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Abstract 

We present a domain-theoretic framework for measure theory and integration of bounded real- 
valued functions with respect to bounded Bore1 measures on compact metric spaces. The set of 
normalised Bore1 measures of the metric space can be embedded into the maximal elements 
of the normalised probabilistic power domain of its upper space. Any bounded Bore1 measure 
on the compact metric space can then be obtained as the least upper bound of an w-chain of 
linear combinations of point valuations (simple valuations) on the upper space, thus providing a 
constructive framework for these measures. We use this setting to define a new notion of integral 

of a bounded real-valued function with respect to a bounded Bore1 measure on a compact metric 
space. By using an o-chain of simple valuations, whose lub is the given Bore1 measure, we 
can then obtain increasingly better approximations to the value of the integral, similar to the 
way the Riemann integral is obtained in calculus by using step functions. We show that all 
the basic results in the theory of Riemann integration can be extended in this more general 
setting. Furthermore, with this new notion of integration, the value of the integral, when it 
exists, coincides with the Lebesgue integral of the function. An immediate area for application 
is in the theory of iterated function systems with probabilities on compact metric spaces, where 
we obtain a simple approximating sequence for the integral of a real-valued almost everywhere 
continuous fimction with respect to the invariant measure. 

1. Introduction 

The theory of Riemann integration of real-valued functions was developed by Cauchy, 

Riemann, Stieltjes and Darboux, amongst other mathematicians of the 19th century. 

With its simple, elegant and constructive nature, it soon became, as it is today, a solid 

basis of calculus; it is now used in all branches of science. The theory, however, has 

its limitations in the following main areas, listed here not in any particular order of 

significance: 

(i) It only works for integration of functions defined in Iw”. 

(ii) It can only deal with integration of functions with respect to the Lebesgue 

measure, i.e. the usual measure, on [w”. 
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(iii) Unbounded functions have to be treated separately. 
(iv) The theory lacks certain convergence properties. For example, the pointwise 

limit of a uniformly bounded sequence of Riemann integrable functions may fail to be 
Riemann integrable. 

(v) A function with a “large” set of discontinuity, i.e. with nonzero Lebesgue mea- 
sure, does not have a Riemann integral. 

In the early years of this century, Lebesgue and Borel, amongst others, laid the foun- 
dation of a new theory of integration. With its further development, the new theory, the 
so-called Lebesgue integration, has become the basis of measure theory and functional 
analysis. A special case of the Lebesgue integral, the so-called Lebesgue-Stieltjes in- 
tegral, has also played a fundamental role in probability theory. The underlying basis 
of the Lebesgue theory is in sharp contrast to that of the Riemamr theory. Whereas 
in the theory of Riemann integration, the domain of the function is partitioned and 
the integral of the function is approximated by the lower and upper Darboux sums 
induced by the partition, in the theory of Lebesgue integration, the range of the func- 
tion is partitioned to produce simple functions which approximate the function, and 
the integral is defined as the limit of the integrals of these simple functions. The latter 
framework makes it possible to define the integral of measurable functions on abstract 
measurable spaces, in particular on topological spaces equipped with Bore1 measures. 
Lebesgue integration also enjoys very general convergence properties, giving rise to 
the complete P-spaces. Moreover, when the Riemamr integral of a function exists, 
so does its Lebesgue integral and the two values coincide, i.e. Lebesgue integration 
includes Riemann integration. Nevertheless, despite these desired features, Lebesgue 
integration is quite involved and much less constructive than Riemann integration. 
Consequently, Riemann integration remains the preferred theory wherever it is ade- 
quate in practice, in particular in advanced calculus and in the theory of differential 

equations. 
A number of theories have been developed to generalise the Riemann integral while 

trying to retain its constructive quality. The most well-known and successful is of 
course the Riemann-Stieltjes integral. In more recent times, McShane [22] has de- 
veloped a Riemann-type integral, which includes for example the Lebesgue-Stieltjes 
integral, but it unfortunately falls short of the constructive features of the Riemann 
integral. 

A new idea in measure theory on second countable locally compact Hausdorff spaces 
was presented in [9]. It was shown that the set of normalised Bore1 measures on such 
a space can be embedded into the maximal elements of the probabilistic power domain 
of its upper space. The image of the embedding consists of all normalised valuations on 
the upper space which are supported in the set of maximal elements of the upper space, 
i.e. the singletons of the space. This upper space is an o-continuous dcpo (directed 
complete partial order), and it follows that its probabilistic power domain is also an 
w-continuous dcpo with a basis consisting of linear combinations of point valuations 
(simple valuations) on the upper space. The important consequence is that any bounded 
Bore1 measure on the space can be approximated by simple valuations on the upper 
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space, and we have a constructive framework for measure theory on locally compact 

second countable HausdorfI spaces. 

In this paper, we use the above domain-theoretic framework to present a novel ap- 

proach in the theory of integration of bounded functions with respect to a bounded 

Bore1 measure on a compact metric space. Instead of approximating the function 

with simple functions as is done in the Lebesgue theory, we approximate the nor- 

malised measure with normalised simple valuations on the upper space; this pro- 

vides us with generalised lower and upper Darboux sums, which we use to define 

the integral. The ordinary theory of Riemann integration, as well as the Riemann- 

Stieltjes integration, is precisely a particular case of this approach, since any partition 

of, say, the closed unit interval in fact provides a simple norrnalised valuation on 

the upper space of the interval which gives an approximation to the Lebesgue mea- 

sure. 

We therefore work in the normalised probabilistic power domain of the upper space 

and develop a new theory of integration, called R-integration, with the following results, 

l R-integration satisfies all the elementary properties required for a theory of integra- 

tion. 

l For integration with respect to the Lebesgue measure on compact real intervals, 

R-integration and Riemann integration are equivalent. 

l All the basic results in the theory of ordinary Riemamr integration can be generalised 

to R-integration. In particular, a function is R-integrable with respect to a bounded 

Bore1 measure on a compact metric space iff it is continuous almost everywhere. 

l When the R-integral of a function (with respect to a bounded Bore1 measure on a 

compact metric space) exists so does its Lebesgue integral and the two integrals are 

equal. 

Therefore, our theory, which includes the Lebesgue-Stieltjes integral, is a faithful 

and sound generalisation of Riemann integration; it overcomes the limitations (i) and 

(ii) mentioned above, while retaining the constructive nature of Riemann integra- 

tion. In practice, we are often only interested in the integral of functions which 

are not too discontinuous, i.e. R-integration is sufficient at least for bounded func- 

tions. 

We apply the new theory to obtain a simple approximating sequence for the integral 

of a real-valued almost everywhere continuous function with respect to the unique 

invariant measure of an iterated function system with probabilities on any compact 

metric space. 

2. A constructive framework for measure theory 

In this section, we first review the domain-theoretic framework for measure theory 

on locally compact second countable spaces which was established in [9]. We will 

also present some of the background results, in particular from [17], that we need 

here. 



166 A. Edalatl Theoretical Computer Science 151 (1995) 163-193 

We will use the standard terminology and notations of domain theory, as for example 

in [18]. Given a dcpo (D, II) and a subset A s D, we let 

tA={dEDI3uEA.a5d} and fA={d~D(3a~A.a<d}, 

where < is the way-below relation in D. We denote the lattice of open sets of a 

topological space X by QX. Given a mapping f : X + Y of topological spaces and a 

subset a CX, we denote the forward image of a by f [a], i.e. f [a] = {f(x) 1 x E u}. 

Finally, for a subset a G X of a compact metric space X, the diameter of a is denoted 

by 14. 

2.1. The upper space 

Recall [25] that given any Hausdorff topological space X, its upper space UX is the 

set of all nonempty compact subsets of X with the upper topology which has basic 

open sets q iu = {C E UX 1 C s u} for any open set a E L&Y. The following properties 

are easy consequences of this definition. (See [9].) The specialisation ordering LU of 

UX is reverse inclusion, i.e. 

A[7,B 6% VUES~X[A~U~BCU] c A>B. 

Furthermore (UX, 2) is a bounded complete dcpo, in which the least upper bound of 

a directed set of elements is the intersection of these elements and the Scott topology 

refines the upper topology. The singleton map 

embeds X onto the set of maximal elements of UX. 

Proposition 2.1 [9]. Let X be a second countable locally compact Huusdor-space. 

(i) The dcpo (UX, 2) is w-continuous. 
(ii) The Scott topology on (UX, 2) coincides with the upper topology. 

(iii) The way below relation B << C holds in (UX, 2) tjf C is contained in the 
interior of B as subsets of X. 

(iv) (UX, 2) can be given an efective structure. From any countable basis B of X 

consisting of relatively compact neighbourhoods ’ , we can get an order basis of UX 

consisting of the finite unions of closures of elements of B. 

Therefore, any second countable locally compact Hausdorff space X can be embedded 

into its upper space UX which can be given an effective structure. We would like to 

have a similar embedding for the set of bounded Bore1 measures on X. For this, we 

use the probabilistic power domain of UX. 

’ A relatively compact subset of a topological space is one whose closure is compact. 
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2.2. The probabilistic power domain 

Recall from [7,24,21, 161 that a valuation on a topological space Y is a map v : 
QY -+ [O,oo] which satisfies: 

(i) v(a) + v(b) = v(a U b) + v(a n b). 
(ii) v(0) = 0. 

(iii) a C b + v(a) 5 v(b). 
A continuous valuation [21, 17, 161 is a valuation such that whenever A C sZ( Y) is a 

directed set (w.r.t &) of open sets of Y, then 

V 

For any b E Y, the point valuation based at b is the valuation &, : Q(Y) + [0, co) 
defined by 

?b(O) = 
1 if b E 0, 

0 otherwise. 

Any finite linear combination 

i=l 

of point valuations I]bi with constant coefficients ri 
valuation on Y, which we call a simple valuation. 

E [O,CQ) (1 <i<n) is a continuous 

The probabilistic power domain, PY, of a topological space Y consists of the set of 
continuous valuations v on Y with v(Y) < 1 and is ordered as follows: 

p C v iff for all open sets 0 of Y, ~(0) <v(O). 

The partial order (PY, L) is a dcpo with bottom in which the lub of a directed set 

(Pi)iCI is given by Hi pi = v, where for 0 E sZ( Y) we have 

vto) = si-$ Pi(O). 

The probabilistic power domain gives rise to a functor P : DCPO + DCPO on 
the category of dcpo’s and continuous functions [16]. Given a continuous function f : 
Y + Z between dcpo’s Y and Z, the continuous timction Pf : PY -+ PZ is defined 
by Pf(p)(O) = p(f-‘(0)). For convenience, we therefore write Pf(p) = p o f-l. 
For later use we need the following property of this fimctor. 

Proposition 2.2. The functor P : DCPO + DCPO is locally continuous, i.e. it is 
Scott continuous on homsets. 

Proof. Let (fi)ic, be a directed family of maps fi : Y -+ Z in the function space 
Y + Z. Let f = uiEI fi. It is easy to see that for any open set 0 C Z, we have 
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f-‘(o) = ui f?( 0). Now let p E PY. Then, we get 

( ) P u fi (P)(O) = 
i 

= 

ZZZ 

(Pf)(PL)(O) = PL(fWN = P ( ) UfiW) 
i 

suPN?(Ol) = U(p O f?)(O) 
i 

( ) uPfi (P)(O)* q 
i 

It is easy to see that, if Y is a dcpo, the map 

q : Y + PY 

b H ?b 

is continuous. Furthermore, there is a nice characterisation of the partial order on simple 

valuations on a dcpo, aptly called the splitting lemma by Jones. 

Proposition 2.3 [16, p. 841. Let Y be a dcpo. For two simple valuations 

in PY, we have: ~1 C 

number t&c such that 

p2 ifs, for all b E B and all c E C, there exists a nonnegative 

c tb,e = rb, 
CEC bEB 

and tb,c # 0 implies b C c. 

Proof. The “if” part is the splitting lemma [ 16, p. 841. For the “only if’ part, assume 

the condition above holds and let 0 E RY. Put A = 0 n B. Then, we have 

b(o) = bGArb = c c tb,c 
bEA b&c 

d c c tb,c< c SC =pZ(o). 
cEOlfA b& CECfl’lA 

Therefore ~1 & ~2. q 

If Y is a continuous dcpo, then there is an analogue of the splitting lemma for 

the way-below relation. First we need the following characterisation of the way-below 

relation. 

Proposition 2.4 [ 19, p. 461. Let 5 = xbEB rbqb be a simple valuation and p a con- 

tinuous valuation on a continuous dcpo. Then 5 <S p $for all A C B we have 

c rb < &A). 
bEA 
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Proposition 2.5. Let Y be a continuous dcpo. For two simple valuations 

pl = c rbvb, CL2 = c wlc 
bEB CEC 

in PY, we have t.11 << u2 1% for all b E B and all c E C, there exists a nonnegative 

number tb,c such that 

c tb,C = rb, c tb,c < SC 
CEC bEB 

and tb,c # 0 implies b << c. 

Proof. The “only if” part is shown in [16, p. 871. For the “if’ part, assume the above 
condition holds for ~1 and ~2. Let A G B, then 

c rb = c c tb,C 
bEA bEA b<<c 

< c c tb,c 
c~Cfl?A b<<c 

< c SC 
CEC~TA 

= /.42(d). 

It follows, by Proposition 2.4, that ~1 < 112. q 

The following important result was established in [16, p. 94-981 and appears in [17]. 

Theorem 2.6. Zf Y is an (co)-continuous dcpo then PY is also (co)-continuous and has 
a basis consisting of simple valuations. 

2.3. Extending valuations to measures 

We also need some results about the extensions of continuous 
measures. Recall that a Bore1 measure ~1 on a locally compact 
regular if for all Bore1 subsets B of X, we have 

valuations to Bore1 
Hausdorff space is 

u(B) = inf {p(O) 1 B C 0, 0 open} = sup {p(K) 1 B 2 K, K compact}. 

Any bounded measure on a a-compact and locally compact Hausdorff space is regu- 
lar [23, p. 501. In particular any bounded Bore1 measure on a second countable locally 
compact Hausdorff space is regular [20, p. 3441. Furthermore, we have 

Proposition 2.7 [9]. On a locally compact second countable Hausdorflspace, bounded 
Bore1 measures and continuous valuations coincide. 

We also note the following result of J. Lawson. First, recall that the lattice SZY of 
open sets of a locally quasi-compact sober space Y is a continuous distributive lattice 
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and Y is in fact isomorphic with the spectrum Spec(QY), consisting of nonunit prime 
elements of s2Y with the hull-kernel topology. The Lawson topology on QY induces 
a topology on Spec(QY) and hence on Y which is finer than the original topology of 

Y. (See [13, p. 2521.) 

Proposition 2.8 [21, p. 2211. Any continuous valuation on a second countable locally 

quasi-compact sober space Y extends uniquely to a regular Bore1 measure on Y 
equipped with the relative Lawson topology induced from QY. 

For an o-continuous bounded complete dcpo Y, the relative Lawson topology in- 
duced from QY coincides with the Lawson topology on Y which is compact and 
Hausdorff [l, Exercise 7.3.19.81. We then obtain the following. 

Corollary 2.9. Any continuous valuation on an w-continuous bounded complete dcpo 
Y extends uniquely to a regular measure on Y equipped with its compact Lawson 

topology. 

For w-continuous dcpo’s with bottom, which we will only be concerned with in the 
next sections, we can give a more direct extension result using a lemma by Saheb- 
Djahromi as follows. 

Lemma 2.10 [24, p. 241. The lub of any o-chain (pi)i>o of simple valuations /.ti on 
a dcpo Y with pi(Y) = 1 extends uniquely to a Bore1 measure on Y. 

Proposition 2.11. Any continuous valuation ,u on an o-continuous dcpo Y with bottom 
extends uniquely to a Bore1 measure on Y. 

Proof. If p( Y) = 0, then the result is trivial. Otherwise, we can assume without loss of 
generality, i.e. by a resealing, that p(Y) = 1. By Theorem 2.6, there exists an o-chain 
(pi)i>s of simple valuations with Hi pi = p. For each i>O, let p+ = p+( 1 -&Y))ql. 
Then, it is easy to check that ($)i>o is an w-chain of simple valuations with pi(Y) = 1 
and with lub p. It follows by Lemma 2.10 that p extends uniquely to a Bore1 measure 
on Y. 

2.4. Measure theory via domain theory 

In [9], a suitable computational framework for measure theory on a locally compact 
Hausdorff space X has been established using the probabilistic power domain of the 
upper space of X. We recall the main results here. Since UX is w-continuous so is 
therefore PUX. 

Proposition 2.12 [9, Proposition 5.81. For any open set a E QX, the singleton map 
s : X + UX induces a Ga subset s[a] & UX. 
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Corollary 2.13. Any Bore1 subset B CX induces a Bore1 subset s[B] g UX. 

For ,u E PUX, let p* be its unique extension to a Bore1 measure on UX given 

by Proposition 2.11 above. Let S(X) & PUX denote the set of valuations which are 

supported on the Bore1 set s[X] of maximal elements of UX, i.e. S(X) = {p E 

PUX ) p*(UX - s[X]) = 0). We have p E S(X) iff p(Oa) = p*(s[a]) for all a E QX. 
Furthermore, S(X) will be a sub-dcpo of PUX. Let M(X) be the set of Bore1 measures 

p on X which are bounded by one (p(X) < 1). Define a partial order on M(X) by 

p C v iff p(O) < v(O) for all open sets 0 E s2X. Then M(X) will also be a dcpo. Let 

M’(X) GM(X) be the subset of normalised measures (p(X) = 1). Similarly, define 

P’UX C PUX and S’(X) C S(X). 

Proposition 2.14 [9, Proposition 5.171. Zf p E S’(X) then p is a maximal element of 

PUX. 

The main result is the following. 

Theorem 2.15 [9, Theorem 5.201. The dcpo’s M(X) and S(X) are isomorphic via the 

maps e : M(X) --+ S(X) with e(,u) = ,u OS-~ and j : S(X) -+ M(X) with j(v) = v* OS. 
Moreover, these maps restrict to give an isomorphism between M’(X) and S’(X). 

We can therefore identify M(X) with S(X) C PUX. But PUX has a basis 

consisting of simple valuations which can be used to provide it with an effective struc- 

ture. This therefore gives us a constructive framework for bounded Bore1 measures on 

X. 

Important note: For convenience, we often identify p with e(p) and write ~1 instead 

of e(p). Therefore, depending on the context, ,U can either be a Bore1 measure on 

X or a valuation on UX which is supported on s[X]. We will also write the unique 

extension /A* simply as p. 

Example 2.16. Let X = [0, l] be the unit interval with the Lebesgue measure 1. Each 

partition 

4: 0~x0 <X1 < “’ <Xj_l < Xj <Xj+l < “’ <XN-1 <XN= 1, 

of [0, l] gives rise to a simple valuation 

/G = $!I rj’lb,, 
j=l 

where bj = [xj_l,xj] and rj = xj -.x-t,. 

Now consider the w-chain (pqi)i>s of simple valuations which are obtained by the 

sequence of partitions (qi)i>s, where qi consists of dyadic numbers xij = j/2’ 
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for j = 0, 1,2,3,. . . ,2’. In more detail, 

pq; = C&b, 
j=l 2' 

with bj = 
j-l j 

[ 1 2"2' ' 

For any open interval a C[O, 11, the number pq,( q kz) is the largest distance between 
dyadic numbers xij which are contained in a. For an arbitrary open set, the contributions 
from individual connected components (intervals) add up. It is easy to see that pqg 5 1 
for all i 20. Furthermore, we have 

Proposition 2.17. The valuation p = uiaOpq, is supported in s[X] and j(p) is the 

Lebesgue measure 1 on [0, I]. 

Proof. Let (ak)kEh, n 2 1, be the collection of all open balls in [0, l] with radius at 

most l/n, and put 

0, = U Oak. 
kEJ, 

Then, (OJn,~ is a decreasing sequence of open sets in U[O, 11 and s[[O, 111 = 
n,,, 0,. But for each nal, &On) = 1 if l/2’ c l/n, i.e. if i is large enough. 
Hence, ~(0~) = sup, pqi(On ) = 1 for all n B 1. Therefore, 

p(s[[O, 111) = inf ~(0,) = 1, 
fl,l 

showing that p E S’([O, 11). To show that j(p) is the Lebesgue measure, it is sufficient 
by Proposition 2.7 to check that they have the same value on open sets. Since any 
open set in [0, l] is the countable union of disjoint open (or half-open half-closed at 0 
or 1) intervals, it suffices to check this on such intervals. But since the dyadic numbers 
are dense in [0, 11, it is easy to see, for example, that 

P(W,Y)) = suP/4J,(W5Y)) = Y--x = n((x?Y)). 0 
i 

3. The normal&d probabilistic power domain 

In this section, we consider the subset of normalised valuations of the probabilistic 
power domain and extend and sharpen the results in Section 2.2 for this subset. 

For any topological space Y, let P’ Y & PY be the set of continuous valuations p on 
Y which are normalised, i.e. p(Y) = 1. Note that if Y has bottom I, then P’Y has 
bottom yl~. Let DCPOl denote the category of dcpo’s with bottom and continuous 
maps. Define Pi on morphisms as for P, i.e. for f : Y + Z, put Z'f (p) = p o f -'. 
Then 

P’ : DCPOl + DCPOl 
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is, like P, a locally continuous fimctor, which we call the normalised probabilistic 

power domain functor. 

We will now extend the results of Section 2.2 to the normalised power domain. In 
the rest of this paper, we denote the way-below relations in PY and P’Y by << and 

<<’ respectively. Let Y be a dcpo with bottom. We get the analogue of Proposition 2.3. 

Proposition 3.1. For two simple valuations 

in P’Y, we have: ~1 L ~2 1% for all b E B and all c E C, there exists a nonnegative 

number tb,c such that 

c tb,c = rb, c tb,c = SC 
CEC bEB 

and tb,c # 0 implies b 5 c. 

Proof. The “if’ part follows from Proposition 2.3. For the “only if” part, we know 

from the “only if’ part of that proposition that there exist nonnegative numbers t&c 

such that 

c tb,c = rb, c tb,c% 
CEC bEB 

and tb,c # 0 implies b C c. If for any c E C, we have c tL,,= < scr then we obtain a 
b 

contradiction, since 

1 = c rb = c c tb,C = c c tb,= < c SC = 1. 
b b c c b C 

It follows that Cb tb,C = s, for all c E C. 0 

Define the maps 

m+ : PY -+ PY m- : PY + PY 

where 

and 

P_(O) = 
P(O) if 0 # Y, 

p( Y - {I}) otherwise. 

Note that Y - {I} is an open set, and hence p- is well defined. The map m+ puts 

the missing mass of p on the bottom _L of Y to produce a normalised valuation pL+. 
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The map m- removes any mass that may exist on 1. The following properties are 
easy consequences of the definitions; the proofs are omitted. 

Propositon 3.2. (i) The maps m+ and m- are well-dejned, continuous and satisfy: 

m+om+=m+~l m-om-=m-Ll 
m-om+=m- m+om- =m+ 

where 1 is the identity map on PY. 
(ii) v < p & p E P’Y * v+ <<’ p, 

(iii) v <<’ p * v- < p- L p. 

Corollary 3.3. Zf Y is an (co)-continuous dcpo with bottom, then P’ Y is also an 
(co)-continuous dcpo with a basis of normalised simple valuations. 

Proof. Note that P’ Y is the image of the continuous idempotent function mf : PY + 
PY. But the image of any continuous idempotent function (i.e. retract) on an (CD)- 
continuous dcpo is another (w)-continuous dcpo [l, Theorem 3.141. 0 

To prove an analogue of Proposition 2.5 for P’ Y, we need a technical lemma. 
Assume in the rest of this section that Y is a continuous dcpo with bottom. 

Lemma 3.4. Suppose p,v E P’Y. Then v <<’ p implies v(Y - {I}) < 1. 

Proof. Assume v <<’ cc. For n 2 1, let nn = (l,/n)ql + (1 - l/n)p. We have &Y) = 1 
and ~~(0) = (1 - l/n)p(O) for any n 2 1 and any open set 0 # Y. It follows that 
(II,),, 1 is an increasing chain with lub ,u. Therefore, v L pn for some n 2 1. We 
conclude that 

v(Y - {I})<MY - {I}) = (1 - l/n)p(Y - {I})< 1 - l/n < 1 

as required. 0 

Proposition 3.5. For two simple valuations 

pl = c rbvb, CL2 = c WC 

bEB CEC 

in P’ Y, we have pl <<’ p2 ifs I E B with r-l # 0, and, for all b E B and all c E C, 
there exists a nonnegative number tb,c with tl,, # 0 such that 

c tb,c = SC 

bEB 

and tb,= # 0 implies b << c. 

Proof. For the “if” part, note that the conditions above imply, by Proposition 2.5, that 

pr = bEBFillrbvb K c wc = P2. 
CEC 
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Now Proposition 3.2(ii) implies ~1 = (& )+ <<’ ~2. For the “only if’ part, first note 
that by Lemma 3.4 we must have I E B with rl # 0. Therefore by Proposition 3.2(iii) 

n; = $& rbvb K c WC = P2. 
CEC 

Hence, by Proposition 2.5, there exists, for each b E B - {I} and c E C, a nonneg- 
ative tb,= with 

rb = c tb,c (b # I>, 
CEC 

such that tb,c # 0 + b << c. Put 

SC > c tb,c 
b#-L 

t&c = SC - c tb,c. 
b#l 

Then, it is easy to check that 

c tLc=c~6&-b~Ltb,c)=l- c tb,C=l- crb=rl. 
CEC b#l,cW b#J- 

Furthermore we clearly have 

c tb,c = tl,c + c tb,c = SC 
&B b#l 

as required. 0 

4. The general&d Riemann integral 

We will now use the results of the previous sections to define the generalised Rie- 
mann integral. In this section and in the rest of the paper, let f : X -+ Iw be a bounded 
real-valued function on a compact metric space (X,d) and let p be a bounded Bore1 
measure on X. Let m = inff[X] and M = supf[X]. Without loss of generality, i.e. 
by a resealing, we can assume that p is normalised. By Theorem 2.15, ~1 corresponds 
to a unique valuation e(p) = pas-’ E S’(X) G P’ UX, which is supported in s[X] and 
is, by Proposition 2.14, a maximal element of P’UX. Recall that we write p instead 

of e(p). 

4.1. The Lower and upper R-integrals 

We will define the generalised Riemann integral by using generalised Darboux sums 

as follows. 

Definition 4.1. For any simple valuation v = xbGBrbrb E PUX, the lower sum off 
with respect to v is 

Sj(f,v) = C rbinff[b]. 
bEB 
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Similarly, the upper sum of f with respect to v is 

$(f, v) = c rb sup f[bl. 
bEB 

Note that, since f is bounded, the lower sum and the upper sum are well-defined 

real numbers. When it is clear from the context, we drop the subscript X and simply 

write Se(f,v) and S”(f,v). Clearly, we always have SC(f,v)&SU(f,v). 

Propositon 4.2. Let ,LLI, ~2 E P’ UX be simple valuations with ~1 E ,uz, then 

se(f,pl) L se(f,p2) and S”(f,p2) L s”(f,,w). 

Proof. Assume 

Pl = bFBrb4b and P2 = c WC. 
CEC 

Let tb.C be the nonnegative numbers given by Proposition 3.1. Then, 

s”(f,Pl) = 

a 

= 

Note that, in the 

C rb inff PI = C C tb,C inff PI 
b b c 

c c tb,cinff [cl = c c tb,c inff [cl = c sC inff [cl 
b c c b C 

efTCL2). 

CrbSuPf[bl= CCtb,csuPf[bl 
b b C 

c c lb, csup f [cl = T T tb, c SUP f [cl = c SC SUP f [cl 
b c C 

SU(f 9 cL2). q 

above proof, it is essential that the simple valuations are normalised, 

i.e. that we work in P’ UX, to deduce that the upper sum decreases. The latter would 

not hold in general for simple valuations in PUX. 

Corollary 4.3. If pl,p2 E P’ UX are simple valuations with pl,p2 <<’ p, then 

sd(f41)~wf,P2). 

Proof. Since the set of normalised simple valuations way-below p in P’ UX is directed, 

there exists a normalised simple valuation p3 E P’ UX such that pr, p2 c p3 <<I p. By 

Proposition 4.2, we therefore have 

se(f,~LI)~SC(f,~3)~S”(f,C13)~SU(f,~2). q 

Therefore, if we consider the directed set of simple valuations way-below p in P’ UX, 
then every lower sum is bounded by every upper sum. This is similar to the situation 

which arises for Darboux sums in Riemann integration. 
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Definition 4.4. The lower R-integral of f with respect to ,u on X is 

R 
s 

f dp = sup S;(f,v). 
-x v<<‘fl 

Similarly, the upper R-integral of f with respect to p on X is 

Clearly, RJxf dp<RJ;f dp. 

Definition 4.5. We say f is R-integrable with respect to ,u on X, and write f E Rx(p) 
if its lower and upper integrals coincide. If f is R-integrable, then the R-integral of f 

is defined as 

RLfdlc=R/ fdp=RS*/.dp. 
-x 

When there is no confusion, we simply write R(,u) instead of R&L) and sf dp 

instead of Rs, f dp (similarly for the lower and upper R-integrals). The following 

characterisation of R-integrability, similar to the Lebesgue condition for the ordinary 

Riemann integral, is an immediate consequence of the definition. 

Proposition 4.6 (The R-condition). We have f E R(p) Iffor all E > 0 there exists 

a simple valuation v E P’UX with v <<’ p such that 

SU(f,v) - @(f,v) < E. 

There is also an equivalent characterisation of the R-integral in terms of generalised 
Riemann sums with its well-known parallel in ordinary Riemann integration. 

Definition 4.7. For a simple valuation v = CbEB rbvb E PUX and for a choice of 

&, E b for each b E B, the sum C&s rb f (&,) is called a generalised Riemann sum 

for f with respect to v and is denoted by St< f, v). 

Note that we always have 

~e(fdw~g(f,v)aU(f,v) 

for any generalised Riemann sum S,( f, v). We therefore easily obtain: 

Proposition 4.8. We have f E R(p) with R-integral value K ifs for all E > 0 there 
exists a simple valuation 

V= xrb’]bEP’UX 
bEB 
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with v <’ p such that 

IK - W-?V)l < E 

for all generalised Riemann sums Se;(f,v) off with respect to v. 

Having defined the notion of R-integrability with respect to simple valuations way- 
below p in P’ UX, we can now deduce the following results. 

Proposition 4.9. Zf f is R-integrable and p = uiBO pi, where (pi)i>O is an o-chain 
in PUX, then 

where Q(f,pi) is any generalised Riemann sum off with respect to pi, 

Proof. Let E > 0 be given. Let the simple valuation v E P’ UX with v <’ P be such 
that SU(f, v) - Se(f) v) < E. Since p = ui p+, there exists N 20 such that v C $ 
and pi(UX) > 1 - E for all i 2N. Therefore, for all i 2N, ,u+ = pi + riqx with 
ri = 1 - pi( UX) < E. For i>N, we therefore have 

s”(f,~+)-sd(f,~i)=Tiinff[X]=rim, 

S”(f, &+) - S”(f, pi) = ri SUP f [X] = riM 

and also the inequalities 

s?f,v)< 
s 

f dpLS”(f,v). 

It follows that ISe(f,pT)-Jf dp] < E and IS’(f,pf)-Jfdpl < E for i2N. We 
conclude that for i 2 N, 

Isc(f,ai)-/f dpl < (1 + Imlh 

Is.(f,ai)-/f dPI < (1 + lMl>~ 

and the result follows. 0 

Corollary 4.10. Zf f is R-integrable and p = ui20,ui, where (pi)i>o is an o-chain in 
P’ UX, then S ‘( f, pi) increases to s f dp and S “( f, pi) decreases to s f dp. 

4.2. Elementary properties of the R-integral 

We now show some simple properties of the R-integral. 
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Proposition 4.11. (i) Zf f,g E R(p) then f + g E R(p) and J(f + g)dp = Jf dp + 

Jg dp. 
(ii) If f E R(p) and c E R, then cf E R(p) and j”cf dp = csf d,u. 

(iii) More generally, if f ,g E R(p) so is their product h : X -+ R with h(x) = 

f (x)g(x). 

Proof. We will only prove (i). For any nonempty compact subset b GX we have 

sup (f + g)[bl G sup f PI + sup gP1, 

inf (f + g)[b] 2 inf f [b] + infg[b]. 

Hence, for any simple valuation v <’ p, we have 

S”(f +g,v)dWf,v)+S”(g,v), 

ef +g,v)~Se(f,v)+Se(g,v). 

Let E > 0 be given. There exist simple valuations vt , vz <<’ p with 

s”(f, VI ) < 
s 

f dp + 42, S”(g,v2) < 
s 

g dp + ~12. 

Let the simple valuation v be such that vt, v2 E v <<’ p. Then S”( f, v) <S”( f, VI ) and 

S’(g,v)dS”(g,v2), and we have 

Wf +g,v) < ~“(f,V)+~“(g,v)~~“(f,vl)+~“(g,V2) 

< /fdp+/gdp+s. 

Therefore, s( f + g) dp Q s f dp + J’g dp. Similarly, s f dp + Jg dp < s( f + g) dp, and 
the result follows. II 

Given the function f : X + iw as before, define two mnctions f +, f - : X -+ IT% by 

f+(x) = L(x) if f(x)>0 and f-(x) = 
-f(x) if f(x)<0 

otherwise 
o 

otherwise. 

Proposition 4.12. rf f E R(p), then f+, f - E R(,u) and Jf dp = f f + dp - Jf - dp. 

Proof. For any nonempty compact set b C_X, we have 

sup f +[b] - inf f +[b] <sup f [b] - inf f [b] 

and therefore 

By the R-condition (Proposition 4.6), f+ E R(p). Similarly, f - E R(p). Since 

f = f’ -f-, by Proposition 4.11, we get Jf dp = Jf+dp - Jf-dp. 0 
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The following properties are easily shown. 

Proposition 4.13. (i) if f is nonnegative and f E R(p) then sf dp>O. 

(ii) f E R(P) =+ If I E WL) and 

We will make frequent use of the following result in the next sections. As before, 

let p be a normalised Bore1 measure on the compact metric space X. 

Proposition 4.14. Let (pi)iEI be a directed set of simple valuations 

Pi = C ri,bylb 
bE3, 

in PIUX with lub ,u. Then for all E > 0 and all 6 > 0, there exists i E I with 

c ri,b < E, 
bEEa, lb1 26 

where lb1 is the diameter of the compact set b C_ X. 

Proof. Let E > 0 and 6 > 0 be given. Let (ak)kEJn, n> 1, be the collection of all 

open balls in X with radius at most l/n, and put 

0, = U Oak. 
kEJ,, 

Then, for all n 2 1, we have s[X] & s[O,J and hence ~(0,) = &[X]) = 1, since p 

is supported in s[X]. Now choose n > 216 so that l/n < 612. Since supie-pi(On) = 

~(0,) = 1, there exists i E I with pi(On) > 1 - E. It follows that 

c ri,b < E 
be&, lb\ >6 

as required. q 

5. R-integration and Riemann integration 

In this section, we show that Riemann integration is equivalent to R-integration on 

compact real intervals with respect to the Lebesgue measure. 

Let X = [0, I] be the unit real interval with the Lebesgue measure 1. Recall from 

Example 2.16 that any partition 

4: 0=x* <Xl < ... < Xj-1 < Xj < Xj+l < ... < XN_I < XN = 1 

of [0, l] gives rise to a simple valuation 
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where bj = [xj-I,x~] and rj = Xj - Xi-1. Given any bounded function f : [0, l] + [w, 

the lower and upper Darboux sums of f with respect to the partition q in the ordinary 

Riemamr integration of f are precisely the lower and upper sums S ‘( f, A) and S”( f, A) 

of R-integration. We will of course use this fact to show that f is Riemann integrable 

iff f E R(1), and that when the two integrals exist, then they are equal, i.e. 

However, it can be easily shown that ,u~ is not way-below II if N > 1. In fact, for i 2 1, 

let Vi = (ll~h[o,~] + (1 - llih+,, where (/+)ia:l is the w-chain given in Proposition 

2.17. Then, we have u. I 2, vi = A, but there is no i > 1 with ,u~ C Vi, showing that p,r 

is not way-below ,I. But, the following lemma shows that it is possible to obtain a 

valuation close to pq which is way-below 1. 

Lemma 5.1. Let q be any partition of [0, l] inducing the simple valuation pL4 as 

abooe, and let 0 < E < 1. Then, v = .q [O,JI + (1 - s)pq <’ I.. 

Proof. By Proposition 3.2(ii), it suffices to prove that (1 - .s)~~ < 1. Choose a real 

number 6 such that E > 6 > 0. For each j = l,...,N, let b: = [xi_, + i&j,xj - 

i&j]. Since b: c(xj_ ~,xj) C bj, it follows that bj << b: holds in UX. Let /J = (1 - 

6) Cy=, rjqb;. By Proposition 2.5, with tjj = (1 - s)rj and tjjj = 0 for j # j’, we have 

(1 - E),u~ < p’. Since the length of b: is (1 - S)rj and the intervals b$ j = 1,. . . , N, 

are disjoint, it easily follows that p’ L 2. Thus, (1 - E)P~ << p’ 5 1 as required. 0 

Theorem 5.2. A bounded real-valued function on a compact real interval is Riemann 

integrable ifs it is R-integrable with respect to the Lebesgue measure. Furthermore, 

the two integrals are equal when they exist. 

Proof. Assume without loss of generality that the compact real interval is in fact the 

unit interval. For the “if’ part, assume f : [0, l] + [w is R-integrable. Let E > 0 be 

given. By the R-condition, there exists v <<’ 2 with S”(f) v) - Se(f) v) < E. Now 

take, for example, the w-chain (/+;)i>o of simple valuations of Proposition 2.17 whose 

lub is A. Since pLqi E P’U[O, l] for all i>O, there is i>O with v E Pi,. Hence 

Wf,uLq,) - @(f,y,)W(f4 - se(f3) < E 

and therefore the Riemam-r condition is satisfied and f is Riemann integrable. Since, by 

Corollary 4.10, the R-integral is the supremum of S ‘( f, pa ) and the latter is also the 

Riemann integral of f, we conclude that the two integrals are equal when they exist. 

For the “only if ” part, assume f is Riemann integrable and let q : 0 = x0 < x1 < 

... < .QI = 1 be a partition of [0, l] with S”(f,pq) - Sd(f,uq) < E. By Lemma 5.1, 
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v = ~q~,~l + (1 - E& is way-below ;1. We also have 

sU(f,v)-se(f,v) d (M-m&+(1 -E)E 

< (M-m+l)&. 

It follows that f satisfies the R-condition, and is therefore R-integrable. q 

We conclude that ordinary Riemann integration is a particular instance of R- 

integration. 

6. Further properties of R-integration 

In this section, we will show that all the basic results for ordinary Riemann integra- 

tion on a compact interval in [w can be extended to R-integration. Assume as before 

that p is a norrnalised Bore1 measure on the compact metric space X. We first show 

that continuous functions are R-integrable. 

Theorem 6.1. Any continuous function f : X -+ R is R-integrable with respect to p. 

Proof. Let E > 0 be given. By the uniform continuity of f on the compact set X, 

there exists 6 > 0 such that d(x, y) < 6 implies If(x) - f (y)l < 42. By proposition 

4.14, there exists a simple valuation v = xbEB rby]b with v CC’ p such that 

c rb< 
E 

lb(>6 2(M-m+l)’ 

Therefore, 

S”(f) v) - s’(.f, v) = c rb(suPf[bl - inffibl) 
bEB 

= C rb(suPf[bl - inff PI) 
bEB,lb( <S 

fbEB5,, grb(SUPf [bl - inff PI) 
1 / 

E (A4 - m)E 

< Z+2(M-m+l) 

< E. 

It follows by the R-condition that f E R(p). 0 

Next we will prove that a bounded function is R-integrable with respect to a Bore1 

measure if and only if its set of discontinuities has measure zero. This will generalise 

the well-known Lebesgue criterion for ordinary Riemann integration of a bounded 

function on a compact real interval. 
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We need some definitions and properties relating to the oscillation of a bounded 

function f : X + R which generalise those of a bounded function on a compact real 

interval as presented, for example, in [2]. For convenience and consistency, we will 

use the terminology in that work. 

Definition 6.2. Let T LX. The number 

QAT) = sup{ftx) - f(v) I x, Y E T) 

is called the oscillation of f on T. For x E X, the number 

where B(x, h) C_ X is the open ball of radius h > 0 at x, is the oscillation of f at x. 

For each r > 0, let 

D, = {x E X 1 w&c)2 l/r}. 0 

The following properties then are straightforward generalisations of those in [2, p. 170- 

1711. 

Proposition 6.3. (i) f is continuous at x E X zff wf(x) = 0. 

6) Vo~f(x) < f E or all x E X, then there exists 6 > 0 such that for all compact 

subsets bCX with Jb( < 6 we have Qf(b) < E. 
(iii) For any r > 0 the set D, is closed. 

If D is the set of discontinuities of f, then using Definition 6.2 and Proposition 

6.3(i), we can write D = Un2, D, where D1 G 02 G 03 C. . . is an increasing chain of 

closed sets. Hence, D is an F,, and therefore a Borel, set. Recall that we assume p to 

be a normalised measure on the compact metric space X. 

Lemma 6.4. Let d GX be compact, and let v = xbEB rbqb be a simple valuation in 

P’ ux. 

(i) Zf v L p then 

c rb2Ptd). 
bnd#0 

(ii) If v <<’ p, then 

c rb2PL(d), 
b" rld#0 

where b” is the interior of b. 
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since v(VX) = 1 

Proof. (i) We have 

c rb= I- c rb 

bndf0 bnd=0 

=I- c rb 
b&X-d 

bECI(X--d) 

= 1 - v(o(X - d)) 

2 1 - /@(X - d)) since v L p 

= 1 - @@[XI) - &[cI])) since p is supported in s[X] 

= p(d). 

(ii) By the interpolative property of <‘, there exists a normalised simple valuation 

y = C~Csl& such that v <’ y <’ /J. Let tb,c be given as in Proposition 3.5. Then 

p(d) G C sc by pati (9 
cnd#Q 

= c c tb,c 
cnd#0 b<<c 

< c c tb,c 
b”nd#O cEC 

= c rb. 0 
b” ndf0 

Theorem 6.5. A bounded real-valued function on a compact metric space is R- 

integrable with respect to a bounded Bore1 measure iff its set of discontinuities has 
measure zero. 

Proof. Necessity. Let D be the set of discontinuities of f : X + R and suppose 
,u(D) > 0. Since D = U,,> 1 D,, we must have p(D,,) > 0 for some n > 1. Fix such n 

and let v = CbEB rbnb be any simple valuation with v <’ p. Then 

s’(f, v) - se(f) v) = F rb(supf Lb1 - inf f PI) 

B bOnFpMSuPf PI - inff PI) 
n 

2 b nGfOr&r by definition of D, 
0 I 

2 &D,,)/n > 0. by Lemma 64(ii). 

Therefore, f does not satisfy the R-condition and is not R-integrable. 
SufJiciency. Assume p(D) = 0. It follows that ,u(D,) = 0 for all n > 1. Fix n 2 1. 

Since /J is regular, there exists an open set u E s2x with Dn C v and p(v) < l/n. 
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Choose an open set w E QX which contains D, and whose closure is contained in 

v. Let 61 > 0 be the minimum distance between X - v and the closure of w. For 

x E X - w we have o/(x) < l/n. Therefore, by Proposition 6.3(ii) applied to X - w, 

there exists 62 > 0 such that for any compact subset c C X - w with ]cI < 62 we have 

Q/(C) < l/n. (1) 

Let 0 < 6 < min(&, S,). By Proposition 4.14, there exists a simple valuation 7 = 

c bEB rbqh with ‘/ <’ p such that 

c rb < l/n. (2) 
hi36 

Observe that if Jbl < S, then b is contained in at least one of the sets v or X - no. 

We also have 

-j(Clv)6~(Ou) = p(v) < l/n (3) 

since p is supported in s[X]. Therefore, 

S”(f,y) - S’(~,;J) = Crb(supf[bl - inff[bl) 
bEB 

< c... + c ... + c . . . 
Ibl >d lb1 S&/J & L’ lb1 G&b&X-w 

M-m M-m 
< -+-- 2 by(2),(3) and (1) 

n n + c 
‘bl<&bCX-w n 

~ 2(M-m)+l 

n 

Since n> 1 is arbitrary, S E R(p) by the R-condition. Cl 

If p is a bounded Bore1 measure on X and CC X is a closed subset, then the 

restriction prc is a bounded Bore1 measure on C. For convenience, we write f E 
R&p) and J,f dp, if f is R-integrable on C with respect to this restriction. 

Corollary 6.6. If f E Rx(p) then f E R&) for all closed subsets C C X. 

Proposition 6.7. If .f E Rx(p) and C, D C X are closed subsets with C n D = 0, then 

Proof. By Corollary 6.6, we know that the three integrals exist. Let (v;);>c be an o- 

chain of simple valuations in PUC with lub ~1~. Similarly, let (yi)i,c be an o-chain 

of simple valuations in PUD with lub ~10. Then, it is straightforward to check that 
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(vi + yi)i>c is an w-chain of simple valuations in PU( C UD) with lub prcUo. For each 
ia0, we have 

Therefore, 

Next, we consider the R-integrability of the uniform limit of a sequence of R- 
integrable functions. 

Theorem 6.8. rf the sequence (f ) ,, ,,a~ of R-integrable functions f,, : X --t R is uni- 

formly convergent to f : X + [w, then f is R-integrable and sf dp = limi+oo Jf i dp. 

Proof. Let E > 0 be given. We show that f satisfies the R-condition. Let N 20 be such 

that If&) - f (x)1 < 43 for all n 2 N and all x E X. Then for all simple valuations 

v E P’ UX we have IP(f - fN, v)l < 43 and ISe(f - fN,v)I < 43. Since fN is 
R-integrable, there exists a simple valuation v <<’ p with S”(fN,v) -Sl(f,+~, v) < 43. 
Therefore. 

s”(f,V)-Se(f,v) < s”(f - fN,v)+S”(fN,v)--‘(f - fN,v)--s’(fN,v) 

G Is”(f - fN>v)l+ls’(f - fN,v)I + s’(fN,v) - @(f&v) 

E E E 

and hence, f E R(p). Furthermore, for all n >N, we have 

(/-fdp-/fndp~ = i/f -f&i 

S If -fnlQ I 
QE. q 

In the next section, we will also show the generalisation of Arzela’s theorem for 
R-integration. 
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7. R-integration and Lebesgue integration 

It is well known that when the ordinary Riemann integral of a bounded function 

on a compact real interval exists, so does its Lebesgue integral and the two integrals 

coincide. In this section, we will show that this result extends to R-integration. 

In order to show that an R-integrable function is Lebesgue integrable, we construct 

an increasing sequence of simple measurable functions which tend to our function. We 

do this by considering the set of dejations on UX. 

Recall [ 181 that a dejation on a dcpo Y is a continuous map 

d:Y-+Y 

which is below the identity d L 1~ and its image im(d) is finite. If b E B = im(d), 

then D = d-‘(b) satisfies the following properties: 

(i)xEyEJz&x,zED + LED. 
(ii) For any directed set (xi)iEI with uixi E D, we have xi E D for some i E I. 

(iii) For any directed set (x.) t rep with xi E D for all i E I, we have uixi E D. 

It follows [24] that D is a crescent, i.e. D = u - w for some open sets v, w E QY. 

Now consider the map Pd : PY -+ PY, induced by the probabilistic power domain 

fimctor P on the deflation d L 1~. We have Pd(p) = p o d-’ C p, since d-‘(O) G 0 
for all 0 E s2Y. Consider the unique extension of p E PY to the ring generated by the 

open sets, i.e. put p(D) = p(v) - p(v n w) for each crescent D = v - w. Then it is 

easily seen that 

/.lO d-’ = c rbqb 
bEB 

with rb = p(d-‘(b)). Hence, for each deflation d and each continuous valuation p on 

Y, we obtain a simple valuation p o d-’ below p. Note that if p is normalised so is 

pod-‘. Recall also that if Y is the retract of an SFP domain, then the set of deflations 

way-below the identity map is directed and has the identity as its lub [18, p.881. We 

can now deduce: 

Proposition 7.1. Any continuous valuation on a retract of an SFP domain is the lub 
of an w-chain of simple valuations induced from dejations below the identity map. 

Proof. Let Y be a retract of an SFP domain and fl be a continuous valuation on Y. By 

the above remark, there exists an o-chain (di)iaO of deflations on Y with lr = Uidi. 
By the local continuity of P (Proposition 2.2), we have lpy = ui Pdi and therefore 

p=UPdi(p)=Upod,’ 
i i 

as required. 0 
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We are now in a position to prove the main result in this section. For clarity we 

denote the Lebesgue integral of a real-valued function f : X ---f R’ with respect to 

the Bore1 measure p by LJxfdp and the R-integral by RJxfdp. We also drop the 

subscript X. 

Theorem 7.2. Zf a bounded real-valued function f is R-integrable with respect to a 

Bore1 measure u on a compact metric space X, then it is also Lebesgue integrable 

and the two integrals coincide. 

Proof. Since UX is an w-continuous bounded complete dcpo with bottom, there exists 

by Proposition 7.1 an o-chain (di)i80 of deflations di : UX + UX with ui pod;’ = ,u 
and each ia induces a simple valuation 

where Bi = imdj and ri,b = p(d,r’(b)). For each i>O, define two functions 

fT : x -+ R 

x H inff [sW1(dil(di(s(x))))] 

fi’: x --+ R 

x ++ SuPf [S-1(di1(di(4x))1)l 

where s : X -+ UX is, as before, the singleton map. Since for each i>O and x E X, 

we have d;‘(dj(s(x))) = v - w for some open sets v, w E NJX, it follows easily that 

s-‘(di’(di(s(x)))) = S-‘(V) - S-‘( ) w 1s a crescent of X. Moreover, as the image of 

di is finite, X is partitioned to a finite number of such crescents. Therefore, f,: and 

f z? are simple measurable functions. Is is easy to see that for each x E X we have 

m< . . . Gf,3x)Gf,l(x)<... <f(x)< ... <fi+,,(X)<fi+(X)< ... GM, 

where m and A4 are, as before, the infimum and the supremum of f on X. Let 

f-:X+[W f;: x -+ R 

x H lim f,:(x) 
i-+00 

x H lim f’(x). 
i-cc 

Then f-(x) < f(x) < f+(x) for all x E X. By the monotone convergence theorem, f - 
and f - are Lebesgue integrable. We will calculate their Lebesgue integrals. 

For each b E Bi, let 

&,b = supf [S-‘(di’(b))l, Bi,b = inff [s-l(d;l(b))]. 

Since dr’(b) & fb, we have s~‘(d~~‘(b)) C b. Hence, for all i>O and b E Bi, 

inff EN< pi,b < ai,b < sup f [b] , 
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We can now obtain the following estimates for the Lebesgue integrals of f,: and f:: 

L 
s 

f+ dp = C ri,bai,b 
bEB, 

G bgB ri,b SuPf VI 

= s”(f,CLi) 

and 

L 
s 

f ,: dp = c ri,bh,b 
bEB, 

2 bgB ri,b inff VI 

= S’(f,Pi)- 

Since f z: < f T implies L J f i dp <L J f T dp, we obtain 

fi+dp<s”(f,pi). 

As f is assumed to be R-integrable, we know by Corollary 4.10 that Sd( f, pi) 

increases to R J f dp and SU(f, pi) decreases to R J f dp. Therefore, 

L 
s 

fidp+ R f+ and L 
s 

fi+dp + R J f@ 

as i + CO. By the monotone convergence theorem, we have 

f-dp = lim L 
i-00 s 

fl: dp = R J f dp, 

f+dp=itEL f+dp=R fdp. 
s s 

It now follows that LJ(f+ - f -) dp = 0 which implies 
everywhere. Therefore f = f - = ff almost everywhere. 
Lebesgue integrable and 

LS/dp=L/f-dp=L/f+dp=R/fdp 

as required. 0 

that f + = f - almost 
We conclude that f is 

We can now also obtain the generalisation of Arzelh’s theorem for R-integration. 

Corollary 7.3. Suppose the sequence (f,,),,,O of real-valued and uniformly bounded 

functions on X is pointwise convergent to an R-integrable function f. Then, we have 

R J 
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Proof. This follows immediately by applying Theorem 7.2 and using the Lebesgue 

dominated convergence theorem. 0 

8. Applications to fractals 

An immediate area of application for R-integration is in the theory of iterated func- 

tion systems (IFSs) with probabilities. Recall [l&3] that an IFS with probabilities, 

{X;f1,...,fiv;p,,..., pi}, is given by a finite number of contracting maps f; : X --t 

X (1 Q i <IV) on a compact metric space X, such that each f i is assigned a probability 

weight pi with 0 < pi < 1 and 

An IFS with probabilities gives rise to a unique invariant Bore1 measure on X. If 

X C W, then the support of this measure is usually a fractal, i.e. it has fine, complicated 

and nonsmooth local structure, some form of self-similarity and, usually, a nonintegral 

Hausdor- dimension. Conversely, given any image regarded as a compact set in the 

plane, one uses a self-tiling of the image and Barnsley’s collage theorem to find an 

IFS with contracting affine transformations, whose attractor approximates the image. 

The theory has many applications including in statistical physics [14,6, lo], neural 

nets [5,8] and image compression [3,4]. 

It was shown in [9, Theorem 6.21, that the unique invariant measure p of an IFS 

with probabilities as above is the fixed point of the map 

T: P’UX + P’UX 

CL ++ T(P) 

defined by T(p)(O) = CL, Pip( f i’(O)). This fixed point can be written as Urn>,, /Lo 

where ~0 = v]x and for m>l, 

h = Tm(VX) = 5 Pit Pi2 ... Pi,rlf,, f,2...f,,(X). 
i,.i2.....ia=l 

Therefore, the unique invariant measure of the IFS with probabilities is the lub of 

an o-chain of simple valuations in P’UX. This provides a better algorithm for fiactal 

image decompression using measures [ 111, compared to the algorithms presented in [4]. 

Suppose now we have a bounded function f : X 4 IT! whose set of discontinuities 

has p-measure zero, then we know that its Lebesgue integral with respect to p coincides 

with its R-integral with respect to p. Fix x E X and, for each m > 1, consider the 

generalised Riemann sum 
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From Proposition 4.9, we immediately obtain: 

Theorem 8.1. For an IFS with probabilities and a bounded real-valued function f 
which is continuous almost everywhere with respect to the invariant measure p of the 

IFS, we have 

for any x E X. 0 

If f satisfies a Lipschitz condition, then, for any E > 0, we can obtain a fmite 

algorithm to estimate sf dp up to E accuracy [ll]. Another method for computing 

the integral is by Elton’s ergodic theorem [12]: The time-average of f with respect 

to the nondeterministic dynamical system f ,, f 2,. . . , fN : X --+ X, where at each 

stage in the orbit of a point the map fi is selected with probability pi, tends, with 

probability one, to its space-average, i.e. to its integral. However, in this case, the 

convergence is only with probability one and there is no estimate for the rate of 

convergence. Therefore, the above theorem provides a better way of computing the 

integral. 

Example 8.2. Finally, we consider a concrete example. Let C = { 1,2,. . . ,N}W be the 

Cantor space with the following metric 

d(x,y) = E w 
n=O 

where the Kronecker delta is given by 

6(k, 2) = 
0 if k = 1, 

1 otherwise. 

This metric is equivalent to the Cantor (product) topology, and is frequently used in 

mathematics and theoretical physics. Let {C; f 1,. . . , fN; ~1,. . . , pN} be an IFS with 

probabilities on C, with 

fk : c + c 

x H lot, 

where kx is the concatenation of k and x. Its unique invariant measure p is defined on 

the closed-open subset 

[ili2...im]={XEC(Xj=ij, l<j<m} 

Kili2 . ..iml)=pilpi *... pi,. 
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In fact, we have 

P-Lm = Tm(W) = fI Pit Pi2 . . . Pi,Yl[i~i~..,im]. 

il ,iz,...,i,= I 

Let 

f:C+R 
x H d(x, 1”) 

be the function which gives the distance of the point x to the point lw. This function 
is continuous and therefore its Lebesgue integral with respect to p coincides with its 
R-integral with respect to p. The integral in fact represents the average distance in C 
from lo with respect to the invariant measure. The R-integral is easily obtained using 
Theorem 8.1 above with x = lw. In fact a straightforward calculation shows that 

&(f,Pm) = 2 ( 1 

as m + 00. Therefore, 

-& (1-P1)+2U-P1) 
> 

LJf dp = RJf dp = 2( 1 - ~1). 
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