, we shall use specialised notations – this will be the case in Section 2.3,

where we manipulate processes from HOpi2 and from the pure π-calculus, and in Section 4.2, where an auxiliary calculus

is introduced to construct the soundness proof for the type system for HOpi !ω .
To see how HOpi2 processes interact, consider

S1 = a〈b〈0〉〉.a〈b(Z).0〉 and S2 = a(X).a(Y).(X | Y).

S1 is a process which sends on a the code of a process emitting 0 on b, and then sends on a the code of a process receiving

on b. S2 is a process which upon reception of two processes on channel a (in sequence) executes these in parallel. Process

S1 | S2 performs two reductions to become b〈0〉 | b(Z).0, after which a synchronisation on b can take place.

As discussed above, recursive outputs (“self-emissions”) can lead to diverging behaviours in HOpi2: in process Q0 from

Section 1, a process containing an output on a is sent over channel a itself in a〈P0〉, and we have Q0 → Q0. The type system

we introduce below puts constraints on self-emissions in order to control divergence.

2.2. A type system to ensure termination in HOpi2

We now define a type system for termination in HOpi2. This type system associates types to channels, of the form Chn(�),
where � is interpreted as the type of processes (throughout the paper, we use the syntax Ch(T) to denote the type of a

channel carrying values of type T), and n is a natural number, called the level of the channel being typed. Processes are

typed using simply a natural number. We use � to range over typing contexts, that are lists of typing hypotheses of the form

a : Chn(�) or X : n with at most one hypothesis for each a or X . In the case where � contains a hypothesis a : Chn(�), we

shall write �(a) = Chn(�), and lvl�(a) = n. Moreover, when writing a typing context of the form �, a : T (resp. �, X : n),
we will always implicitly suppose that � does not contain a typing hypothesis about a (resp. X).

Before introducing formally the type system, we discuss an example. To type-check process a〈c.0〉 | a(X).(b〈X〉 | X), we

must be able to assign a level na to a (thus assigning type Chna(�) to a), and similarly nb, nc for b, c. The emission of c.0 on a

imposes na > nc . The structure of the continuation of the input process, b〈X〉 | X , imposes that an hypothesis X : k is present
in the typing context, with nb > k. Moreover, in order to allow the transmission on b of the process transmitted on a, we

must insure nb ≥ na. This finally gives the constraints nb ≥ na > nc , which allow us to type-check the example process.

Table 3 presents the rules of our type system for HOpi2. These define a judgement of the form� � P : n. We use notation

D : (� � P : n) to mean that D is a derivation of the typing judgement � � P : n.
We briefly comment on the definition of the type system. The actual control takes place in rule (Out), where we ensure

that the level of the transmitted process is strictly smaller than the level of the carrying channel: this way, we exclude

“self-emissions”. This discipline is at the basis of the termination proof: when a communication is performed, an output of

weight n is traded for possibly several new outputs appearing in the process, that all have a weight smaller than n.

R. Demangeon et al. / Journal of Logic and Algebraic Programming 79 (2010) 550–577 553

Table 3

HOpi2: Typing rules.

We can check that process Q0 from Section 1 is ruled out by our system: as P0 contains an output on a, its level is at least

the level of a. As a consequence, the rule (Out) forbids P0 to be sent on a itself, and Q0 is not typable.

2.2.1. Soundness

Wenow turn to the proof that all typable processes terminate. The type systemswe shall present in the following sections

enrich the one for HOpi2. The structure of their soundness proof will be similar to the one we present now, although, in

some cases, they will involve more technicalities (this will notably be the case for the system of Section 4).

Our type system, the way it is defined, does not satisfy a sub-typing property of the form “� � P : n and n ≤ n1 implies

� � P : n1”. As a result, the level of a process is not preserved by reduction, because a process variable with level k can be

instantiated by a process whose level is k′ < k. Therefore, it can be proved that the level of a process can only decrease after

a reduction step.

The type system of Table 3 satisfies some standard properties, which are given by Lemmas 2.1 and 2.2.

Lemma 2.1. If a does not occur free in P then, for any T, � � P : n iff �, a : T � P : n.
If X does not occur free in P then, for any k, � � P : n iff �, X : k � P : n.

Proof. These results are proved by induction on the derivation of � � P : n. �

Lemma 2.2. If P ≡ Q then � � P : n iff � � Q : n.
Proof. This result is established by induction on the derivation of P ≡ Q , using the fact that the max operator satisfies laws

of associativity and commutativity. �

To establish soundness of our type system, we introduce a measure on processes, which is defined only in case a process

is typable – the measure is actually defined on typing derivations, rather than on ‘bare’ processes. Recall that notation

D : (� � P : n)means thatD is a derivation of the typing judgment� � P : n. Given such a derivation, we introducemD(P),
the measure associated to the typing derivation D for P, which is given as a multiset of natural numbers (P is redundant in

the notation mD(P), since it can be deduced from D – we keep it for readability purposes).

We are therefore led to introduce and manipulate several notations related to multisets. These notations will be also

useful in the sequel of the paper.

Notations and results on multisets.We useM,M′,N to range over multisets of natural numbers, and � to denote multiset

sum,∩ to denote multiset intersection and− to denote multiset difference. For instance, {1, 1, 2}� {2, 3} = {1, 1, 2, 2, 3},
{2, 2, 2, 3} ∩ {2, 2, 1} = {2, 2} and {1, 1, 2, 2, 3} − {2, 1} = {1, 2, 3}. ⊎1≤i≤k Mi will stand forM1 � · · · � Mk.

<mul denotes the (strict)multiset extensionof the standardorderingonnatural numbers (written<) definedby:M1 <mul

M2 ifM1
= M2 andN1 = M1−(M1∩M2),N2 = M2−(M1∩M2) and∀e1 ∈ N1, ∃e2 ∈ N2, e1 < e2. Notice that, as< is total,

if N1 and N2 are non-empty, the latter condition amounts to max(N1) < max(N2). We have, for instance, {2, 2} <mul {3}
and {4, 2, 1} <mul {4, 3}.

≤mul is defined as (<mul ∪ =), and >mul is the converse of <mul . By a standard result of rewriting theory [12], >mul is a

terminating relation, an important property that will be used in the proofs below.

We furthermore let maxmul(M,M′) stand for the maximum of multisets M and M′ according to <mul (which is a total

relation, since < is). We use the notation c.M to denote the multiset sum of c copies of M. We define succ(M) as M � {0}.
We can remark that succ(M) is the smallest multisetM′ s.t.M <mul M

′ .
Finally,wewill need two standard results onmultisets of natural numbers: ifn is a natural number,M,N are twomultisets

of natural numbers, and if {n} >mul M and {n} >mul N, then {n} >mul M � N. As a consequence, if n, c are two natural

numbers andM is a multiset of natural numbers such that {n} >mul M, then {n} >mul c.M.

In the following definition, as well as in similar definitions in the remainder of the paper, when we describe a typing

derivation, we sometimes omit some side conditions (such as, e.g., �(a) = Chk(�)) – we shall only state them explicitly

when necessary.

554 R. Demangeon et al. / Journal of Logic and Algebraic Programming 79 (2010) 550–577

Definition 2.3. If D : (� � P : n), we define mD(P) by induction over the structure of D as follows:

• mD(0) = mD(X) = ∅;
• mD(P1 | P2) = mD1(P1) � mD2(P2) where D is obtained from premises D1 : (� � P1 : n1) and D2 : (� � P2 : n2), for

some n1, n2;• mD((νa) P1) = mD1(P1) where D is obtained from premise D1 : (�, a : Chk(�) � P1 : n), for some k;

• mD(a(X).P1) = mD1(P1) where D is obtained from premise D1 : (�, X : k − 1 � P1 : n), for some k;

• mD(a〈Q〉.P1) = mD1(P1)� {lvl�(a)}whereD is obtained from premiseDQ : (� � Q : n1),D1 : (� � P1 : nQ) for some

n1, nQ .

The type system of Table 3, as well as the other type systems in the paper, satisfies an important property: there is one

typing rule per construct of the calculus. However, we are compelled to define the measure on typing derivations, and not on

processes. Indeed, according to Definition 2.3, a〈Q〉 contributes tomD(P), even if a is bound by restriction in P: in this case,

the contribution of a〈Q〉 is determined by the typing hypothesis about a. This is the main reason why mD(P) is defined by

analysing a typing derivation, and not simply the process syntax and the typing context.

Lemma 2.4. Let M be a multiset of integers. If P ≡ Q then there exists D s.t. D : (� � P : n) and mD(P) = M iff there exists D′
s.t. D′ : (� � Q : n) and mD′(Q) = M.

Proof. We prove this result by induction on the derivation of P ≡ Q , using the definition of mD. �

The following lemma shows that typability is preserved when substituting a process variable with a typable process,

provided some conditions are met. It also explains how the measure evolves when doing so.

Lemma 2.5. If D : (�, X : m � P : n) and DQ : (� � Q : m′) with m′ ≤ m, then there exist D′, n′, c s.t. D′ : (� � P[Q/X] :
n′), n′ ≤ n and mD(P[Q/X]) = mD(P) � c.mDQ (Q).

Proof. We reason by induction on the typing derivation:

• Case (Nil) is immediate.
• Case (Par). We have P = P1 | P2. We use the induction hypothesis, the rule (Par), the fact that (P1 | P2)[Q/X] =

(P1[Q/X]) | (P2[Q/X]) and Definition 2.3.
• Case (Res). We have P = (νa) P1. We use the induction hypothesis, rule (Res) and Definition 2.3.
• Case (Var). The case where P = Y and Y
= X is immediate. Suppose P = X . As X[Q/X] = Q , m′ ≤ m and mD(X) = ∅,

we set D′ = DQ and c = 1.
• Case (In). We have P = a(Y).P1. As our processes abide Barendregt Convention, if X occurs free in P, then X
= Y , and we

can suppose that Y is not in the domain of �. Thus (a(Y).P1)[Q/X] = a(Y).(P1[Q/X]), and we can rely on the induction

hypothesis on P1 to conclude using. rule (In) and Definition 2.3.
• Case (Out). We have P = a〈S〉.P1. There exists l s.t. lvl(a) = l and D is obtained using rule (Out) from premises

DS : (�, X : m � S : nS), D1 : (�, X : m � P1 : n1), with l > nS . Note that n = max(l, n1). By induction we have

D(1),D(S) s.t.D(S) : (� � S[Q/X] : n′
S ≤ nS),D(1) : (� � P1[Q/X] : n′

1 ≤ n1),mD(1) (P1[Q/X]) = mD1(P1)�c1.mDQ (Q).

As l > nS ≥ n′
S , we can construct

D′ = (Out)
D(1) D(S)

� � a〈S[Q/X]〉.P1[Q/X] : max(l, n′
1)

and we have max(l, n′
1) ≤ max(l, n1). Definition 2.3 gives mD(P) = {l} � mD1(P1) and mD′(P[Q/X]) = {l} �

mD(1) (P1[Q/X]) = {l} � mD1(P1) � c1.mDQ (Q). This allows us to conclude by setting c = c1. �

We shall need the following auxiliary lemma:

Lemma 2.6. If D : (� � P : n), then mD(P) <mul {n + 1}.
Proof. By induction on the structure of D:

• Case (Nil). Immediate, as {1} >mul .∅
• Case (Res). We have P = (νa) P1. There exists T s.t. D is obtained using (Res) from premise D1 : (�, a : T � P1 : n). We

have mD(P) = mD1(P1). The induction hypothesis gives mD′(P1) < {n + 1}. Thus we have mD(P) < {n + 1}.
• Case (Var). We have P = X . By definition of the measure, mD(X) = ∅, hence the result.

R. Demangeon et al. / Journal of Logic and Algebraic Programming 79 (2010) 550–577 555

• Case (Par). We have P = P1 | P2. D is obtained using rule (Par) from premises D1 : (� � P1 : n1), D2 : (� � P2 : n2).
We have n = max(n1, n2). By the inductive hypotheses, {n1 + 1} >mul mD1(P1) and {n2 + 1} >mul mD2(P2). As
max(n1, n2) + 1 ≥ n1 + 1 and max(n1, n2) + 1 ≥ n2 + 1, we deduce {max(n1, n2) + 1} >mul mD1(P1) � mD2(P2)• Case (In). We have P = a(X).P1. D is obtained using (In) from premise D′ : (�, X : k − 1 � P1 : n). The induction

hypothesis gives {n + 1} > mD′(P1), and, by definition, mD(a(X).P1) = mD′(P1). We thus conclude that {n + 1} >
mD(a(X).P1).• Case (Out). We have P = a〈Q2〉.P1. There exists k s.t. lvl(a) = k and D is obtained using rule (Out) from premises

D2 : (� � Q2 : n2), D1 : (� � P1 : n1). We have mD(a〈P1〉.Q) = mD1(P1) � {k}. By induction, we have {n1 + 1} >mul

mD1(P1). We conclude that {max(k, n1) + 1} >mul mD(a〈P1〉.Q). �

The following proposition states the key property of our type system: when a typable process P reduces to P′, not only is

P′ typable (hence, Proposition 2.7 contains the subject reduction property), but the measure decreases.

Proposition 2.7. IfD : (� � P : n) and P → P′ then there existD′ andn′ such thatD′ : (� � P : n′) andmD′(P′) <mul mD(P).

Proof. By induction on the derivation of P → P′.

• Case (Com). We have P = a〈Q〉.P1 | a(X).P2 → P′ = P1 | P2[Q/X]. From D : (� � P : n) we obtain

D =
DQ D1

� � a〈Q〉.P1 : n1
D2

� � a(X).P2 : n2
� � P : n

with D1 : (� � P1 : n′
1), DQ : (� � Q : m), D2 : (�, X : l − 1 � P2 : n2) and lvl�(a) = l > m for some m, n1, n

′
1, n2.

By applying Lemma 2.5, we get D(2) : (� � P2[Q/X] : n′
2) with n′

2 ≤ n2 and mD(2) (P2[Q/X]) = mD2(P2) � c.mDQ (Q).
This allows us to construct

D′ = D1 D(2)

� � P′ : n′

with n′ = max(n′
1, n

′
2). From Definition 2.3, we deduce that mD(P) = mD1(P1) � mD2(P2) � {l} and mD′(P′) =

mD1(P1) � mD(2) (P2[Q/X]) = mD1(P1) � mD2(P2) � c.mDQ (Q). From Lemma 2.6 we get mDQ (Q) <mul {m + 1}. This
implies that c.mDQ (Q) <mul {m + 1}, and we finally obtain c.mDQ (Q) <mul {l}. ThusmD(P) >mul mD′(P′).

• Case (Spect) we use the induction hypothesis and the compatibility of � with the multiset ordering.
• Case (Cong) we use the induction hypothesis, Lemma 2.2 and the fact that mD is invariant by ≡.
• Case (Res) follows from the induction hypothesis and Definition 2.3. �

Corollary 2.8. If � � P : n, then P terminates.

Proof. Consider, towards a contradiction, an infinite sequence of reductions (Pi)i≥0 emanating from P = P0 (that is, Pi →
Pi+1 for i ≥ 0). Proposition 2.7 allows us to construct an infinite sequence (Di : (� � Pi : ni))i.

The infinite sequence (mDi(Pi))i is strictly decreasing for >mul , which is contradictory since >mul is well-founded. �

Clearly, our type system fails to capture all terminating processes: there are processes that are not typable and that do

not exhibit infinite computations. An example is given by a〈a〈0〉〉 | a(X).X , in which the recursive output on a prevents us

from type-checking the process.

2.3. An analysis of the type system for HOpi2

We now compare the expressiveness of our type system with the expressiveness induced on HOpi2 by the translation

into π and the existing type system [3] for the π-calculus. We first recall the standard encoding from HOpi2 to π , and the

type system from [3] that we exploit to ensure termination of π-calculus processes. We then discuss the relationship to our

type system for HOpi2.

2.3.1. Translating HOpi2 processes

We rely on (an adaptation of) the standard encoding of HOpi2 into the π-calculus [8] (see also [13]).

The target calculus uses two kinds of channels: CCS-like channels (which are used only for synchronisation), ranged over

h, and first-order channels, which are used to transmit CCS-like channels, ranged over using a, b, c. The grammar of (the

version we study of) the π-calculus is as follows:

P ::= 0
∣∣ P|P ∣∣ (νc) P

∣∣ (νh) P
∣∣ !h.P ∣∣ a(h).P

∣∣ a〈h〉.P ∣∣ h.

556 R. Demangeon et al. / Journal of Logic and Algebraic Programming 79 (2010) 550–577

Table 4

Typing termination in the π-calculus.

We do not recall the operational semantics of this calculus, which is standard [10, Part I]. We overload notations, and write

P → P′ for reduction in the π-calculus. Note that the version of the π-calculus we work with is rather limited in terms of

expressiveness, since we restrict name passing by allowing only depth 0 or 1 in the order of channels.

We write �P� for the π-calculus encoding of a HOpi2 process P. The definition of �P� is rather standard. We recall it here

(an unambiguous correspondence between HOpi2 process variables – X – and their counterpart as CCS-like channels – hX –

is implicitly assumed):

�0� = 0 �P | Q� = �P� | �Q� �(νc)P� = (νc)�P� �a(X).P� = a(hX).�P� �X� = hX

�a〈P〉.Q� = (νha) a〈ha〉.(�Q� | !ha.�P�) ha fresh.

A higher-order output action a〈P〉.Q is translated into the emission of a new name (ha), which intuitively represents the

address where process P can be accessed. This encoding respects termination, as expressed by the following result.

Proposition 2.9. For any HOpi2 process P, P terminates iff �P� terminates.

Proof. Follows from Theorem 13.1.18 in [10]. �

In particular, the non-terminating process Q0 of Section 1 is translated into

�Q0� = (νha) a〈ha〉.!ha.P′ | P′, where P′ = a(hX).(νh
′
a) a〈h′

a〉.(!h′
a.hX | hX).

2.3.2. Typing π-calculus processes

We rely on the first type system of [3] to type the encoding of a HOpi2 process. This type system assigns levels to π-

calculus names, in order to control replicated processes.We give here a new presentation of this system, which is equivalent

(in terms of expressiveness, and from the point of view of type inference as well – see [2]) to the original system from [3],

while being more tractable to study the encoding.

The types assigned to names are of two kinds, according to the distinction between CCS-like and first-order channels:

T ::= �n
∣∣ #(�n).

The typing judgment forπ-calculus processes is noted� �pi P : n, and is definedby the rules of Table 4. Themost important

typing rule is (RepPi), the one for replicated inputs: it basically imposes, for !h.P to be well-typed, that the level assigned to

h should dominate the level of all first-order names that are used in output subject position in P, where outputs occurring

under a replication in intuitively, the counterpart of rule (Out) in rule (Out) in Table 3.

All processes typable using this type system are terminating [3].

2.3.3. Comparing the two analyses on HOpi2 processes

We have two approaches to ensure termination of HOpi2 processes: on the one hand, the type system from Section 2.2;

on the other hand, the method consisting in type-checking the translation of a HOpi2 process into π .

It is no surprise, that process �Q0� (see above) is rejected by the system of [3]: first observe that the levels of ha and hX are

necessarily equal, since they are both transmitted on channel a. This entails that subprocess !ha.P′ is not typable, because of

the output on hX in P′.
There do moreover exist HOpi2 processes that can be proved to terminate using the type system for HOpi2, but whose

encoding fails to be typable using the type system for π . A very simple example is given by R0 = a(X).a〈X〉. We indeed have

�R0� = a(hX).(νha) a〈ha〉.!ha.hX,

R. Demangeon et al. / Journal of Logic and Algebraic Programming 79 (2010) 550–577 557

a process which is not typable: indeed, hX and ha necessarily have the same type (both are transmitted on a), which prevents

subprocess !ha.hX from being typable.

This example suggests a way to establish a relationship between the type systems in HOpi2 and in π . Consider for that

the system for HOpi2 obtained by replacing rule (In) in Table 3with the following one, the other rules remaining unchanged

(the typing judgment for this modified type system shall be written � �m P : n):

(In′) �, X : k �m P : n lvl�(a) = k

� �m a(X).P : n .

Clearly, the modified type system is more restrictive, that is, � �m P : n implies � � P : n, but not the converse (cf. process

R0 seen above).

Using this system, we can establish the following property, that allows us to draw a comparison between typability in

HOpi2 and in the π-calculus.

Proposition 2.10. Let P be a HOpi2 process. If � �m P : n, then there exists �, a typing context for the π-calculus, such that

� �pi �P� : n.
Proof. The encoding presented above induces a translation of HOpi2 typing contexts, defined as follows (we write ��� for

the encoding of �):

�∅� = ∅ ��, X : n� = ���, hX :�n
��, a : Chn(�)� = ���, a : #(�n)

We reason by induction on the derivation of � �m P : n to prove that � �m P : n implies ��� �pi �P� : n.
• The cases corresponding to rules (Res) and (Par) are treated easily by relying on the induction hypothesis. Case (Nil) is

trivial.
• Case (Var). We can apply rule (Out0Pi) to derive ��� �pi �X� : n, since �X� = hX .• Case (In′). We have �a(X).P� = a(hX).�P�.

We know by induction that ��, X : k� �pi �P� : n, that is, ���, hX :�k �pi �P� : n. Wemoreover know �(a) = Chk(�),

which gives ���(a) = #(�k). This allows us to use rule (InPi) to derive ��� �pi �a(X).P� : n.
• Case (Out). Recall that �a〈P〉.Q� = (νha) a〈ha〉.(�Q� | !ha.�P�), for some fresh ha.

We know by induction that ��� �pi �P� : k and ��� �pi �Q� : m. By hypothesis, we also have �(a) = Chn(�), which

gives ���(a) = #(�n).
We can thus derive ���, ha :�n �pi !ha.�P� : 0, using rule (RepPi) together with weakening which holds for the type

system for the π-calculus (k < n holds by hypothesis). This gives (rule (ParPi)) ���, ha :�n �pi �Q� | !ha.�P� : m.

We can now apply rule (Out1Pi) together with weakening (usingm ≤ max(m, n)) to derive the judgment ���, ha :�n

�pi a〈ha〉.(�Q� | !ha.�P�) : max(m, n) –we indeed have ���(a) = #(�n), as remarked above. Finally, we can use (ResPi)
to obtain the expected result. �

In case (In′) of the proof above, we remark that the typing hypothesis X : k in the original HOpi2 derivation allows us to

construct the π-calculus typing. If we were using rule (In) from Table 3, we could not conclude.

Remark 2.11 (The limits of our type system). Proposition 2.10 shows that typability of a HOpi2 process (in the sense of the

modified type system) entails typability of its encoding. By Proposition 2.9, going via the encoding in π therefore provides

a procedure to ensure termination of HOpi2 processes.

We can observe that there do exist terms that can be typed via the encoding, but that are rejected by our type sys-

tem for HOpi2 (using neither the modified type system nor the type system from Section 2.2). This observation, together

with the discussion about process R0 above, shows that the two approaches to ensure termination of HOpi2 processes are

incomparable.

Consider indeed processes

R1 = a〈a〈0〉〉 | a(X).0 and R2 = a(X).b(Y).X | a〈a〈0〉〉 | b〈0〉.
None of them is typable, because they contain “self-emissions” (an output action on channel a occurring inside a process

emitted on a). However, R1 and R2 are terminating. Their encodings in π are

�R1� = (νha) a〈ha〉.!ha.(νh′
a) a〈h′

a〉.!h′
a.0 | a(hX).0 and

�R2� = a(hX).b(hY).hX | (νha) a〈ha〉.!ha.(νh′
a) a〈h′

a〉.!h′
a.0 | (νhb) b〈hb〉.!hb.0,

558 R. Demangeon et al. / Journal of Logic and Algebraic Programming 79 (2010) 550–577

which are both typable using the system of Table 4. A suitable assignment for R1 is, e.g., lvl(ha) = lvl(h′
a) = 1. Both replica-

tions are typed as they have no first-order outputs in their continuation. R2 can be typed with the same level assignment,

extended with lvl(hb) = lvl(h′
b) = 1.

It thus appears that self-emissions can be innocuous, while they are systematically rejected by the system of Sec-

tion 2.2. Self-emissions in R1 and R2 are reminiscent of recursive calls in continuations of replicated π processes, like,

e.g., in !a(x).b(y).a〈y〉. It turns out that constructions like the one we find in R2 show up in examples, and, in particular, will

be used in the encoding of choice (Section 4.3).

As pointed out in Section 1, a direct type system can be the basis for refinements and extensions. Indeed, as we expose in

the next sections of this paper, some refinements and extensions of the system of Section 2.2 allow us to handle processes

that go well beyond those that can be treated via encodings into the π-calculus.

3. HOPiω: transmitting higher-order functions

3.1. The calculus

We now present HOpiω , a calculus inspired from HOPiunit,→,� in [10]. The main difference between HOpiω and HOpi2
is that the values communicated in HOpiω can be ., the unique element of type unit, or functions (precisely parametrised

processes) of arbitrarily high order (the order indicating the level of arrow nesting in the type). The grammar of HOpiω
defines both processes and values, and is given below. We distinguish between channels (a, b, c) and variables (x, y), and
use v,w to range over values.

P ::= 0
∣∣ P|P ∣∣ a〈v〉.P ∣∣ v�v� ∣∣ a(x).P

∣∣ (νa)P v ::= x
∣∣ .

∣∣ x �→ P.

Here, x �→ P is a parametrised process, and v�w� stands for the application of a function v to argumentw. Wewill restrict

ourselves tomeaningful usages of (higher-order) functions; this can be ensured by adopting a standard type discipline,which

we introduce in Section 3.2.

The operational semantics ofHOpiω is given by the following rules (rules for closurew.r.t. parallel composition, restriction

and structural congruence are the same as in Section 2.1, and are thus omitted):

(Comω)
a〈v〉.Q1 | a(x).Q2 → Q1 | Q2[v/x] (Betaω)

(x �→ P)�v� → P[v/x] .

Communication involves the transmission of a value, and β-reduction takes place when a function is applied to a value –

P[v/x] denotes here the process obtained by replacing variable x with value v in P without introducing variable capture.

We can remark that HOpi2 processes can be seen as HOpiω processes by replacing communication of processes with

communication of values of type unit → � (with the obvious meaning — types in HOpiω are introduced formally below),

and, accordingly, usages of process variables with an application to .. For instance, the diverging example Q0 in HOpi2
becomes a〈x �→ S0〉 | S0 in HOpiω , where S0 = a(y).(y�.� | a〈y〉).

The following is another example HOpiω process:

S3 = a〈x �→ (x�.� | x�.�)〉 | b1〈x1 �→ c〈.〉〉.b2〈x2 �→ c(z).0〉 | b1(y1).b2(y2).a(y3).(y3�y1� | y3�y2�).
Process S3 can do two communications on b1 and b2. Then, a function (in this case, a duplicator) can be transmitted

on a, and successively applied to the functions sent on b1 and b2 (corresponding to processes respectively emitting and

receiving on c). After these three reductions, we obtain the process c〈.〉 | c〈.〉 | c(z).0 | c(z′).0, which can still perform two

synchronisations.

3.2. A type system for termination in HOpiω

The grammar for types for HOpiω includes types for values, given by T ::= unit
∣∣ T →n �, and channel types, of the

form Chn(T). In the example above (process S3), c has thus type Ch(unit), channels b1, b2 have type Ch(unit →n �), and
channel a has a type of the form Ch((unit →n �) →k �).

In manipulating types, we restrict ourselves to using only well-formed value types, defined as follows:

Definition 3.1 (Well-formed value types). We say that T is awell-formed value type at level nw.r.t. a typing context� (written

Lvl�(T) = n or simply Lvl(T) = n when there is no ambiguity on �), whenever either T = unit and n = 0, or T ′ is a

well-formed value type at level n′, T = T ′ →n � and n′ < n.

The rules defining our type system for HOpiω are presented in Table 5. Since there is no risk of confusion, we adopt the

same notation as in Section 2 for typing judgements, and write them � � P : n. We implicitly impose that every value type

R. Demangeon et al. / Journal of Logic and Algebraic Programming 79 (2010) 550–577 559

Table 5

Typing rules for HOpiω .

appearing in these rules is a well-formed value type. As in Section 2, types are annotated with a level, and the type assigned

to a process is given by a natural number. The type of a process P is bound to dominate both the maximum level of outputs

contained in P (not occurring inside amessage), and, for any process of the form v1�v2� that occurs in P not inside amessage,

the maximum level associated to the function v1.

As before, we associate to a process a measure that decreases along reductions. We cannot focus our analysis, as above,

only on the multiset of names used in output subject position in P (called os(P) below), because β-reduction may let this

multiset grow. For instance, if we take P = (x �→ (a〈.〉 | a〈.〉)) �.�, P has no output in subject position (the two out-

puts on a being guarded by the abstraction on x), so that os(P) = ∅. P can however reduce to P′ = a〈.〉 | a〈.〉, with

os(P′) = {a, a}.
Definition 3.2 (Measure on processes in HOpiω). Let P be a well-typed HOpiω process. We defineMω(P) = os(P) � fun(P),
where:

(i) os(P) is the multiset of the levels of the channel names that are used in an output in P, without this output occurring

in object position.

(ii) fun(P) is defined as the multiset union of all {k}, for all v1�v2� occurring in P not within a message, such that v1 is of

type T →k �.
We do not enter the details of the correctness proof for the type system for HOpiω , as it is subsumed by the proof of

Theorem 4.13 (Section 4.2).

Proposition 3.3 (Soundness). If � � P : n for some HOpiω process P, then P terminates.

Proposition 3.3 is established by observing that Mω(P) decreases at each step of transition:

• If the transition is a communication, the continuations of the processes involved in the communication contribute to the

global measure the same way they did before communication, because a type preserving substitution is applied.Mω(P)
decreases because an output has been consumed.

• If the transition is a β-reduction involving a function of level k, a process of level strictly smaller than k is spawned in P.

Therefore, all newmessages and active function applications that contribute to themeasure are of a level strictly smaller

than l, andMω(P) decreases.

4. An expressive type system for parametrised process passing

We now move to the definition of a rich type system, that refines the systems of Sections 2 and 3 from several points

of view. Before presenting the formal definitions (Section 4.2), we discuss the main ideas behind these refinements in

Section 4.1. We shall show in Section 4.3 how this framework allows us to analyse and validate the encoding of a choice

operator in an extension of HOpiω .

4.1. Towards richer analyses

The framework we study in this section is more powerful than those of Sections 2 and 3 for two main reasons. First, the

languageweworkwith is richer than HOpiω (which in turn extends HOpi2). Second, wemake a finer analysis of termination,

by defining a more complex (and more expressive) type system.

560 R. Demangeon et al. / Journal of Logic and Algebraic Programming 79 (2010) 550–577

The main extension to the process calculus, beyond the addition of primitive booleans and an if-then-else construct to

manipulate these, is to include a primitive construct for replication in a higher-order formalism. This in principle does not

add expressiveness to the calculus, because replication is encodable in HOpi2 (using a process similar to Q0 from Section 1).

However, in terms of typability, having a primitive replication, and a dedicated typing rule for it, helps in dealing with

examples. The type system to handle replication in presence of higher-order communications controls divergences that can

arise both from self-emissions and from recursions in replications (as they appear in the setting of [3]).

We now turn to the description of the refinements we add to the type analysis.

4.1.1. Introducing weights and capacities, using multisets

A first refinement we make to our termination analysis consists in attaching two pieces of information to a channel,

instead of simply a level: a weight and a capacity (in the type systems seen above, the weight and the capacity are merged

into a single information, namely the level). A channel a has aweight, which stands for the contribution of active outputs on

a to the global weight of a process. For instance, in the process U1 = a1〈U2〉, with U2 = b1〈Q1〉 | b2〈Q2〉, the global weight

of U2 is equal to the sum of the weights attached to names b1 and b2. We also associate a capacity to a channel a: this is an

upper bound on theweight of processes that may be sent on a. U1 is well-typed provided the capacity of a1 is strictly greater

than the global weight of U2.

The distinction we make between the weight and capacity of a channel recalls the observations we have made in Re-

mark 2.11 about the limitations of the type system of Section 2. Indeed, in the π-calculus processes �R1� and �R2� analysed

in Remark 2.11, the level of a (resp. of ha) somehow would play the rôle of the weight (resp. of the capacity) associated to

the encoding of the HOpi2 channel a.

As a second extension to our type system, we represent the weight and the capacity attached to a channel, as well as the

type attached to a process, using multisets of natural numbers. For instance, if the outputs on a (resp. on b) weigh {1} (resp.
{2}), the process

S4
def= a〈P〉 | a〈P′〉 | b〈Q〉

has global weight {2, 1, 1}, and the message c〈S4〉 is well-typed provided the capacity associated to c is strictly greater than

{2, 1, 1}.
Using these ideas, certain forms of ‘self-emission’ can be typed. In the setting of HOpi2, process R1 = a〈a〈0〉〉 can for

instance be accepted, if we assignweight {1} and capacity {2} to a: the output is well-typed because process a〈0〉 hasweight

{1}<mul {2}.

4.1.2. A further refinement: handling successive input prefixes

Inspired by the third type system presented in [3], we introduce the possibility of treating sequences of input prefixes as

a kind of ‘single input action’, that has the effect of decreasing the weight of the process being executed.

Let us sketch the main idea behind this approach, again by working in the setting of HOpi2. Consider a process of the

form P = a1(X1)...ak(Xk).P
′. To type-check P, we make sure that the weight associated to the sequence of inputs is strictly

greater than theweight associated to (someof the occurrences of) the process variables Xis in the continuation P′. The former

quantity is equal toM1
1 � · · · �Mk

1, if the weight associated to ai is given by multisetMi
1. To compute the latter quantity, we

must take into account the multiplicity of the instances of the Xis in the process P′; this involves some technicalities, which

we expose below.

Because we work with sequences of input prefixes, we have a better expressiveness: without this possibility, we would

be compelled to rely on the weight associated to ak only to try and type-check P. For instance, in a HOpi2 process like

a1(X1).a2(X2).X1 | a1〈a1〈0〉〉, we can use the weights associated to a1 and a2 in order to type-check the apparent ‘recursive

call’ on a1 and accept the process as terminating. Note that this process is a simple ‘variation’ on a1(X1).X1 | a1〈a1〈0〉〉,
which is not typable because of the self-emission on a1: we can rely on the weight associated to a2 to make type-checking

possible.

4.2. An expressive type system for termination

We now present an enriched version of HOpiω , that we call HOpi !ω , for which we develop an expressive type system. The

calculus HOpi !ω extends HOpiω by including primitive constructs for computation over booleans, and a replication operator.

To present the grammar of HOpi !ω , we rely on the same syntactic conventions as in the previous section, the set of values

being extended with booleans true and false.

Values

v ::= .
∣∣ x

∣∣ (x �→ P)
∣∣ true ∣∣ false

R. Demangeon et al. / Journal of Logic and Algebraic Programming 79 (2010) 550–577 561

Processes

P ::= 0
∣∣ (νa)P

∣∣ P|P ∣∣ v�v� ∣∣ a(x).P
∣∣ a〈v〉.P ∣∣ !a(x).P ∣∣ if v then P else P.

Note that we restrict usages of the replication operator by applying it to inputs only.

Operational semantics. Reduction is defined by giving the following rules for the reduction of the new operators.

(CondTω)
P → P′

if true then P else Q → P′ (CondFω)
Q → Q ′

if false then P else Q → Q ′

(Trigω)
a〈v〉.Q1 | !a(x).Q2 → Q1 | Q2[v/x] | !a(x).Q2

.

Some care has to be taken when defining structural congruence. Since, as explained in Section 4.1.2, we treat sequences of

inputs as a whole when type-checking processes, we are compelled to restrict the definition of structural congruence: ≡ is

the smallest equivalence relation that satisfies the axioms given in Section 2.1, and that is closed under contexts in which

the hole does not occur under a prefix.

To see why we must proceed this way, consider the (tentative) equality

a(x).b(y).P ≡ a(x).(0 | b(y).P),
which is derived by rewriting b(y).P into 0 | b(y).P under the prefix a(x). It might well be the case that our type system

recognises the left-hand side process as typable, by analysing the sequence of prefixes a(x).b(y), and that typability fails for

the right-hand side process, because in that case prefixes a(x) and b(y) must be treated separately. Such a situation would

prevent subject congruence (the counterpart of Lemma 2.2) to hold, which would compromise subject reduction. Hence, in

other words, we forbid ≡ to be applied under prefixes, so that this relation ‘preserves sequences of prefixes’.

Types. The types for channels in HOpi !ω are of the form ChM1,M2(T), where T ranges over types for values, defined as follows:

T ::= unit∅ ∣∣ bool∅ ∣∣ (T →M �).

In order to introduce the typing rules, we need to extend the definition of well-formed types (Definition 3.1) to handle

multisets:

Definition 4.1. We say that T is awell-formed value type of HOpi !ω ofweightMw.r.t. a typing context� (written Lvl�(T) = M

or simply Lvl(T) = M when there is no ambiguity on �), whenever M either T = unit∅ or T = bool∅ and M = ∅, or T ′ is
a well-formed value type of weight M′, T = T ′ →M � and M′ <mul M.

We sometimes use a shortened notation: we shall write Lvl�(vj) = M when �(vj) = Tj and Lvl�(Tj) = M.

Definition 4.2. TheM-contribution of x in P, written o(M, P, x), is defined as follows:

o(M, 0, x) = ∅
o(M, v1�v�, x) =

⎧⎨
⎩

M if v1 = x

∅ if v1
= x

o(M, P1 | P2, x) = o(M, P1, x) � o(M, P2, x)

o(M, a(x′).P, x) =
⎧⎨
⎩

∅ if x′ = x

o(M, P, x) otherwise

o(M, !a(x′).P, x) = ∅
o(M, a〈Q〉.P, x) = o(M, (νa) P, x) = o(M, P, x)

o(if v then P else Q) = maxmul(o(M, P, x), o(M,Q , x)).

o(M, P, x) is themultiset union of c copies of themultisetM, where c is the number of occurrences of x that appear neither

in messages nor under a replication in P. This is reminiscent of the integer c appearing in Lemma 2.5. We may remark that

if M ≤mul N, then o(M, P, x) ≤mul o(N, P, x).

562 R. Demangeon et al. / Journal of Logic and Algebraic Programming 79 (2010) 550–577

Table 6

Typing rules for HOpi !ω .

Table 6 presents the rules that define the type system for HOpi !ω– the typing judgement is written � � P : N.

The most complex rules are (InT) and (RepT), where receiving processes are typed by analysing sequences of inputs.

More precisely, in the former we compare the total weight associated to the channels involved in input sequences with their

capacities. And in the latter, two potential sources of divergence are controlled, we compare the total weight associated to

the channels involved in input sequences with the sum of two entities: the capacities on one side, to prevent self-emission,

and the weight of the continuation on the other side, to prevent loops due to recursive calls between replications.

It can be remarked that to handle polyadic communications, we associate the same capacity to all arguments in an input:

for instance, to type-check a process of the form a(x1, x2, x3).P
′, rule (InT) assumes the capacity associated to a is strictly

greater than the level of the types to variables x1, x2 and x3 in the premise. This of course is rather rough – it would be easy

to define a refinement assigning a specific capacity to each component of a tuple, at the cost of more complex types.

The type system of Table 6 enjoys the following standard properties.

Lemma 4.3. If x does not occur free in P then�, x : T � P : N iff� � P : N. If a does not occur free in P then�, a : ChM1,M2(T) �
P : N iff � � P : N.

Proof. By induction on the derivation of � � P : N. �

Lemma 4.4. If P ≡ Q then � � P : N iff � � Q : N.

Proof. By induction on the derivation of P ≡ Q , using the fact that � is associative and commutative. �

HOpi !,+ω , an auxiliary calculus to establish soundness. In order to prove that typable HOpi !ω processes terminate, we rely, as

above, on a measure which we define on typing derivations. However, due to our treatment of sequences of input prefixes,

the situation is more complex here than in the calculi of the previous sections. Indeed, a typable HOpi !ω term does not

necessarily reduce to a process whose subterms are all typable: typically, � � a(x).b(y).P : N does not necessarily imply

� � b(y).P[v/x] : N. Intuitively, this is the case when the input prefixes a(x) and b(y) have to be treated together (using

only one instance of rule (InT)) in order to type-check a(x).b(y).P.
We nevertheless want to be able to reason over all possible evolvings of a typable process, and in particular to define a

measure that decreases along computations. To achieve this, we introduce a variant of HOpi !ω , called HOpi !,+ω , which is a

kind of “HOpi !ω with delayed substitutions”. The syntax of HOpi !,+ω is as follows:

R. Demangeon et al. / Journal of Logic and Algebraic Programming 79 (2010) 550–577 563

P ::= 0
∣∣ (νc)P

∣∣ P|P ∣∣ v�v� ∣∣ a〈v〉.P ∣∣ if v then P else P
∣∣ a1(x1)

id1 ...ak(xk)
idk .P

∣∣ !a1(x1)id1 ...ak(xk)
idk .P,

where (idi)1≤i≤k is a sequence of annotations. An annotation is either 1 or a HOpi !,+ω value. We furthermore introduce a

well-formedness condition to all HOpi !ω processes we manipulate: we impose that in a1(x1)
id1 ...ak(xk)

idk .P and !a1(x1)id1 ...

ak(xk)
idk .P, idi = 1must imply idi+1 = 1 for i < k, and that every input prefix appearing inside a process in object position

or annotation position is annotated with 1.

The intuition is that, for instance, a1(x1)
v1 .a2(x2)

v2 .a3(x3)
1.P will evolve, after reception of value v3 along channel a3,

into ((P[v1/x1])[v2/x2])[v3/x3]: as long as the last prefix of a sequence of inputs has not been consumed, the substitutions

involving the variables of the previous prefixes are not applied. One can remark that the last prefix ak(xk) is always labelled

with 1, because when the corresponding substitution [vk/xk] is applied, the whole sequence of prefixes is consumed.

This idea is formalised by the following operation of ‘triggering’, that maps HOpi !,+ω process to their HOpi !ω counterpart

(in the following definition, we write Q [v/x][w/y] for (Q [v/x])[w/y]).
Definition 4.5 (From HOpi !,+ω to HOpi !ω , and back). We introduce an operator trig(·), mapping HOpi !,+ω processes (resp.

values) to HOpi !ω processes (resp. values), defined by:

trig(0) = 0 trig((νc) P) = (νc) trig(P) trig(a〈v〉.P) = a〈v〉.trig(P)
trig(v1�v2�) = trig(v1)�trig(v2)� trig(x �→ P) = x �→ trig(P) trig(x) = x

trig(P1 | P2) = trig(P1) | trig(P2) trig(!a1(x1)1...ak(xk)1.P) =!a1(x1)...ak(xk).trig(P)
trig(if v then P else Q) = if v then trig(P) else trig(Q)

trig(!a1(x1)v1 ...ai−1(xi−1)
vi−1 .ai(xi)

1...ak(xk)
1.P) = ai(xi)...ak(xk).(trig(P)[v1/x1] . . . [vi−1/xi−1]) with 1 < i ≤ k

trig(a1(x1)
v1 ...ai−1(xi−1)

vi−1 .ai(xi)
1...ak(xk)

1.P) = ai(xi)...ak(xk).(trig(P)[v1/x1] . . . [vi−1/xi−1]) with 1 ≤ i ≤ k.

If P is a HOpi !ω process, we write comp(P) for the HOpi !,+ω process obtained from P by decorating all input prefixes with

annotation 1.

Note that trig(comp(P)) = P, and trig(Q)[v/x] = trig(Q [v/x]).
To define the operational semantics of HOpi !,+ω , we keep rules (BetaT), (SpectT), (ScopT), (CongT), (CondTT), (CondFT)

unchanged, and introduce the rules of Table 7 (the reduction relation on HOpi !,+ω is written →!). According to the ex-

planations above, these rules enforce that substitutions are delayed until the last prefix in a sequence of input prefixes is

consumed. More precisely, rules (PrUnrT) and (PrRepT) accumulate substitutions along sequences of prefixes, while rules

(EndUnrT) and (EndRepT) are used to trigger the last prefix of a sequence of inputs.

Note that we treat differently replicated and non-replicated sequences of input prefixes, as the condition associated to

typability is different in the typing rules (InκPa) and (RepκPa) (given below).

We immediately have that if P →! P′ and P satisfies the well-formedness condition introduced above, then so does P′.

Lemma 4.6. LetR be the relation defined on HOpi !ω × HOpi !,+ω by: (P,Q) ∈ R iff P = trig(Q). ThenR is a simulation, that is,

for any (P,Q) ∈ R, whenever P → P′, there exists Q ′ s.t. Q →! Q ′ and (P′,Q ′) ∈ R.

R is actually a (strong) bisimulation [10]. We however prove only this simulation result, as it is sufficient to deduce that

if P = trig(Q) and P diverges, then so does Q , which is what we shall need.

Proof. We reason by induction on the derivation of P → P′.
The cases corresponding to (SpectT), (BetaT), (ScopT), (CondTT) and (CondFT) are easily treated using Definition 4.5.

The remaining cases are more interesting:

• Case (ComT). We have P = trig(Q) = a〈v〉.P1 | a(x).P2 and P′ = P1 | P2[v/x]. By definition of trig(), we deduce that

Q = a〈v〉.Q1 | Q where P1 = trig(Q1). We discuss on the form of Q :

Case Q =!a1(x1)v1 . . .ai−1(xi−1)
vi−1 .a(x)1.ai+1(xi+1)

1. . .ak(xk)
1.Q2, with

1 < i < k. We have

P2 = ai+1(xi+1). . .ak(xk).(trig(Q2)[v1/x1]. . .[vi−1/xi−1]).

564 R. Demangeon et al. / Journal of Logic and Algebraic Programming 79 (2010) 550–577

Table 7

Communication rules for HOpi !,+ω .

Process Q can perform a reduction, using rule (PrRepT), to

Q ′ = Q1 | !a1(x1)v1 . . .ai−1(xi−1)
vi−1 .a(x)v.ai+1(xi+1)

1. . .ak(xk)
1.Q2.

We have

trig(Q ′) = trig(Q1) | ai+1(xi+1). . .ak(xk).(trig(Q2)[v1/x1]. . .[vi−1/xi−1][v/x]) = P′

(note that we have (aj(xj).S)[v/x] = aj(xj).(S[v/x])).
Case Q = a1(x1)

v1 . . .ai−1(xi−1)
vi−1 .a(x)1.ai+1(xi+1)

1. . .ak(xk)
1.Q2, with 1 ≤ i < k. We reason similarly using rule

(PrUnrT).
Case Q =!a1(x1)v1 . . .ak−1(xk−1)

vk−1 .a(x)1.Q2. We have

P2 = trig(Q2)[v1/x1]. . .[vk−1/xk−1].
Process Q can reduce, using rule (EndRepT), to

Q ′ = Q1 | Q2[v1/x1]. . .[vk−1/xk−1][v/x],
and trig(Q ′) = P′.
Case Q = a1(x1)

0. . .ak−1(xk−1)
0.a(x)1.Q2. We reason similarly using rule (EndRepT).• Case (TrigT). We have P = trig(Q) = a〈v〉.P1 | !a(x).P2 and P′ = P1 | P2[v/x] | !a(x).P2. Using the definition of trig(),

we deduce that Q = a〈v〉.Q1 | !a(x)1.a2(x2)1. . .ak(xk)1.Q2, P1 = trig(Q1) and P2 = a2(x2). . .ak(xk).trig(Q2). Process
Q can perform a reduction, using rule (TrRepT), to

Q ′ = Q1 | !a(x)v.a2(x2)1. . .ak(xk)1.Q2 | !a(x)1.a2(x2)1. . .ak(xk)1.Q2.

We then have

trig(Q ′) = trig(Q1) | a2(x2). . .ak(xk).trig(Q2)[v/x]
| !a(x).a2(x2). . .ak(xk).trig(Q2) = P′. �

After having defined reduction in HOpi !,+ω , we now turn to typing. The basic idea is to start with a typable HOpi !ω process,

and execute it ‘as a HOpi !,+ω term’. In doing so, we keep a representation of the whole sequence of prefixes before it is totally

consumed, and this allows us to reconstruct the original typing derivation along reductions. The type system for HOpi !,+ω is

thus very close to the system for HOpi !ω .
Typing judgements for HOpi !,+ω processes (written � �+ P : N) are derived using the rules of Table 6, where rules (InT)

and (RepT) are replaced respectively with the rules presented on Table 8, in order to handle annotations.

R. Demangeon et al. / Journal of Logic and Algebraic Programming 79 (2010) 550–577 565

Table 8

Dedicated typing rules for HOpi !,+ω .

Accordingly, the contribution o(M, P, x), for P a HOpi !,+ω term, is defined as in Definition 4.2 – in particular,

o(M, aid(y).P, x) = o(M, P, x).

The careful reader may have noticed that different typing derivations for a HOpi !ω term P can be mapped to the same

typing derivation in HOpi !,+ω , for comp(P). For instance, if P = a1(x1).a2(x2).a3(x3).P
′, we can choose to apply rule (InT)

once, to the sequence of prefixes a1(x1).a2(x2).a3(x3) (with continuation process P′), but we can also, alternatively, apply

(InT) first with a1(x1).a2(x2), the continuation process a3(x3).P
′ being typed using a second application of (InT). Both these

derivations are mapped to the same ‘maximal’ typing derivation in HOpi !,+ω , where rule (InκT) is used only once. This has

no important consequence on our reasonings, since, intuitively, a typing derivation that relies on several applications of rule

(InT) for a given sequence of prefixes can always be replaced by the ‘maximal’ derivation, where (InT) is applied only once.

The following easy result formalises this idea.

Lemma 4.7. If P is a HOpi !ω process, then D : (� � P : N) if and only if D : (� �+ comp(P) : N).

We are now ready to prove soundness of our type system for HOpi !,+ω . As above, we introduce for this two measures on

HOpi !,+ω processes. These measures are the counterpart of the measures presented in Definition 3.2.

Definition 4.8. If D : (� �+ Q : N), we defineM1
D(P) by induction over the structure of D as follows:

• M1
D(0) = ∅.

• M1
D(Q1 |Q2) = M1

D1(Q1)�M1
D2(Q2)whereD is obtained frompremisesD1 : (� �+ Q1 : N1)andD2 : (� �+ Q2 : N2)

for some N1,N2.• M1
D((νa) Q1) = M1

D1(Q1) where D is obtained from premise D1 : (�, a : Chk(T) �+ Q1 : N).

• M1
D(a〈v〉.Q1) = M1

D1(Q1) � {M1} whereD is obtained from premisesDv : (� �+ v : T),D1 : (� � Q1 : N1) (for some

T,N1) and �(a) = ChM1,M2(T).
• M1

D(x�v2�) = ∅, for any variable x.

• M1
D(v1�v2�) = {M} when v1 is not a variable and D is obtained from premises D1 : (� �+ v1 : T →M �) and

D2 : (� �+ v2 : T).
• M1

D(a1(x1)
v1 ...ai−1(xi−1)

vi−1 .ai(xi)
1...ak(xk)

1.Q1) = M1
D1(Q1)�{M1

1}�· · ·�{Mi−1
1 }whereD is obtained frompremise

D1 : (�, x1 : T1, . . . , xk : Tk �+ Q1 : N) and ∀j ≤ k, �(aj) = ChM
j
1,M

j
2(Tj) and ∀j < i,Dj : (� �+ vj : Tj).

• M1
D(!a1(x1)v1 . . .ai−1(xi−1)

vi−1 .ai(xi)
1. . .ak(xk)

idk .Q1) = {M1
1} � · · · � {Mi−1

1 }, where for all j, �(aj) = ChM
j
1,M

j
2(Tj).

In order to handle delayed substitutions, we introduce another measure, notedM2
D(Q), and defined likeM1

D(Q) except
for the following cases:

• M2
D(a1(x1)

v1 ...ai−1(xi−1)
vi−1 .ai(xi)

1...ak(xk)
1.Q1) = M2

D1(Q1) where D is obtained from premise D1 : (�, x1 :
T1, . . . , xk : Tk �+ Q1 : N).

• M2
D(!a1(x1)v1 ...ai−1(xi−1)

vi−1 .ai(xi)
1...ak(xk)

idk .Q1) = ∅.
Note thatM1· (·) and M2· (·) coincide on processes of the form comp(P) (for some HOpi !ω process P).

566 R. Demangeon et al. / Journal of Logic and Algebraic Programming 79 (2010) 550–577

Lemma 4.9. If Q ≡ Q ′, then

• there exists D : (� �+ Q : N) s.t. M1
D(Q) = M iff there exists D′ : (�′ �+ Q ′ : N′) s.t. M1

D′(Q ′) = M, and

• there exists D : (� �+ Q : N) s.t. M2
D(Q) = M iff there exists D′ : (�′ �+ Q ′ : N′) s.t. M2

D′(Q ′) = M.

Proof. By induction on the derivation of Q ≡ Q ′. �

Lemma 4.10. Suppose that Dw : (� �+ w : T), where T = T ′ →M �.
If D : (�, x : T �+ P : N), then there exists D′ s.t. D′ : (� �+ P[w/x] : N), M1

D′(P[w/x]) = M1
D(P) � o(M, P, x) and

M2
D′(P[w/x]) = M2

D(P) � o(M, P, x).

If D : (�, x : T �+ v : T0), then there exists D′ s.t. D′ : (� �+ v[w/x] : T0).
Proof. By induction on the typing derivation.

• Cases (NilT), (ResT), (ParT), (IfT), (UniT) and (BoolT) are easily done using the induction hypotheses when needed and

Definition 4.8.
• Case (AppT). We have P = v1�v2�. Derivation D is build using D1,D2 as premises s.t. D1 : (�, x : T �+ v1 :

T1 →N �) and D2 : (�, x : T �+ v2 : T1) for some T1. We use the induction hypothesis and we get D(1),D(2)

s.t. D(1) : (� �+ v1[w/x] : T1 →N �) and D(2) : (� �+ v2[w/x] : T1). Using the rule (AppT) and the fact that

(v1�v2�)[w/x] = (v1[w/x])�(v2[w/x])�, we construct

D = (AppT)
D(1) D(2)

� �+ (v1�v2�)[w/x] : N .

We distinguish three cases to compute the measures according to Definition 4.8:

– if v1 = x then N = M. Definition 4.2 gives o(M, x�v2�, x) = M and we have M1
D(x�v2�) = M2

D(x�v2�) = ∅ and

M1
D′(w�v2[w/x]�) = M2

D′(w�v2[w/x]�) = M.

– if v1 = y and y
= x, then Definition 4.2 gives o(M, x�v2�, x) = M and M1
D′(y�v2[w/x]�) = M2

D′(y�v2[w/x]�) =
M1

D(y�v2�) = M2
D(y�v2�), all these quantities being equal to ∅.

– if v1 is not a variable then Definition 4.2 gives o(M, x�v2�, x) = ∅ and Definition 2.3 gives M1
D′(v1�v2[w/x]�) =

M2
D′(v1�v2[w/x]�) = M1

D(v1�v2�) = M2
D(v1�v2�) = N.

• Case (InκT). We have P = a1(x1)
v1 ...ai(xi)

vi .ai+1(xi+1)
1...ak(xk)

1.P1. Derivation D is obtained using rule (InκT) from

premises D1 : (�, x : T, x1 : T1, . . . , xk : Tk �+ P1 : N) and Dj : (�, x : T �+ vj : Tj), for 1 ≤ j ≤ i, with

�(aj) = ChM
j
1,M

j
2(Tj), M

j
2 > Lvl�(vj) and

⊎
M

j
1 >mul

⊎
o(M

j
2, xj, P1). Since x
= xj and xj /∈ w, we have o(M

j
2, xj, P1) =

o(M
j
2, xj, P1[w/x]) (no occurrence of xj is added or removed by replacing the occurrences of x by w in P1).

The induction hypothesis gives D(1),D(1), . . . ,D(i) s.t. D(1) : (�, x1 : T1, . . . , xk : Tk �+ P1[w/x] : N), for all

1 ≤ j ≤ i, D(j) : (� �+ vj[w/x] : Tj), M1

D(1) (P1) = M1
D1(P1) � o(M, P1, x) and M2

D(1) (P1) = M2
D1(P1) � o(M, P1, x).

All necessary side conditions are satisfied, andwe can construct the following derivationD′, by application of rule (InκT):

D(1) D(1) . . . D(i)

� �+ a1(x1)
v1[w/x]...ai(xi)vi[w/x].ai+1(xi+1)

1...ak(xk)
1.P1[w/x] : N .

We can then use Definitions 4.8 and 4.2 to conclude that M1
D′(P′) = M1

D(P) � o(M, P, x), and M2
D′(P′) = M2

D(P) �
o(M, P, x).

• Case (RepT) is treated like case (InκT).• Case (OutT). We have P = a〈v〉.P1. There exists T ′ such that �(a) = ChM1,M2(T ′), and D is obtained using rule (OutT)
from premises Dv : (�, x : T �+ v : T ′), M2 >mul Lvl(T

′) and D1 : (�, x : T �+ P1 : N). The induction hypothesis

gives D(v),D(1) s.t. D(1) : (� �+ P1[w/x] : N), D(v) : (� �+ v[w/x] : T ′), M1

D(1) (P1) = M1
D1(P1) � o(M, P1, x) and

M2

D(1) (P1) = M2
D1(P1) � o(M, P1, x).

As (a〈v〉.P1)[w/x] = a〈v[w/x]〉.(P1[w/x]), we can construct

D′ = (OutT)
D(1) D(v)

�(a〈v[w/x]〉.P1)[w/x]N .

Finally, we use Definitions 4.8 and 4.2 to conclude.

• Case (FunT). We have v = (y �→ P1). There exists T ′ s.t. T0 = T ′ →succ(M) � and D is obtained using rule (FunT) from

a premise of the form D1 : (�, x : T, y : T ′ �+ P1 : M). The induction hypothesis gives D(1) s.t. D(1) : (�, y : T ′ �+
P1[w/x] : M).

R. Demangeon et al. / Journal of Logic and Algebraic Programming 79 (2010) 550–577 567

We can construct

D′ = (FunT)
D(1)

� �+ y �→ P1[w/x] : T0 .

• Case (VarT) with v = y. We have D : (�, x : T �+ y : T0) with �(y) = T0. We distinguish two cases:

– x
= y. Then y[w/x] = y, and the result follows.

– x = y. Then T = T0, and we can exhibit Dw : (� �+ x[w/x] : T0). �

Lemma 4.11. If D : (� �+ Q : N) thenM2
D(Q) ≤mul N.

Proof. By induction on the typing derivation:

• Cases (NilT), (ResT), (ParT), (IfT), (OutT), (RepκT) are treated easily, using the induction hypotheses when needed,

Definition 4.8, as well as some simple properties of multisets to do the calculations.
• Case (AppT). We have P = v1�v2�. There exists T2 such that D is obtained by applying (AppT) to premises D1 : (� �+

v1 : T2 →N �) and D2 : (� �+ v2 : T2). Either v1 = x for some x, and, by Definition 4.8, M2
D(v1�v2�) = ∅, or v1 is not

a variable, and, by Definition 4.8,M2
D(v1�v2�) = N: we can conclude in both cases.

• Case (InκT). We have P = a1(x1)
v1 ...ai(xi)

vi .ai+1(xi+1)
1..ak(xk)

1.P1. Derivation D is build by applying rule (InκT) with

D1 : (� �+ P1 : N), D1 : (� �+ v1 : T1), . . . ,Di : (� �+ vi : Ti) as premises. The induction hypothesis gives

M2
D1(P1) ≤ N. As Definition 4.8 gives M2

D(P) = N, we can conclude. �

Lemma 4.7, and the fact that comp() is compatible with congruence, ensures that the results of Lemmas 4.3 and 4.4 still

hold for HOpi !,+ω processes. We moreover have:

Lemma 4.12. If D : (� �+ Q : N) and Q →! Q ′ then there exist N′ and D′, s.t. D′ : (� �+ Q ′ : N′) and

• either M1
D(Q) >mul M1

D′(Q ′),
• or M1

D(Q) = M1
D′(Q ′) and M2

D(Q) >mul M2
D(Q).

Proof. We reason by induction on the derivation of Q →! Q ′.

• Cases (CongT), (SpectT), (ScopT), (CondTT) and (CondFT) can be treated using the induction hypothesis, Lemmas 4.4

and 4.9, and Definition 4.8.
• Case (BetaT). We have Q = (x �→ Q1)�v2�, Q →! Q1[v2/x] and D : (� �+ (x �→ Q1)�v2� : N). This means that D is of

the form

D1

� �+ (x �→ Q1) : T →succ(N1) � D2

� �+ (x �→ Q1)�v2� : N
with D1 : (�, x : T �+ Q1 : N1) and D2 : (� �+ v2 : T). From Definition 4.8, we deduce M1

D(Q) = succ(N1). We

apply Lemma 4.10 to D1, yielding D′ : (� �+ Q1[v2/x] : N1). From Lemma 4.11, we get M2
D′(Q1[v2/x]) ≤mul N1. As

Q1 appears in a message position in Q , because of the well-formedeness condition, every input prefix in Q1 and v2 is

annotated with 1. This allows us to deduce M1
D′(Q1[v2/x]) ≤mul N1. ThusM1

D(Q) >mul M1
D′(Q ′) .

• Case (PrUnrT). We have

(ai〈vi〉.Q1 | a1(x1)v1 ...ai−1(xi−1)
vi−1 .ai(xi)

1.ai+1(xi+1)
1...ak(xk)

1.Q2)

→! (Q1 | a1(x1)v1 ...ai−1(xi−1)
vi−1 .ai(xi)

vi .ai+1(xi+1)
1...ak(xk)

1.Q2).

Thus D is of the form

D1 Di

� �+ ai〈vi〉.Q1 : N1

D′′

� �+ Q : N , D′′ being given by the following application of the (InκT) rule,

D2 D1 .. Di−1

� �+ a1(x1)
v1 . . .ai−1(xi−1)

vi−1 .ai(xi)
1.ai+1(xi+1)

1. . .ak(xk)
1.Q2 : N2

,

568 R. Demangeon et al. / Journal of Logic and Algebraic Programming 79 (2010) 550–577

and with where Di : (� �+ vi : Ti), D1 : (� �+ Q1 : N′
1), N1 = N′

1 � Mi
1, for all 1 ≤ j ≤ k, �(aj) = ChM

j
1,M

j
2(Tj),

M
j
2 > Lvl�(Tj), D1 : (� �+ v1 : T1), . . . ,Di−1 : (� �+ vi−1 : Ti−1) and D2 : (�, , x1 : T1, . . . , xk : Tk �+ Q2 : N2).

We can construct, using rule (ParT), the following derivation, called D′:

D1 (InκT)
D2 D1 . . . Di−1 Di

a1(x1)
v1 . . .ai−1(xi−1)

vi−1 .ai(xi)
vi .ai+1(xi+1)

1...ak(xk)
1.Q2

� �+ Q ′ : N′

with N′ = N′
1 �N2. This is possible as the side conditions holding inD still hold, and� �+ vi : Ti. By definition, we have

M1
D(Q) = (M1

D1(Q1) � Mi
1) � (M1

D2(Q2) � M1
1 � · · · � M

i−1
1) andM1

D(Q ′) = (M1
D1(Q1)) � (M1

D2(Q2) � M1
1 � · · · �

M
i−1
1 � Mi

1) which is M1
D(Q) = M1

D(Q ′). Using the construction rules for the second measure, we deduce: M2
D(Q) =

(M2
D1(Q1) � Mi

1) � (M2
D2(Q2)) and M2

D(Q ′) = (M2
D1(Q1)) � (M1

D2(Q2)) which implies M2
D(Q) >mul M2

D(Q ′)
• A similar reasoning is used to treat cases (PrRepT) and (TrigT).• Case (EndUnrT). We have

(ak〈vk〉.Q1 | a1(x1)v1 ...ak−1(xk−1)
vk−1 .a1k(xk).Q2) →! (Q1 | Q2[v1/x1] . . . [vk−1/xk−1][vk/xk]).

Thus D is of the form

Dk D1

� �+ ak〈vk〉.Q1 : N1

D2 D1 . . .Dk−1

� �+ a1(x1)
v1 ...ak(xk)

1.Q2 : N2

� �+ Q : N ,

where D1 : (� �+ Q1 : N′
1), D1 : (� �+ v1 : T1), . . ., Dk : (� �+ vk : Tk), N1 = N′

1 � Mi
1, ∀1 ≤ j ≤ k, �(aj) =

ChM
j
1,M

j
2(Tj), M

j
2 > Lvl�(Tj) (notice that Mk

2 > Lvl�(Tk) is given by � �+ ak〈vk〉.Q1 : N1) and D2 : (�, x1 : T1, . . . , xk :
Tk �+ Q2 : N2).

We use k times Lemma 4.10 to obtain D(2) : (� �+ Q2[v1/x1] . . . [vk/xk] : N2) and

M1

D(2) (Q2[v1/x1] . . . [vk/xk]) = M1
D2(Q2) � o(Lvl�(v1),Q2, x1) � · · · � o(Lvl�(vk),Q2, xk).

We then construct

D′ = (ParT)
D1 D(2)

� �+ Q1 | Q2[v1/x1] . . . [vk/xk] : N′

with N′ = N′
1 � N2. Using Definition 4.8, we have M1

D(Q) = M1
D1(Q1) � M1

D2(Q2) � M1
1 � · · · � Mk

1 and M1
D′(Q ′) =

M1
D1(Q1) � M1

D2(Q2) � o(Lvl�(v1),Q2, x1) � · · · � o(Lvl�(vk),Q2, xk).

The side conditions in the usage of rule (InκPa) in D give for all j < k, M
j
2 >mul Lvl�(Tj) = Lvl�(vj). Similarly,

the usage of rule (OutκPa) in D gives Mk
2 >mul Lvl�(Tk) = Lvl�(vk) and the rule (InκPa) in D gives

⊎
1≤j≤k M

j
1 >mul⊎

1≤j≤k o(M
j
2,Q2, xj).

Thus, finally, we obtain
⊎

1≤j≤k M
j
1 >mul

⊎
1≤j≤k o(Lvl�(vj),Q2, xj) and M1

D′(Q ′) <mul M1
D(Q).

• Case (EndRepT) is treated similarly. �

Theorem 4.13 (Termination). If D : (� � P : N), then P terminates.

Proof. Suppose, towards a contradiction, that process P diverges. Then so does comp(P). We thus have an infinite sequence

(Qi)i≥0 such that Q0 = comp(P) and ∀i,Qi →! Qi+1. We can apply Lemma 4.12 to each Qi to obtain an infinite sequence

(Di)i≥0 s.t. ∀i,Di : (� �+ Qi : Ni) and an infinite sequence (M1
Di(Qi),M2

Di(Qi)) such that ∀i,M1
Di(Qi) >mul M1

Di+1(Qi+1)

or M1
Di(Qi) = M1

Di+1(Qi+1) and M2
Di(Qi) >mul M2

Di+1(Qi+1). This contradicts the well-foundedness of >mul . �

4.3. Encoding separate choice

To illustrate the expressiveness of our type system for HOpi !ω , we present the encoding of the separate choice operator.

Separate choice here means that operator + is applied only to inputs, or only to outputs.

R. Demangeon et al. / Journal of Logic and Algebraic Programming 79 (2010) 550–577 569

Table 9

Separate choice in HOpi !ω .

The protocol in HOpi !ω is presented in Table 9; we make use of notation
∏n

i=1 Pi to represent P1| . . . |Pn, and we write

[P] for the encoding of process P. The protocol is designed to let sums of output processes (the emitters) synchronise with

sums of input processes (the receivers), whenever matching actions can be found. It works as follows. Any output action

of an emitter may proceed. Whenever a matching input action exists, a mechanism of locks is used to ensure that at most

one branch has been chosen on the emitter’s side, and the same on the receiver’s side. If this is not the case, the protocol

backtracks, and the initial output action that has started executing is cancelled. Channels s and r are used to implement two

locks, that are tested on the receiver’s side to decide whether the corresponding branch in the sum of inputs is allowed to

proceed. When this is not the case, the protocol backtracks. The reader is referred to [6] for a more detailed description of

the protocol: ours closely follows the steps of Nestmann’s original proposal.

Because of backtracking, and of the inherent complexity of the processes being manipulated, the analysis of the protocol

in terms of termination is non-trivial. Also, when rewritten in the higher-order paradigm (more precisely, in HOpi !ω), the
protocol makes use of some patterns or combinations of operators that are delicate for termination (in particular, a pattern

similar to a(X).b(Y).X , as discussed in Section 4). The proof that the original protocol does not add divergence is given in [6],

while [3] uses a type system to derive the same result.

Several details have to be changed or adapted w.r.t. the protocol in [6] to program separate choice in our setting. For

instance, in [6], there may be a sequence of requests on channel s, the first of which receives answer true, and answer

false is given to all following requests. In our protocol, this behaviour has been “hardwired” in the definition of the

emitters, to clarify the encoding.

Names a and r are given the simple type Ch(bool) and g is given the simple type Ch(unit), like in the original process.

Instead of sending channel a, which we cannot do since our calculus does not feature name passing, we send a function

fa : bool → � which allows the process that encodes a sum of inputs to output boolean values on a. The case of s is more

complex, because the input capability on s is transmitted in the protocol of [6]: the process encoding the sum of inputs

performs an input on s after receiving s. The protocol of Table 9 exploits an encoding of the π-calculus into HOpi !ω , more

precisely, of the localised π-calculus [10, Section 5.6]. Accordingly, a function of higher-order is transmitted in place of s in

our encoding: upon reception of this function fs : (bool → �) → �, it is applied to a function fu : bool → � (which

intuitively represents the input capability), and this finally allows the process which sent fs (the process encoding a sum of

outputs) to transmit boolean values on channel u : Ch(bool) to the process encoding a sum of inputs. The latter protocol,

in which functions are transmitted and applied, illustrates the higher-order nature of HOpi !ω .
Typing the processes. As stated above, the protocol does not add divergence. We rely on the type system of Section 4.2 to

show that our encoding of this protocol does not add non-typability; that is, if the processes Qi and Pi are typable, the whole

process is typable. Indeed, typing the processes given in Table 9 is possible provided the continuation processes Pi,Qi can

be typed. When this is the case, we must use, to type our protocol, levels that are strictly greater than those used to type

the Pi,Qi, which is always possible. In what follows, we ignore this point, and assume the context ∅ is sufficient to type

the Pi,Qi with the global weight ∅. Adapting the typing to a situation where Pi,Qi have non-∅ weights is not conceptually

difficult. For the same reasons, we ignore the level of the values di sent by the emitters. Instead, we just assume they have a

well-formed type T of level ∅. It is easy to adapt the typing to a situation where the level of T is a given multiset M.

570 R. Demangeon et al. / Journal of Logic and Algebraic Programming 79 (2010) 550–577

Proposition 4.14 (Typing the encoding of separate choice). Consider two sets of processes (Pi)i=1,...,n and (Qi)i=1,...,m such

that ∅ � Pi : ∅, and z : T � Qi : ∅ for some name z and type T.

Then
[∑n

i=1 xi〈di〉.Pi
] ∣∣ [∑m

i=1 yi(z).Qi

]
does not exhibit a divergence.

Proof. We establish this by applying Theorem 4.13. For this, we construct a typing derivation in which we assign types to

the names used in Table 9. The type assignement is as follows (we introduce T0 = bool∅ →{0,0} �):

t : unit∅ g : Ch{4},{0}(unit∅)
xi, yi : Ch{4},{3}(T, T0 →{2,0} �, T0) s : Ch{2},{1}(T0)
r : Ch{0},{0}(bool∅) a : Ch{0},{0}(bool∅)
u : Ch{0},{0}(bool∅) fa : bool∅ →{0,0} �
fu, fv : bool∅ →{0,0} � fs : T0 →{2,0} �
z, di : T x, y : bool∅.

We do not give explictly the construction of the whole derivation, but explain why every subprocess is typable. We

introduce somenotations thatwe use in the following calculations:wewriteW(a) for theweight of a (we overload notations

and write W(P) for the weight of a process P), C(a) for the capacity of a, and L(v) for the level of v.

• s(fv).(fv�true� | !s(fv).fv�false�). Touse rule (InT)here,weneed to check thatC(s) = {1} is greater thanL(fv) = {0, 0},
and that W(s) = {3} is greater than o({2}, (fv�true� | !s(fv).fv�false�), fv) = {2} (Remember that, by Definition 4.2,

o(M, !a(y).P, x) = ∅).
• !s(fv).fv�false�. To use rule (RepT) here, we need to check that C(s) = {1} is greater than L(fv) = {0, 0}, and that

W(s) = {3} is greater than o({2}, fv�false�, fv) � W(fv�false�) = {2, 2}.
• xi〈di, x �→ s〈x〉, y �→ a〈y〉〉; this output is well-typed as W(s) = 2, hence L(x �→ s〈x〉) = {2, 0}, which is smaller than

{3} = C(xi).
A similar reasoning holds for y �→ a〈y〉, which has level {0, 0}. Moreover, L(di) = ∅ is smaller than {3} = C(xi).• The inputs a(x′), u(y) are typed easily, because the types we assume for a and u impose level ∅ for the boolean variables

x, y.
• fs�x �→ u〈x〉�. The application is well-typed, becauseW(u) = {0}, which gives a type compatible with the type we have

assumed for fs.• The cruxof this proof is the type-checkingof the replicated subterm !g(t).yi(z, fs, fa).r(x).C (C is the continuationprocess,

which can be deduced from the definition of the process in Table 9).

In order to apply rule (RepT), we have to check that the two domination conditions hold. The condition Lvl(Ti) <mul M
i
2

is fulfilled because:

– C(g) = {0} is greater than L(y) = ∅,
– C(yi) = {3} is greater than L(z) = ∅, L(fs) = {2, 0} and L(fa) = {0, 0},
– C(r) = {0} is greater than L(x) = ∅.
As far as the other condition is concerned, we have to compute W(C) and the contributions o({3}, C, fs), o({3}, C, fa),
o({3}, C, z) and o({0}, C, x). Because of rule (IfPa), and byDefinition 4.2,wehave to compute these values for each branch

in the nested conditional tests (we call these Cj , for j = 1, 2, 3), and compute the maximum.

– We have W(C1) = L(fs) � L(fa) � W(r) = {2, 0, 0, 0} (remember Qi has weight ∅). If we suppose that z appears

c1 times in Qi, not in object position nor inside the continuation of a replication, we have o({3}, z, C1) = c1.{3},
o({3}, C1, fs) = {3}, o({3}, C1, fa) = {3}, o({0}, C1, x) = {0}.

– We have W(C2) = L(fs) � L(fa) � W(r) � W(g) = {4, 2, 0, 0, 0}. We have o({3}, z, C2) = ∅, o({3}, C2, fs) = {3},
o({3}, C2, fa) = {3}, o({0}, C2, x) = {0}.

– We have W(C3) = W(r) � W(yi) = {4, 0}. We have o({3}, z, C3) = ∅, o({3}, C3, fs) = ∅, o({3}, C3, fa) = ∅,
o({0}, C3, x) = {0}.

Rule (IfT) allows us to compute W(C) = {4, 2, 0, 0, 0}. Definition 4.2 gives o(∅, C, t) = ∅, o({3}, C, fs) = {3},
o({3}, C, fa) = {3}, o({3}, C, z) = c1.{3} and o({0}, C, x) = {0}. We can thus apply rule (RepT) as {4, 4, 0}, which

is the multiset sum of the weights of g, yi, r, is strictly greater than {4, 3, 3, 2, 0, 0, 0, 0} � c1.{3}, the multiset sum of

the global weight of C and the contribution of the capacities of g, yi, r in C. �

The last item above illustrates the usefulness of the treatment of sequences of input prefixes: indeed we need to apply

rule (RepT) in a non-trivial way (more precisely, by treating together names g and yi) in order to type-check this part of the

process.

R. Demangeon et al. / Journal of Logic and Algebraic Programming 79 (2010) 550–577 571

5. Controlling communication and passivation

5.1. Paπ : a calculus with locations and passivation

The objective of this section is to study termination in presence of further constructs that are known to be challenging in

the semantics of higher-order concurrent languages, notably constructs of locations (i.e., explicit spatial distribution) and of

passivation. We consider a calculus, which we refer to as Paπ (for ‘Passivation Pi-calculus’), that combines such constructs

with the higher-order features of HOpi2 and the name-passing capabilities of the π-calculus.

We start by defining Paπ and its operational semantics. As in the previous sections, lowercase letters, a, b, c, . . ., l, . . .,
p, q, . . .x, y, . . ., will be used to range over names. We adopt some conventions to distinguish several usages of names: we

write a, b, c for names used as channels, l for names used as locations, and x, y for names used in input variable position.

The distinction will be ensured by the type system, presented below. The grammar of Paπ processes is as follows:

P ::= 0
∣∣ P|P ∣∣ (νp) P

∣∣ p〈q〉.P ∣∣ p(x).P
∣∣ !p(x).P

∣∣ p�P�
∣∣ p〈P〉.P ∣∣ p(X).P

∣∣ p(X) � P
∣∣ X.

As in Section 4, replication is allowed only on name-passing input prefixes. l�P� stands for the process P running at

location l (locations can be nested). The construct l(X) � P corresponds to passivation: such a process is willing to freeze a

computation running at location l, call it X and proceed according to P. For instance, in the process

l�T� | l(X) � (νl′) (a〈X〉 | l′�X�),

T can execute, until at some point location l is passivated.When this happens, a copy of the process at l is sent along channel

a, and computation resumes at a new location named l′. Passivation can be found in calculi like Kells [5,11] or Homer [4].

The definition of structural congruence in Paπ inherits the laws of≡ in HOpi2. No specific law is introduced for locations

– in particular, restrictions are not allowed to cross-location boundaries.

Reduction in Paπ is defined by the following inference rules:

(ComNP)
p〈q〉.P1 | p(x).P2 → P1 | P2[q/x] (TrigP)

p〈q〉.P1 | !p(x).P2 → P1 | P2[q/x] | !p(x).P2
(ComPP)

p〈Q〉.P1 | p(X).P2 → P1 | P2[Q/X] (PassP)
l�Q � | l(X) � P → P[Q/X] (LocalP)

P → P′

l�P� → l�P′
�

(SpectP)
P → P′

P|Q → P′|Q (CongP)
P ≡ P′ P′ → Q ′ Q ′ ≡ Q

P → Q
(ScopP)

P → P′

(νp) P → (νp) P′

It has to be noted that we do not claim here that the combination of primitives provided in Paπ (essentially, first and

higher-ordermessage passing, localised interaction, passivation)makes this calculus a proposal for amodel for distributed or

component-basedprogramming, as is thecase for theprocess calculimentionedabove [4,5,11]. Indeed, important interaction

mechanisms such as communication between distant locations, subjective mobility, or dynamic binding of names, are not

available in Paπ .

Our primary goal is instead to study how the constructs of Paπ , which have the advantage of being presented in a rather

simpleway, can be taken into account in our termination analysis.We believe that thewaywe handle these can be smoothly

adapted to small variations: for instance, typing distant communication in kπ [5] should be feasible in prettymuch the same

way we type local communication in Paπ .

Example 5.1. We now provide a few examples of Paπ processes to illustrate typical idioms that can be programmed using

passivation.

Dup c(r).l(X) � (
l�X� | (νl′) (r〈l′〉 | l′�X�)

)

Res c(l).l(X) � l�P0� DynUpd c(l).d(X).(l(Y) � l�X�)

Coloc l1(X) � (
l2(Y) � (l1�X|Y� | l2�0�)

)

We briefly explain these definitions.

Dup performs code duplication: when a message is received on channel c, the computation running at location l is

duplicated, and the location of the new copy is sent back on r, the channel transmitted along c.

572 R. Demangeon et al. / Journal of Logic and Algebraic Programming 79 (2010) 550–577

Table 10

Typing rules for Paπ .

Process Res (reset): upon reception of a location name l along c, the computation taking place at l is replacedwith P0, that

can be considered as a start state. Essentially the same “program” can be used when we want to replace the code running at

l with a new version, that is transmitted along some channel d: this is a form of dynamic update (process DynUpd).

“Co-localisation”: processes running at locations l1 and l2 are put together, and computation proceeds within location

l1. This might trigger new interactions between formerly separated processes. This is a form of objective mobility (running

computations are being moved around).

5.2. Controlling termination in Paπ

In Paπ , divergences arise both from recursion in usages of the passivation and process-passing mechanisms, and from

recursive calls in thecontinuationof replicated (namepassing) inputs.Wecontrol the latter sourceofdivergencesby resorting

to the type discipline of [3], while the former is controlled by associating levels to locations and to process-carrying channels,

along the lines of the type systems we have studied in the previous sections.

However, the mere superposition of these two systems (of Section 2.2 and of [3]) does not work, as the two mechanisms

can cooperate to produce divergences. This can be illustrated by looking at process

S5 = l(X)�!a(y).X | l�a〈p〉� | a〈p〉.
This process is divergent, but, unfortunately, the usages of passivation (which can be treated as a formof process passing) and

name passing in S5 are compliant with the principles of the aforementioned type systems. In this particular case, we must

take into account the fact that X can be instantiated by a process containing an output on a channel having the same level

as a. More generally, we must understand how the two type systems can interact, in order to avoid diverging behaviours.

The following grammar introduces the types for processes, location names, channels and values (to be transmitted along

channels):

TP = m TL = locm TC = Chm(TV) TV = TL
∣∣ TC

∣∣ �
In Paπ , every entity (process, location, name-passing channel and process-passing channel) is given a level which is

used to control the two sources of divergences discussed above. The level of a name-passing channel a corresponds to the

maximum level allowed for the continuation P in a replicated input of the form !a(x).P. The level of a process-passing channel
a corresponds to the maximum level of a process sent on a. Similarly, the level of a location l corresponds to the maximum

level a process executing at l can have. In turn, the level of a process P corresponds to the maximum level of messages and

locations that occur in P neither within a higher-order output nor under a replication.

The rules defining the type system for termination in Paπ are given in Table 10. As far as typing termination is concerned,

we treat higher-order inputs (resp. outputs) like passivations (resp. located processes).

Example 5.2 (Typing examples). Process S5 seen above cannot be typed. The typing rule for locations forces the level of

location l to be strictly greater than lvl(a)when typing l�a〈p〉�. The typing rule for passivation forces the level of l to be equal

to 1 + lvl(X). Thus lvl(X) ≤ lvl(a) and the typing rule for replicated inputs cannot be applied to !a(y).X .

R. Demangeon et al. / Journal of Logic and Algebraic Programming 79 (2010) 550–577 573

For process Coloc to be typable, lvl(l1), the level assigned to l1, should be greater than lvl(l2). In this case, we can observe

that, thanks to typing, we know it is safe to take two processes running in separate locations and let them run in parallel,

as Coloc does: while this might trigger new interactions (inter-locations communication is forbidden in Paπ), this is of no

harm for termination.

Remark 5.3 (An extension of two type systems). We can remark that the sub-set consisting of rules (NilPa), (VarPa), (ResPa),
(ParPa), (InPPa),(OutPPa) corresponds exactly to the type system for HOpi2 introduced in Section 2. Hence, every HOpi2
process that is typable according to the rules of Table 3 is typable as a Paπ process using rules of Table 10.

Moreover, the type system of Table 10 subsumes the type system of [3] for the π-calculus: if a π-calculus process P is

typable according to [3], then it is typable as a Paπ process.

Remark 5.4. It has to be noted that the type system we present can be made more expressive by exploiting ideas from

Section 4. Indeed, we associate a unique level to names, andwe could instead use three natural numbers to type a name: one

would be its weight, and the other two would be interpreted as capacities, used to control the two sources of recursion: the

weight of name passing outputs on one side, and the weight of process passing outputs and located processes on the other

side. In what we have presented, these three components of the type of a name are merged into a single one. Additionally,

sequences of inputs could be analysed according to the ideas of Section 4.

5.3. Correctness of the type system

The soundness proof for our type system essentially follows the same strategy as in the previous sections. At its core is

the definition of a measure on processes, that takes into account the contribution of locations and first- and higher-order

outputs that do not occur within a message.

The type system for Paπ enjoys as usual the properties of weakening and strengthening (omitted), as well as the preser-

vation of typability under ≡:

Lemma 5.5. If P ≡ P′ then � � P : n iff � � P′ : n.

Proof. By induction on the derivation of P ≡ P′. �

Definition 5.6. Given a Paπ process P, we associate to a typing derivation D : (� � P : n) a multiset, noted MD(P), and
defined as follows:

• MD(0) = MD(X) = ∅;
• MD(P1 | P2) = MD1(P1) � MD2(P2) where D is obtained from premises D1 : (� � P1 : n1) and D2 : (� � P2 : n2) for

some n1, n2;• MD((νp) P1) = MD1(P1) where D is obtained from premise D1 : (�, p : TV � P1 : n) for some TV ;

• MD(l(X) � P1) = MD1(P1) where D is obtained from premise D1 : (�, X : k − 1 � P1 : n);
• MD(l�Q �) = MD1(Q) � {n} where D is obtained from premise D1 : (� � Q : n′), for some n′ and �(l) = locn.

• MD(p(X).P1) = MD1(P1) where D is obtained from premise D1 : (�, X : k − 1 � P1 : n);
• MD(p〈Q〉.P1) = MD1(P1) � {k} where D is obtained from premises D1 : (� � Q : n1), D2 : (� � P1 : n2) for some

n1, n2 and lvl�(p) = k;
• MD(p〈q〉.P1) = MD1(P1) � {k} where D is obtained from premise D1 : (� � P1 : n1) for some n1, �(a) = Chk(T) for

some k, T s.t. n = max(k, n1);• MD(p(x).P1) = MD1(P1) where D is obtained from premise D1 : (�, x : TV � P1 : n) for some TV ;• MD(!p(x).P1) = ∅;

Lemma 5.7. Let � be a typing context, N a multiset of natural numbers and n a natural number. If P ≡ P′ then there exists

D : (� � P : n) with MD(P) = N iff there exists D′ : (�′ � P′ : n) with MD′(P′) = N.

Proof. Easily proved by induction on the derivation of P ≡ P′. �

As reduction in Paπ may involve two kinds of substitutions (for name variables or process variables) the ‘subject substi-

tution’ lemma is decomposed into two properties, which we prove below.

Lemma 5.8. If D : (�, x : TV � P : n) and �(q) = TV , then there exists D′ s.t. D′ : (� � P[q/x] : n′) for some n′ ≤ n and

MD′(P[q/x]) = MD(P).

Proof. We reason by induction on the typing derivation:

574 R. Demangeon et al. / Journal of Logic and Algebraic Programming 79 (2010) 550–577

• Cases (NilPa), (VarPa), (ParPa) and (ResPa) are treated easily using the induction hypotheses (where relevant) as well as

Definition 5.6.
• Case (LocPa). Suppose P = x�Q1� (the case P = l�Q1� with l
= x can be deduced from the following). Then TV = locn,

and D is derived using (LocPa) from premise D1 : (�, x : TV � Q1 : n1), for some n1 s.t. n > n1.

The induction hypothesis gives D(1) : (� � Q1[q/x] : n′
1) for some n′

1 ≤ n1 and MD(1) (Q1[q/x]) = MD1(Q1). As

�(q) = TV = locn and n > n1 ≥ n′
1, we can construct

D′ = (LocPa)
D(1)

� � q�Q1[q/x]� : n .

As q and x have the same type, TV , we can use use Definition 5.6 to conclude.
• Case (PasPa). Suppose x(X)� P1 (the case P = l(X)� P1 and l
= x can easily be deduced from the following). There exists

k s.t. TV = lock and D is obtained by applying rule (PasPa), with premise D1 : (�, X : k − 1, x : TV � P1 : n). Induction
gives D(1) : (�, X : k − 1 � P1[q/x] : n′), for some n′ ≤ n. As �(q) = lock we can construct

D′ = (PasPa)
D(1)

� � q(X) � P1[q/x] : n′ .

As q and x have same type TV , we conclude using Definition 5.6.
• Case (InPPa) is treated like case (PasPa).• Case (OutPPa). Suppose P = x〈Q2〉.P1 (the case P = p〈Q〉.P1 and p
= x can easily be deduced from the following). There

exists k s.t. T = Chk(�) and D is built using rule (OutPPa), from premises D1 : (�, x : TV � P1 : n1) and D2 : (�, x :
TV � Q2 : n2), with k > n2 and n = max(k, n1) for some n1, n2. The induction hypothesis gives D(1),D(2), n′

1, n
′
2

s.t. D(1) : (� � P1[q/x] : n′
1), D(2) : (� � Q2[q/x] : n′

2), n
′
1 ≤ n1, n

′
2 ≤ n2, MD1(P1) = MD(1) (P1[q/x]) and

MD2(Q2) = MD(2) (Q2[q/x]).
As k > n2 ≥ n′

2 and �(q) = Chk(�) , we construct

D′ = (OutPPa)
D(1) D(2)

� � q〈Q2[q/x]〉.(P1[q/x]) : max(k, n′
1)

.

We conclude by stating that max(k, n′
1) ≤ max(k, n1) and relying on Definition 5.6 to obtain the result on the measure.

• Case (InNPa). Suppose P = x(y).P1 (the case P = p(y).P1 and p
= x can be deduced from the following). As our

processes abide the Barendregt Convention, y
= x. There exists k, T ′
V s.t. TV = Chk(T ′

V) and D is obtained using (InNPa)

from premiseD1 : (�, x : TV , y : T ′
V � P1 : n). The induction hypothesis givesD(1) : (�, y : T ′

V � P1[q/x] : n′) for some

n′ ≤ n. As �(q) = Chk(T ′
V) we can construct

D′ = (InNPa)
D(1)

� � q(y).P1[q/x] : n′ .

As x and q have the same type, we can conclude using Definition 5.6.
• Case (OutNPa). Suppose P = x〈q′〉.P1 (the case P = p〈q′〉.P1 and p
= x can easily be deduced from the following). There

exists k, T ′
V s.t. T = Chk(T ′

V), �(q′) = T ′
V and D is obtained using rule (OutNPa) from premise D1 : (�, x : TV � P1 : n1)

and n = max(k, n1). The induction hypothesis gives D(1) : (� � P1[q/x] : n′
1) with n′

1 ≤ n1. As, �(q) = Chk(T ′
V), we

construct

D′ = (OutNPa)
D(1)

� � q〈q′〉.P1[q/x] : max(k, n′
1)

.

We conclude by stating that max(k, n′
1) ≤ max(k, n1), and using Definition 5.6.

• Case (RepPa) can be deduced from cases(InNPa) and (LocPa). �

As announced, we then prove a similar property, about substitution of processes instead of substitutions of names.

Lemma 5.9. Suppose D : (�, X : m � P : n) and DQ : (� � Q : m′) with m′ ≤ m. Then there exists D′, c s.t. D′ : (� �
P[Q/X] : n′) for some n′ ≤ n and MD′(P[q/x]) = MD(P) + c.MDQ (Q).

R. Demangeon et al. / Journal of Logic and Algebraic Programming 79 (2010) 550–577 575

Proof. By induction on the typing derivation:

• Cases (VarPa) when P = Y
= X , (NilPa), (ResPa), (ParPa), (PasPa), (InPPa), (OutNPa) and (InNPa) and are easily treated

using the induction hypotheses (where relevant), as well as Definition 5.6.
• Case (RepT) is treated using the induction hypothesis and Definition 5.6 as we impose the condition n′ ≤ n in the

statement of the lemma.
• Case (VarPa). Suppose P = X . Derivation D is built using rule (VarPa). We set D′ = DQ and we have D′ : (� � Q : m′)

withm′ ≤ m. We conclude using Definition 5.6, with c = 1.
• Case (LocT). Suppose P = l�Q1�. We have �(l) = locn and D is obtained using rule (LocPa) from premise D1 : (�, X :

m � Q1 : n1), for some n1 < k. The induction hypothesis gives D(1), c1 s.t. D(1) : (� � Q1[Q/X] : n′
1) for some n′

1 ≤ n1
and MD(1) (Q1[Q/X]) = MD1(Q1) � c1.MDQ (Q). As k > n1 ≥ n′

1, we can construct

D′ = (LocPa)
D(1)

� � l�Q1[Q/X]� : n .

As MD(X) = ∅, we conclude using Definition 5.6, with c = c1.• Case (OutPPa). Suppose P = p〈Q2〉.P1. There exists k s.t. �(p) = Chk(�) and D is obtained using rule (OutPPa) from

premises D2 : (�, X : m � Q2 : n2) and D1 : (�, X : m � P1 : n1) with n2 < k and n = max(k, n1) for some

n1, n2. By the induction hypothesis, we deduce the existence of D(2),D(1), c1, c2 s.t. D(2) : (� � Q2[Q/X] : n′
2) and

D(1) : (� � P1[Q/X] : n′
1) for some n′

1, n
′
2 s.t. n′

2 ≤ n2 and n′
1 ≤ n1, MD(1) (P1[Q/X]) = MD1(P1) � c1.MDQ (Q) and

MD(2) (Q2[Q/X]) = MD2(Q2) � c2.MDQ (Q). As k > n2 ≥ n′
2, we can construct

D′ = (OutPPa)
D(1) D(2)

� � p〈Q2[Q/X]〉.P1[Q/X] : max(k, n′
1)

.

We conclude using Definition 5.6, with c = c1. �

We now establish an upper bound property about MD(P).

Lemma 5.10. If D : (� � P : n) then MD(P) <mul {n + 1}.
Proof. By induction on the typing derivation:

• Cases (NilT), (VarPa), (ResPa), (ParPa), (PasPa), (RepPa), (InNPa) and (InPPa) are easily treated, using the induction

hypotheses when needed and Definition 5.6.
• Case (LocPa). Suppose P = l�Q1�. Derivation D is obtained using rule (LocPa) from premises �(l) = locn and D1 : (� �

Q1 : n1) for somen1 < n. The inductionhypothesis givesMD1(Q1) <mul n1 + 1.Bydefinition,MD(P) = MD1(Q1)�{n}.
We have {n + 1} >mul MD(P) as MD′(Q1) <mul {n1 + 1} <mul {n + 1} and {n} <mul {n + 1}.

• Case (OutPPa). Suppose P = p〈Q2〉.P1. There exists k s.t. �(p) = Chk(�) and D is built by applying rule (OutPPa)
with premises D2 : (� � Q2 : n2) and D1 : (� � P1 : n1), for some n1, n2 s.t. n2 < k, and n = max(k, n1).
By definition, MD(P) = MD1(P1) � {k}. The induction hypothesis gives {n1 + 1} >mul MD1(P1). Thus, as we have

{max(k, n1) + 1} >mul {k} , we deduce {max(k, n1) + 1} >mul MD(P).
• Case (OutNPa). Suppose P = p〈q〉.P1. There exists k, TV s.t. �(p) = Chk(TV) and D is obtained using rule (OutNPa) from

premise D1 : (� � P1 : n1) for some n1 s.t. n = max(k, n1). By definition, MD(P) = MD1(P1) � {k}. The induction

hypothesis gives {n1 + 1} >mul MD1(P1). Thus, as we have {max(k, n1) + 1} >mul {k}, we get {max(k, n1) + 1} >mul

MD(P). �

Finally, we establish the main property of our type system, that relates typability and reduction.

Lemma 5.11. If D : (� � P : n) and P → P′, then there exists D′, n′ s.t. n ≥ n′, D′ : (� � P′ : n′) andMD(P) > MD′(P′).

Proof. We reason by induction on the derivation of P → P′.

• Cases (CongP), (ScopP) and (SpectP) are treated easily using the induction hypotheses (when relevant), Lemmas 5.5

and 5.7, Definition 5.6, the compatibility of the multiset ordering with �, and the compatibility of ≤ with max.
• Case (LocP). We have P = l�Q1�, P′ = l�Q ′

1� and Q1 → Q ′
1. The derivationD is obtained, using rule (LocPa), from premise

D1 : (� � Q1 : n1) with �(l) = locn, for some n1 < n. We have MD(P) = MD1(Q1) � {n}. The induction hypothesis

gives D(1) : (� � Q ′
1 : n′

1) with n′
1 ≤ n1 and MD(1) (Q ′

1) <mul MD1(Q1). As n > n1 ≥ n′
1, we can construct

576 R. Demangeon et al. / Journal of Logic and Algebraic Programming 79 (2010) 550–577

D′ = (LocPa)
D(1)

� � l�Q ′
1� : n

and MD′(P′) = MD(1) (Q ′
1) � {n}. We use the compatibility of <mul with � to conclude MD′(P′) <mul MD(P).

• Case (ComPP). We have in this case P = p〈Q1〉.P3 | p(X).P2 and P′ = P3 | P2[Q1/X]. The derivation D is of the form

(ParPa)

(OutPPa)
D1 D3

� � p〈Q1〉.P3 : max(k, n3)
(InPPa)

D2

� � p(X).P2 : n2
� � P : n

for some k, n2, n3 s.t. �(p) = Chk(�), D3 : (� � P1 : n3), D1 : (� � Q1 : n1) for some n1 < k, D2 : (�, X : k − 1 � P2 :
n2)with n = max(k, n3, n2). As k− 1 ≥ n1, we construct a derivationD(2) by using Lemma 5.9 withD2 andD1, and we

get D(2) : (� � P2[Q1/X] : n′
2) for some n′

2 ≤ n2 and MD(2) (P2[Q1/X]) = MD2(P2) + c.MD1(Q1) for some c. We can

construct

D′ = (ParPa)
D3 D(2)

� � P′ : max(n3, n
′
2)

.

Clearly max(n3, n
′
2) ≤ max(k, n3, n2). By Definition 5.6 MD(P) = {k} � MD2(P2) � MD3(P3) and MD′(P′) =

MD(2) (P2[Q/X])�MD3(P3). FromLemma5.10,weknowthatMD1
(Q1) <mul {n1+1}. Asn1 < k,weget c.MD1

(Q1) <mul

{k}. This allows us to conclude MD(P) <mul MD′(P′).
• The case (PassP), with P = l�Q1� | l(X) � P2 and �(l) = lock for some k, is treated like case (ComPP) with P =

a〈Q1〉.0 | a(X).P2 for some a s.t. �(a) = Chk(�).
• (TrigPa). We have P = p〈q〉.P1 | !a(x).P2 and P′ = P1 | P2[q/x] | !p(x).P2. The derivation D is of the form

(ParPa)

(OutPa)
D1

� � p〈q〉.P1 : max(k, n1)
(RepPa)

D2

� �!p(x).P2 : 0
� � P : n

for some k,n1 s.t. �(p) = Chk(T), �(q) = T , D1 : (� � P1 : n1), D2 : (�, x : T � P2 : n2) for some n2 < k

and n = max(k, n1). Applying Lemma 5.8 to D2 allows us to construct D(2) : (� � P2[q/x] : n′
2) with n′

2 ≤ n2 and

MD(2) (P2[q/x]) = MD2(P2). We can then construct

D′ = (ParPa)

(ParPa)

D1 (RepPa)
D2

� �!p(x).P2 : 0
� � P1 | !p(x).P2 : n1 D(2)

� � P′ : max(k, n1, n2)
.

Ask > n2,wegetmax(n1, n
′
2) < max(k, n1, n2). BydefinitionMD(P) = {k}�MD1(P1)andMD′(P′) = MD(2) (P2[q/x])� MD1(P1). As �, x : T � P2 : n2, we can use Lemma 5.10 to deduceMD(2) (P2[Q1/X]) <mul {n2 + 1}. As k ≥ (n2 + 1),

this allows us to conclude MD(P) <mul MD′(P′).
• The proof for case (ComNP) is deduced from the proof for case (TrigP). �

Theorem 5.12. If � � P : n, then P terminates.

Proof. We suppose by contradiction that P diverges, which means that we have an infinite sequence (Pi)0≤i s.t. P0 = P and

for each i, Pi → Pi+1.

By applying Lemma 5.11 to each Pi, we obtain an infinite sequence of typing derivations (Di)0≤i such that, for each i,

Di : (� � Pi : ni) and MDi+1
(Pi+1) <mul MDi

(Pi). The multiset extension of the standard ordering over natural number

being well-founded, we obtain a contradiction. �

6. Concluding remarks

In this paper, we have analysed termination in higher-order concurrent languages, using the higher-order π-calculus as

a core formalism to build the basis of our type systems. For future work, we plan to examine how the type systems we have

R. Demangeon et al. / Journal of Logic and Algebraic Programming 79 (2010) 550–577 577

presented can be adapted to existing process calculi in which processes can be exchanged in communications or can move

among locations such as, e.g., Ambients [1], Homer [4] and Kells [5,11].

Another question we would like to address is type inference; for this, [2] could serve as a starting point. We believe

that the technique described in the first part of [2] can be used to establish that the problem of inferring types for the

type system of Section 2 is polynomial. Intuitively, checking the typability of a HOpi2 process P boils down to checking the

presence of cycles in a graph where nodes are names of P and where there is an edge between a and b if b appears in output

subject position inside a message sent on a. We should be able to reason analogously to establish a polynomial bound for

type inference for the type system for Paπ (Section 5). On the other hand, we show in [2] that the analysis of sequences of

prefixes introduces a combinatorial blow up, and this should be the case for the type system of Section 4. As in [2], reduction

to the 3SAT problem should allow us to show that the type inference problem is NP-complete in this case.

References

[1] L. Cardelli, A.D. Gordon, Mobile ambients, in: M. Nivat (Ed.), Proceeedings of the First International Conference on Foundations of Software Science and

Computation Structures, FoSSaCS’98 (Lisbon, March/April 1998), Lecture Notes in Computer Science, vol. 1378, Springer, 1998, pp. 140–155.
[2] R. Demangeon, D. Hirschkoff, N. Kobayashi, D. Sangiorgi, On the complexity of termination inference for processes, in: G. Barthe, C. Fournet (Eds.), Revised

Selected Papers from Third Symposium on Trustworth Global Computing, TGC 2007 (Sophia-Antipolis, November 2007), Lecture Notes in Computer Science,
vol. 4912, Springer, 2008, pp. 140–155.

[3] Y. Deng, D. Sangiorgi, Ensuring termination by typability, Inform. and Comput. 204 (7) (2006) 1045–1082.

[4] T. Hildebrandt, J.C Godskesen, M. Bundgaard, Bisimulation Congruences for Homer – a Calculus of Higher Order Mobile Embedded Resources, Technical
Report TR-2004-52, University of Copenhagen, 2004.

[5] D. Hirschkoff, A. Pardon, T. Hirschowitz, S. Hym, A. Pardon, D. Pous, Encapsulation and dynamicmodularity in the pi-calculus, in: V.T. Vasconcelos, N. Yoshida,
in: Proceedings of First Workshop on Programming Language Approaches to Concurrency and Communication-Centric Software, PLACES 2008 (Oslo, June

2008), Electronic Notes in Theoretical Computer Science, vol. 249, Elsevier, 2009, pp. 85–100.
[6] U. Nestmann, What is a “good” encoding of guarded choice?, Inform. and Comput. 156 (1–2) (2000) 287–319.

[7] R. Demangeon, D. Hirschkoff, D. Sangiorgi, Termination in higher-order concurrent calculi, in: F. Arbab, M. Sirjani (Eds.), Revised Selected Papers from Third

IPM International Conference on Foundations of Software Engineering, FSEN 2009 (Kish Island, April 2009), Lecture Notes in Computer Science, Springer,
vol. 5961, 2010, pp. 81–96.

[8] D. Sangiorgi, Expressing Mobility in Process algebras: First-Order and Higher-Order Paradigms, Ph.D. Thesis, University of Edinburgh, 1992.
[9] D. Sangiorgi, Termination of processes, Math. Structures Comput. Sci. 16 (1) (2006) 1–39.

[10] D. Sangiorgi, D. Walker, The π-Calculus: A Theory of Mobile Processes, Cambridge University Press, 2001.
[11] A. Schmitt, J.-B. Stefani, The Kell calculus: a family of higher-order distributed process calculi, in: R. De Nicola, D. Sangiorgi (Eds.), Revised Selected Papers

from First International Symposium in Trustworthy Global Computing, TGC 2005 (Edinburgh, April 2005), Lecture Notes in Computer Science, vol. 3267,

Springer, 2005, pp. 146–178.
[12] P. Terese, Term rewriting systems, in: Cambridge Tracts in Theoretical Computer Science, vol. 55, Cambridge University Press, 2003.

[13] B. Thomsen, Calculi for Higher Order Communication Systems, Ph.D. Thesis, University of London, 1996.
[14] N. Yoshida, M. Berger, K. Honda, Strong normalisation in the pi-calculus, Inform. and Comput. 191 (2) (2004) 145–202.

	Termination in higher-order concurrent calculi
	Introduction
	HOpi2
	The calculus
	A type system to ensure termination in HOpi2
	An analysis of the type system for HOpi2

	HOPi: transmitting higher-order functions
	The calculus
	A type system for termination in HOpi

	An expressive type system for parametrised process passing
	Towards richer analyses
	An expressive type system for termination
	Encoding separate choice

	Controlling communication and passivation
	Pa: a calculus with locations and passivation
	Controlling termination in Pa
	Correctness of the type system

	Concluding remarks
	References

