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The distance graph G(D) with distance set D={d1, d2, ...} has the set Z of
integers as vertex set, with two vertices i, j ¥ Z adjacent if and only if |i− j| ¥ D. We
prove that the chromatic number of G(D) is finite whenever inf{di+1/di} > 1 and
that every growth speed smaller than this admits a distance set D with infinite-
chromatic G(D). © 2002 Elsevier Science (USA)

1. INTRODUCTION

Graphs defined in terms of distances have lots of interesting properties.
For instance, one of the famous open problems asks about the chromatic
number of the unit distance graph in the Euclidean plane, with still
the same ‘‘currently best’’ lower and upper bounds of 4 and 7 after half a
century.
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In this short paper we study graphs defined on the set Z of integers. Let
D={d1, d2, ...} be any finite or infinite set of natural numbers, termed the
distance set. The distance graph G(D) has vertex set Z and edge set

E={(i, j) | i < j, j− i ¥ D}.

The systematic study of distance graphs was initiated by Eggleton et al. [2]
in the mid-1980s. Recently, the subject has attracted considerable attention;
see e.g. [4] for recent results and many related references. Notably, the
chromatic number of G(D) is now determined in [5] for all three-element
distance sets D.

The aim of the present paper is to prove that if the sequence of distances
in D grows sufficiently fast—more precisely, if inf{di+1/di} > 1—then the
chromatic number of G(D) is finite. This yields an essential improvement of
the result in [6] where it is shown that the chromatic number is finite if
there is an i0 such that di+1 \ (di+1)(di+2) for all i \ i0. Moreover, our
result is tight in the sense that a growth rate even slightly slower than
exponential is not sufficient in general for colorability with finitely many
colors. A simple construction is described in Section 3. More generally, the
growth sequences resulting in finite-chromatic distance graphs can be
characterized (Theorem 6). On the other hand, when restricted to finite
colorability, the following problem concerning distance sets of a prescribed
minimum growth rate remains open.

Problem 1. Given a real e > 0, determine the largest possible chromatic
number of distance graphs G(D) with D={d1, d2, ...} such that di+1/di \
1+e for all i \ 1.

Notation. For any real number x, let ||x|| denote the distance from x to
the nearest integer; that is, ||x||=min{x− NxM, KxL−x}. We recall that a
proper coloring of a graph G=(V, E) with r colors (an r-coloring, for short)
is an assignment j : VQ {1, ..., r} such that j(u) ] j(v) whenever uv ¥ E
(where V and E denote the vertex set and edge set of G, respectively).
The chromatic number q(G) of G is the smallest r for which G admits an
r-coloring.

It will be assumed throughout that the elements of the distance set D are
listed in increasing order, i.e., d1 < d2 < · · · .

2. UPPER BOUNDS ON THE CHROMATIC NUMBER

In this section we prove that any sequence d1 < d2 < · · · of exponential
growth yields a distance graph with finite chromatic number.
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Theorem 2. Let D={d1, d2, ...} be an infinite distance set such that
there exists an integer r \ 3 with di+1 \

2r−2
r−2 di for all i \ 1. Then the

corresponding distance graph G(D) has a proper coloring with r colors.

Proof. In the first step of the proof we are searching for a real number
x such that ||xdi || \ 1/r for all di, i=1, 2, ... .

To find such an x, we determine a sequence of nested nonempty
intervals. The first interval I1=[b1, e1] is defined by

I1 :=5
1
rd1
,
r−1
rd1
6 .

The length of this interval is obviously (r−2)/rd1.

Claim. Let Ii=[bi, ei] be an interval of length (r−2)/rdi. Then there
exists an integer zi such that

Ii+1 :=5
zi
di+1
+
1
rdi+1

,
zi
di+1
+
r−1
rdi+1
6 … Ii.

Proof of the claim. Because of the assumptions of Theorem 2, we know
that the length of Ii satisfies

|Ii |=
r−2
rdi

\
2r−2
rdi+1

>
1
di+1
.

Thus, there is obviously an integer zi such that zi/di+1 ¥ Ii. If zi/di+1
belongs to the first half [bi, (ei+bi)/2] of the interval Ii, then

5 zi
di+1
+
1
rdi+1

,
zi
di+1
+
r−1
rdi+1
6

is contained in Ii; and otherwise

5zi−1
di+1
+
1
rdi+1

,
zi−1
di+1
+
r−1
rdi+1
6 … Ii,

proving the claim.

In this way we find a sequence of nonempty, nested, closed intervals,
which has a limit. Let us denote this limit by x.

By the choice of x, xdi ¥ [zi−1+
1
r , zi−1+

r−1
r ] for every i (where z0=0).

Hence, x has the property required above.
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Next, let us color the real line using the colors 0, 1, ..., r−1. Let v be a
real number, and determine the unique j with 0 [ j [ r−1 such that
xv− NxvM ¥ [jr ,

j+1
r ). Color v with j ; that is f(v)=j. In fact, the real line is

partitioned into intervals of length 1
xr , where each interval gets a color and

the sequence of colors is ..., 0, 1, ..., r−1, 0, 1, ..., r−1, ..., periodically.
Such a coloring is called a regular coloring of the real line (see [4]).

Finally, we have to prove that this coloring induces a proper coloring for
G(D). Let v and w be any two adjacent vertices in G(D), with v > w. Then
there is a di ¥ D such that v−w=di. Assume, for a contradiction, that
f(v)=f(w)=j. Then there exist integers zv and zw such that

zv+
j
r
[ xv < zv+

j+1
r
, zw+

j
r
[ xw < zw+

j+1
r

and therefore

zv−zw−
1
r
< xv−xw < zv−zw+

1
r
.

Thus, ||xdi ||=||xv−xw|| <
1
r , contradicting the choice of x. L

Theorem 3. Let k be a natural number. If D={d1, d2, ...} is a distance
set such that di+1 \ 41/kdi for all i \ 1, then G(D) is colorable with 3k colors;
and if di+1 \ 31/kdi for all i \ 1, then G(D) is colorable with 4k colors.

Proof. We prove the two variants of the assertion simultaneously. Let
us partition D into k subsets

Dj={di | i — j (mod k)}, 0 [ j < k.

The first assumption on the growth of the di implies that di+k \ 4di.
Thus, each G(Dj) has a proper coloring with three colors, by Theorem 2.
Similarly, under the second condition we obtain that di+k \ 3di and each
G(Dj) is properly 4-colorable. Now the theorem follows by the facts that
the chromatic number is submultiplicative with respect to graph union and
that G(D)=1k−1

j=0 G(Dj). L

Denoting q=inf di+1/di, the best choice for k under the first and second
condition in Theorem 3 is Kln 4ln qL and Kln 3ln qL, respectively. Thus, both estimates
yield approximately e (ln 3)(ln 4)/ln q as an upper bound on the chromatic
number of G(D), for q sufficiently close to 1. Writing q=1+e, and
applying the fact that ln(1+e)e Q 1 as eQ 0, we obtain that G(D) has a proper
coloring with at most 4.5861/e colors whenever e is sufficiently close to zero.
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Corollary 4. If inf{di+1/di} > 1, then the chromatic number of G(D)
is finite. More generally, the chromatic number of G(D) is finite whenever
inf{di+k/di} > 1 for some natural number k.

Proof. The first assertion is an immediate consequence of Theorem 3.
The second one is obtained by considering the subsets Dj as defined in the
proof of Theorem 3 and applying the first assertion of this corollary to
each of them, together with the submultiplicative property of the chromatic
number. L

It will be shown in the next section that the second assertion can be
reversed in some sense, yielding a characterization of growth-rate sequences
for finite colorability.

3. SPARSE DISTANCE SETS WITH INFINITE
CHROMATIC NUMBER

The following result shows that an exponential growth is not only
sufficient but also more or less necessary for making the chromatic number
of G(D) finite.

Theorem 5. Let e1 \ e2 \ e3 \ · · · be a sequence of positive reals tending
to zero (arbitrarily slowly). There exists a distance set D={d1, d2, ...} such
that di+1 \ (1+ei) di holds for all i \ 1, but G(D) does not admit a coloring
with any finite number of colors.

Proof. We define D inductively. Let d1 \ 1 be chosen arbitrarily. In
general, suppose that i is the largest subscript for which di has already been
defined. The next block of distances will be defined as di+j=jdi+1 for
j=1, 2, ..., N1/eiM+1, where di+1=K(1+ei) diL.

Between consecutive blocks, the prescribed growth rate is satisfied by the
choice of di+1. On the other hand, inside one block—where the distances
form an arithmetic progression—the smallest ratio occurs for the last two
elements. This ratio is 1+1/N1/eiM, which is at least 1+ei+j for all j \ 0, by
the assumption that the sequence e1, e2, ... is nonincreasing.

The numbers occurring inside one block, when viewed as vertices of
G(D), induce a complete subgraph of the distance graph (also together with
vertex 0, but this is unimportant). Thus, since 1/ei Q. as iQ., G(D)
contains arbitrarily large complete subgraphs and therefore cannot be
colorable with any finite number of colors. L

In a more general setting, let us investigate how fast prescribed growth
implies the finite colorability of G(D). To formulate the result, we need
some notation.
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Definitions. Let q=(q1, q2, ...) be an infinite sequence of reals greater
than 1. We say that a distance set D={d1, d2, ...} is q-compatible if
di+1 \ qidi for all i \ 1. The collection of all q-compatible distance sets will
be denoted by D(q). Define

q(q)=sup{q(G(D)) | D ¥D(q)}.

Theorem 6. With the above notation, q(q)=. if and only if

inf
i \ 1

3D
k−1

j=0
qi+j 4=1 (f)

for every natural number k.

Proof. If the infimum is greater than 1, then every D ¥D(q) satisfies
the second condition in Corollary 4; hence q(G(D)) is finite. This proves
necessity.

To prove sufficiency, suppose that q satisfies (f). We are going to
construct a q-compatible distance set D such that G(D) is not finitely
colorable. We first define a subsequence of indices ik (k=0, 1, 2, ...) as
follows. Let i0=1. If ik−1 has been defined, let ik be the smallest integer
such that ik \ ik−1+k and <k−1

j=0 qik+j [ 1+1/k. It follows from (f) that ik
is well defined for every k.

The blocks of the distance set D={d1, d2, ...} to be constructed are the
sets {dik , dik+1, ..., dik+k} for each k and also the remaining natural numbers
as one-element blocks. The di will be defined blockwise.

Choose d1 arbitrarily. Assuming that the distances have been defined up
to di, the first element di+1 of the next block is defined to be di+1=KqidiL.
(Alternatively, any larger number might be chosen for di+1.) All elements
of the block are chosen to form an arithmetic progression of difference
di+1; that is, di+j=jdi+1 for all 1 [ j [ k+1 inside that block. It can be
seen along the lines of the proof of Theorem 5 that D ¥D(q) and
q(G(D))=.. L

4. REGULAR COLORINGS AND RELATED PROBLEMS

There is an interesting conjecture which goes back to Wills [3]: For any
set of positive integers d1, ..., dn there exists a real number x such that
||xdi || \

1
n+1 for each i=1, ..., n.

So far the conjecture is proved for n [ 4. Moreover, Cusick and Chen
[1] proved that when 2n−3 is a prime and n \ 4, then it is possible to find
a real number x with ||xdi || \

1
2n−3 for all 1 [ i [ n.
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If Wills’ conjecture is true, then we immediately obtain a regular coloring
of the real line with n+1 colors, inducing a proper coloring of the distance
graph G(D) with D={d1, ..., dn}. Vice versa, if we could prove that there
is such a coloring for every distance graph with distance set of cardinality
n, then the conjecture would be true.

Since both n and −n have degree at most |D| in the subgraph induced by
{i | −n [ i [ n}, it is very easy to color G(D) sequentially with at most
|D|+1 colors, e.g., in increasing order of |z|, z ¥ Z. Now the question is
whether there always exists a regular coloring of the real line inducing such
a coloring of G(D).
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