
JOURNAL OF D IFFBMNTIAL EQUATIONS 22, 461-417 (1976) 

Rapid Oscillation, Nonextendability, and the Existence 
of Periodic Solutions to Second Order Nonlinear 

Ordinary Differential Equations 

G. J. BUTLER* 

Department of Mathematics, University of Alberta, Edmonton, Alberta T6G 2G1 

Received March 25, 1976 

Consider the second order scalar ordinary differential equation 

x”(t) + f (1, x(t)) = 0 (’ = d/dt), 

where f (t, x) is o-periodic in t and f (t, 0) = 0 for all t. The usual existence 
results for periodic solutions employing degree theory or other fixed point 
arguments are generally unhelpful in this case, since the periodic solution 
that they predict may well be the trivial solution. 

Jacobowitz has recently succeeded in applying the PoincarC-Birkhoff “twist” 
theorem to demonstrate that this equation has infinitely many (nontrivial) 
periodic solutions when f satisfies a suitable “strong nonlinearity” condition 
with respect to x. Essential to his method of proof, however, is the condition 
xf(t, x) > 0 for all t (x # 0). In this note we show how this hypothesis may 
be relaxed, by modifying a technique used by the author when considering the 
problem of the global existence of solutions which occurs with the removal 
of the sign condition. 

1. INTRODUCTION 

Consider the second order scalar ordinary differential equation 

x”(t) + f(4 x(t)> = 0, (1) 

where f(t, X) is continuous, periodic in t with least period w > 0, and 
f(t, 0) = 0. 

The standard existence theory of periodic solutions involving degree 
theory or other fixed point arguments will generally be unhelpful in this 
instance, since the periodic solution that they predict may well be the trivial 

solution. 
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In studying certain periodic boundary value problems by the method 
of the calculus of variations, Nehari [9] obtained as a consequence the 
existence of nontrivial periodic solutions of (1) under certain assumptions 
on the function f(t, x), among which were a sign restriction, oddness as a 
function of x, for each t, and a condition of nonlinearity. 

Recently, Jacobowitz [7] has succeeded in applying the Poincare-Birkhoff 
“twist” theorem to obtain the existence of infinitely many periodic solutions 
under considerably less restrictive conditions than those of Nehari. His 
main result is the following: 

THEOREM [7]. Let f(t, x) satisfy the foZZowing conditions. 

(1) f is periodic with period u in t and is in Cl(92, $91). 

(2) xf(t, x) > Ofor x # 0. 

(3) liml,l+, x-lf(t, x) = co, uniformly in t. 

(4) x-lf(t, x) is boundedfor 1 x j < 1. 

Then (1) has an injkite number of periodic solution of period w; furthermore, 
for each su@iently large integer N, there exists a solution m*th precisely 2N 
zeros in [0, 0~). 

Condition (3) is a kind of “strong nonlinearity” assumption, and Jacobowitz 
exploits the fact that for functions satisfying (2) and (3), Eq. (1) has solutions 
which oscillate very rapidly. 

The aim of the present paper is to relax the sign condition (2) to obtain 
a large class of functions which still have nontrivial periodic solutions. This 
is largely motivated by the belief that it is essentially the strong nonlinearity 
off that guarantees the existence of such solutions. 

2. STATEMENT OF RESULTS 

DEFINITION. We shall say that the continuous function f (t, x) is SN 
(strongly nonlinear) if 

(a) for each t, either xf(t, x) > 0 for all x or xf (t, X) < 0 for all X; 
(b) the set 2 of values of t for which f (t, x) = 0 is an isolated set 

and for each ti E 2, there are left and right neighborhoods of ti on which 
f (t, x) is monotone t for each x; 

(c) for any compact t-set K, disjoint from 2, limt,l,, 1 x 1-1 x 
1 f(t, x)1 = co, uniformly on K. 

Our main result is 
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THEOREM 1. Let f (t, x) be periodic in t with period w > 0, and satisfy 
the following conditions. 

(i) f (t, x) is of locally bounded variation in t, unifo~nu’y on compact 
x-sets. 

(ii) f (t, x) is locally Lipschitz in x, uniformly on compact t-sets. 

(iii) f (t, x) is SN, and there exist ti , xi , with (-1)’ xi f (ti , xi) > 0, 
i= 1,2. 

(iv) For each compact t-set K, disjoint from Z (the set of t for which 
f (t, x) = 0 for all x) th ere is a function g&x) such that / f (t, x)1 > gK(x) for all 
t E K and Jim [I + GK(t, u)]-l12 du < cc where GK(t, x) = Jig,(t, y) dy. 

Then (1) possesses a nontrivial periodic solution of period W. 

In order to make the basic idea of the proof more transparent, we shall 
concentrate on the following special case. 

THEOREM 1’. Let q(t) be continous, periodic of period U, of locally bounded 
variation, with isolated zeros and at least one change of sign on (0, w). Assume 
that g is piecewise monotone in a neighborhood of each of its zeros. Let 
g(x) be locally Lipschitz with xg(x) > 0 and such that limlrl+m (g(x)/x) = CO 
and Jzrn [l + G(s)]-lj2 ds < co (G(x) = Jig(u) du). Then for f(t, x) = 
q(t)g(x), (1) has a nontrivial periodic solution of period w. 

Since we are allowing f (t, x) to change sign as we vary t, we shall have 
to cope with the possibility of solutions of (1) not being continuable; however, 
it turns out that in handling this problem we obtain a technique that allows 
us to show that a certain mapping, related to the Poincare map, has a fixed 
point. 

3. NOTATION 

We are dealing with the equation 

x”(t) + q(t)&(t)) = 0. (1’) 

We shall use letters u, v to denote the points in the plane of initial conditions 
for (1’); thus the solution of (1’) with initial conditions 

x(&J = u, x’(t,) = v 

will be denoted by x(t, , (u, v); t) on its maximal interval of existence (its 
existence and uniqueness is guaranteed by the hypotheses of 92, which are 
assumed throughout). 

The derivative x’(t, , (u, v); t) will be denoted by y(t, , (u, v); t) and the 
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vector (&, , (u, 4; 4, r(h , (u, 4; t)) by ~(t, , (u, ~1; t>. For (a, b) ~~~~ 
define Gab to be the subset of points p in the (u, o)-plane for which ~(a, p; t) 
is continuable to the interval spanned by a, b. The zero vector always belongs 
to Gab and by the continuous dependence of solutions on initial conditions, 
it follows that Gab is a nonempty, open subset of 92. 

If p E .n,O, with p = (u(p), v(p)), define b(p) to be j ~(0, p; w)I - I p / and 
#(PI to be arg Q4 P; w> - argp. Thus $(P> + I P I, #(PI + argp are the 
polar components of the Poincare (first return) map and 4 is continuous on 
J2sa while I,/I is a continuous map from sz,W\{(O, 0)} to [0, 27r), which we 
identify with the unit circle S1. 

By a vertical line in the (u, v)-plane, we shall mean a line parallel to the 
v-axis. 

We shall use B(0; Y) to denote the unit ball of radius Y in W2, and throughout, 
modulus signs will be used for the Euclidean norm in the appropriate 
dimension. The complement of a set S is denoted by SC and its closure by 
cl S. 8s will be used for the boundary of S. 

4. RAPID OSCILLATION OF SOLUTIONS 

When q(t) is nonnegative, but not identically zero, on an interval 1, solutions 
of (1’) may be made to have an arbitrarily large number of zeros on I by 
choosing the initial values with sufficiently large norm. This is one of the 
ideas behind the following 

LEMMA 1. Let q(t) 2 0 on I = (a, b), q(t) + 0 on I, and let M be a 
positive number, n be a natural number. Then there are numbers Y = r(M, n), 
R = R(M, n), 0 < Y < R, such that if rCW2 is any continuum with the 
prope-rty that I’n B(0; Y) # o # I’n Bc(O; R) and r n BC(O; I) is disjoint 
either from the u-axis OY from the v-axis, then (a) 1 z(u,p; b)j > M for all 
p E BC(O; r) n r, (b) arg z(u,p; b) (mod 2rr) as a map from B(0; R) n 
BC(O; Y) n r is an n-fold covering of the unit circle S, that is, for euch 19 E S, 
the inverse image of 9 under the map has cardinal at least n. 

Proof. Let y CW2 be a compact, continuous arc with parameter set J, 
such that y is disjoint either from the u-axis or from the w-axis. Then y* = 
~(a, y(s); b), s E J, is a compact, continuous arc in @, disjoint from the 
origin, and we may define a continuous argument function arg along y*. 
In [3, Lemma 11, it was shown that for any natural number R, there exists 
p(M, k) such that I ~(a, p; b)l 3 M and the number of zeros of ~(a, p; t) in I 
is at least k, whenever / p j > p(M, k). (In the proof of that lemma it was 
actually assumed that q was positive on I, but an examination of the proof 
makes it clear that we may permit q to have isolated zeros on I). In the 
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corollary to that lemma, it was shown that if s, s’ E J such that the numbers 
of zeros in I of ~(a, y(s); t), ~(a, y(s’); t) differ by a natural number m, then 
1 arg y*(s) - arg y*(s)1 > (m - 1)~. For each positive number A, define 
N(h) to be the maximum of the numbers of zeros on I of ~(a, p; t) as p 
ranges over B(0; h)\{(O, 0)). N(X) is well defined on account of the uniqueness 
of the zero solution of (1’) and the continuous dependence of solutions on 
initial conditions. 

Define the increasing sequences of positive numbers ri and natural numbers 
npi inductively by 

r, = p(M O), 0, = Wo), r2i+l = AM7 N(r2i) + 3)9 

y2i+2 = I2i+l + l, n2i+2 = N(r2i+2), i = 0, l,.... 

Then if yi is any continuous arc intersecting each of the boundary components 
of A, = cl[B(O; r,,+r)\B(O; rzi)] and disjoint either from the u-axis or the 
O-ZLGS, there exist pai , p2i+r E yi such that 1 psi 1 = y2i , 1 pa<+r 1 = rai+l . 
Therefore the numbers of zeros of ~(a, p,, ; t), ~(a, p,,+r ; t) on I differ 
by at least 3 and it follows that for any continuous argument function on yi , 
1 arg p,*,+r - argpg [ > 277, where p.$ , p,*,+r are the images of pzi , p,,+r , 
respectively, under the map p -+ s(u,p; b). It follows that arg (mod 27~) 
restricted to yi is a l-fold cover of [0,27r). 

Next we observe that the images Ai* of Ai , i = 0, 1,2,..., under the map 
p -+ ~(a, p; b) are mutually disjoint compact subsets of s2. 

Now define r(M, n) to be r. , R(M, n) to be I~,,+~, and let rCs2 be any 
continuum satisfying the hypotheses of the lemma, Let 0 E [0,27r) be fixed. 
For k = 1, 2,..., let 8, be an open, connected cover of r by discs of radius 
1 /k. Then we may find inside 0, , a continuous arc yk disjoint from one of the 
axes and intersecting each of the boundary components of A = lJ,“=, Ai , 
and (by considering “first entry” and “last exit” points of ylc) we choose 
subarcs yk,i lying entirely within Ai and intersecting both of its boundary 
components, i = 0, l,..., 71 - 1. Thus we may find points pz,i E y& C Ai* 
(yzi being the image of yk,i under the map p-+ x(u,p; b)) such that the 

I sequence& is bounded with arg ~2,~ (mod 27r) = 6, and hence a subsequence 
which we again label p,*., converges to pi* E Ai*. Clearly arg pi* (mod 27r) = 0, 
and the pi* are all different, i = 0, l,..., n - 1. Since P,,~ also converges, 
to pi , say, and the distance from P,,~ to r is less than l/k, it follows that 
pi E r and pi* = .~(a, p; b). The lemma now follows. 

Remarks. The conditions on q guarantee the extendability of solutions 
across I [5j. 

If f(t, X) is SN, there is no difficulty in obtaining the corresponding 
result for (1) on an interval I which is disjoint from 2 (see definition) and 
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on which xf(t, x) > 0 for all x; the condition which enables us to prove 
[3, Lemma l] being essentially (c) of the definition of SN. 

5. SOME PROPERTIES OF THE CONTINUABILITY SETS OF INITIAL POINTS 

We establish some simple results concerning the structure of the Gab. 

LEMMA 2. Let q(t) < 0 on I = (a, b). Then Gab is open, and if K is any 
compact subset of the reals and II, is the projection map from the (u, v)-plane 
on to the u-axis, then 17,-*(K) n Qnab is a bounded, nonempty set. 

Proof. The openness of Qab has already been noted in Sect. 2. That 
17,-l(K) n i&b is bounded is easily deduced from the condition that 
[l + G(x)]-~/~ is integrable on the real line and the proof of [2, Theorem l] 
concerning the noncontinuability of solutions of (1’). We need only comment 
that the possibility of Q vanishing at one or both of the end-points of I is of 
no consequence and since solutions of (1’) are, for sufficiently large initial 
conditions, eventually monotone in I along with their derivatives (with the 
same direction of monotonicity), the possibility that g(x) vanishes for certain 
small values of x causes no problem, on account of the condition that 
liml,+, (g(x),Ix) = co. We refer to [2] for details. To show that I7$(K) n Qab 
is nonempty, we only have to consider the case that K is a single point, and 
this was dealt with in [3, Lemma 21. 

Remarks. Again, the extension to Eq. (1) for an interval I, disjoint from 2, 
on which xf (t, x) < 0 for all x, is easy to establish, using (iv). 

A symmetrical statement holds for Qba. 

Generally speaking, there seems no reason to expect that the sets SZab 
will have any particular structure such as connectedness or that their bound- 
aries will consist of continuous arcs, when the interval spanning a, b contains 
values of t for which q(t) < 0. However it is possible to find continuous 
arcs of infinite length inside these sets and this is the point of the next lemma. 
Before stating this, we develop some notation in connection with the zeros 
of q. Our hypotheses allow us to assume that the zeros of q on [0, w) are 

0 = t, < t, < -** < t, < w, k> 1, 

where q(t) < 0 on (0, tl), q(t) < 0 on (tj-l, tj), q(t) > 0 on (tj , w), for 
some j with 1 < j < k. Henceforth we shall make this assumption 
concerning q. 

LEMMA 3. There is a continuous arc y: (01, /3) -+ B2 with (0,O) E y C Q,,w, 
such that if Y(S) = (n(s), ~~(41, then lb+, n(s) = lb+, ~4s) = ia, 
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lim s+~ Y,(S) = lim,+p ~~(4 = f=b d I 40, Y(S); $>I ad I 40, Y(S); w)I are 
uniformly bounded for s E (OL, 8). 

Proof. q(t) < 0 on (tj-r , tj), so by the previous lemma there exists an 
interval (c, d), c <0 <d such that (0) x (c, d) C sZ$-l and (0, c), (0, d) E X2$-l. 
Since (0,O) E @‘$ and Qtj is an open subset of .(2$-l, it follows that there exist 
a, /3 with c < a < 0 < /3 < d for which (0) x (a, /3) C ‘RFj and (0, a), 
(0, B) E q . Now define y(s) to be z(ti , (0, s); 0), s E (a, /3). Then y is a 
continuous arc in s2:f = In,0 with the appropriate asymptotic behavior 
following from a consideration of lim,,,, z(ti , p; t) for any p E Z&‘, . We 
also have that j ~(0, y(s); tj)l = [(O, s)l < max -a, /3, and since q(t) 3 0 
on (ti , w), z(tj , p; t) is continuable to [ti , w] for all p ELF, hence z(ti, p; w) 
is continuous on 3Y2 and therefore 

I ~QYN; w)I < mm {I 44 , P; ~11: I P I < m=b, IO>; 
that is, j ~(0, y(s); w)j is uniformly bounded for s E (a, /3). This completes 
the proof of the lemma. 

Remark. As with each of the previous lemmas, there is a corresponding 
result for Eq. (1). 

6. A TOPOLOGICAL LEMMA 

Ultimately, we are going to demonstrate the existence of a periodic solution 
by exhibiting it as a fixed point of a certain map (the PoincarC map). In 
preparation for this, we need the following 

LEMMA 4. Let Q be an open, connected subset of BJ2 with the property that 
for each vertical line L lying between (and including) two jixed vertical lines 
L, , L, , L n $2 is a nonempty bounded set. Let {ri}EO be a collection of continua 
contained in Q such that for i = 1,2,..., m, the ri are mutually disjoint, and 
L, n r, # m #L, n I’, , whereas for each i, 1 ,< i < m, at least one of 
L, n ri , L, n ri is empty. Then there exists p E r, , q E a52 and an arc y 
from p to q with y C cl. 52 n S(L, , L,), w h ere S(L, , L,) is the in$nite closed 
strip of .g2 contained between L, and L, , such that y is disjoint from u:, Pi . 

Before giving the proof, we mention that in the special case that 52 is a 
bounded, open rectangle, this result is essentially contained in [8, proof of 
Lemma 41. 

Proof, Since the ri are continua contained in the open set a, we may, 
for E a sufficiently small positive number, cover each of them by a finite 
collection of closed discs of radius E lying entirely within 52 and we may 
assume that each of these covering sets pi satisfy the same hypotheses as the 
ri , Each of the pi has an exterior boundary pi which is a simple closed 
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curve (composed of finitely many circular arcs), ri being contained inside 
the interior domain of ~7~ . If one of L, , L, intersects the interior of ri (they 
cannot both do so) we modify Fi as follows: suppose that L, n int Fi # o ; 
then we construct a square Ci , disjoint from the interior of S(L, , L,) and 
one of whose sides is a segment of L, containing L, n int pi . Then we 
replace pi by Ci v Pi . Defining ri* to be Fi , modified if necessary, we 
define yi* to be its exterior boundary. Then ri* satisfies the hypotheses of 
the original I’i , except possibly for the condition of being pairwise disjoint. 
We denote the interior domain of yi* by Y(y%*) and note that ri CY(yi*). 
For p E r,, , we shall say that ri is a “barrier” for p if every continuous arc 
contained in cl. .Q n S(L, , La), leading fromp to ?X2, intersects ri . We claim 
that if ri is a barrier for p, then p E yi* u Y(yi*). For suppose not, then p is 
in the exterior domain of yi*. Let y be any continuous arc in cl Sz n S(L,, L,), 
leading from p to some 4 E &Q (the existence of such arcs follows from the 
hypotheses). Since y intersects ri , it will intersect yi* at a “first” point p, 
and at a “last” point q1 . Now one (at least) of the two subarcs of yi* joining 
p, and q1 lies in S(L, , L,); this was the point of modifying pi if necessary. 
(The argument for this is as follows. Suppose both arcs from p, to q1 have 
first exit points from S(L, , L,). This could only occur in the situation where 
yi* is a “modified” ri . These exit points both lie on L, , say, and since they . 
are first exit points, one of the two arcs must enter the interior of the square 
Ci associated with the construction of pg. But this is impossible.) Either 
this subarc intersects aJ2 or together with the subarcs of y joining p with p, 
and 4 with q1 forms a continuous arc fromp to 4, lying in cl Q A S(L, , L,) and 
disjoint from ri ; in either case a contradiction, which verifies the claim. If 
p E r, n int S(L, , L2), then it is clear from the construction of ri* that 
p E yi* U Y(yi*) implies p ET< U y(Fi). It follows that if every point of 
r, had some ri as a barrier, the condition that the pi are pairwise disjoint . 
would be violated. Therefore there is a point p, E r,, for which none of the 
ri is a barrier. Now we may repeatedly apply the construction used in 
verifying the claim above to obtain an arc which leads from p, to some q,, E 8sZ, 
lying in cl Q n S(L, , L,) and which misses each of the ri . This proves 
the lemma. c 

7. PROOF OF THE THEOREM 

First we observe that if p E .QsU with x(0, p; tj) = 0, then (0, ~(0, p; tJ) E 
G$‘, C sZ$-l and by Lemma 2, L(0) n Qn,,- tj 1 is bounded, where we are using 
the notation L(c) for the vertical line u = c. It follows that there exists A, * 
such that 

P~QCY with x(0, p; tj) = 0 implies Iy(0, P; $)I < AI . (2) 
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Using Lemma 3, we obtain an arc y: (ar, /I) + W2 with y E QsW, having 
the property that (0,O) E y and 

(y(s) = (yr(s), y2(s))), and there exists A, such that 

I 4-A y(s); w)I d A2 for s E (IX, /I). (3) 

For definiteness, we shall suppose that the limits above are both +co. 
Let D be the connected component of J2aW which contains y. Since q(t) > 0 

on [tj,u], the mapsp+z(tj,p;w), p -+ z(w, p; tj) are homeomorphisms 
of g2. Therefore we may define 

and let L, denote the vertical line L(A,). L, n s2 # o (since it contains 
L, n y) and L, n 9 CL, n s2,w CL, n &?$, which is bounded by Lemma 2. 
Let 

A,=~~p(lpj:p~L,nl2}. 

Note that A, > A, . Let 

(5) 

and apply Lemma 1 with I = (ti , w), M = 2A,, n = 2, to obtain the 
corresponding values Y = r(M, n), R = R(M, n). Now define A, by 

and denote L(2A,J by L, . If S(L, , L,) is the closed infinite strip between 
L, and L, it follows from Lemma 2, since Sz C Q$, that Q(L, , L,) = Q n 
S(L, , L,) is bounded, and we define 

A, = sup{1 P I : P E J-G > L2b (8) 

For each point q E aQ n S(L, , L,), there is an open disc DQ such that 
1 ~(0, p; w)] > A, for p E Da n QsW. Here we have used the noncontinuability 
of ~(0, q; t) to [0, w], together with the continuous dependence of solutions 
on initial conditions, to assert the existence of D, . Let K = Q(L, , L,)\u D, , 
where the union is over all points q in asZ n S(L, , L,). Then K is a compact 
subset of 0, and since +(p) = 1 ~(0, p; w)l - I p I is continuous on 52 (by 

505/2212-16 
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the continuous dependence of solutions on initial conditions), the zero set Z 
of 4 restricted to K is a compact subset of Sz. 

Suppose that Z does not contain a continuum intersecting both L, and L, . 
Since Z is a compact subset of the open set Sz, we may choose a finite covering 
of Z by closed discs contained in Q such that the connected components of 
the covering are continua ri, i = 1, 2,..., m, and for each i, either L, n ri 
or L, n ri is empty (we refer to [S] for the precise details of this assertion). 
Clearly the ri are mutually disjoint. On the other hand, if we define r,, to 
be any component of S(L, , L,) n y, then r, is a continuum with r, C 52 
and r, n L, # m # r, n L, . Now we apply Lemma 4 to obtain a con- 
tinuous arc y* from p E y to q E &Q with y* C cl Q n S(L, , L,), y* disjoint 
from lJz, ri and hence from Z. 

However, y* intersects U D, for the “first time” at p’, say, where p’ E aD,r 
q’ E aQ n S(L, , L2) and the subarc 7 of y* leading from p to p’ is in K. 
We have by the construction of y that x(0, p; tj) = 0, so that by (2), 

I r(O,p; b)l < 4 , hence by (4), I 40,~; w)l < 4 < I p I. Now I 40, P’; ~11 3 
A, 3 1 p’ /, by (8). It follows that there is a $ ~7 with 1 x(O,p; w)i = / $ /. 
But then p” E y* n Z, which is a contradiction. We conclude that Z contains 
a continuum r intersecting both L, and L, . Let f, r* be the images of r 
under the maps p + x(0, p; tj), p + ~(0, p; w), respectively. Let p, E r n L, , 

p,ErnL,. BY (5), I @,P, > . w)l = I pi j < A, which implies by (6) that 
I ~(0, pi ; tj)i < A, < M. Since the definition of r = r(M, n) implies that 
/ z(tj , p; w)l > M whenever / p / 3 Y, it follows that 1 ~(0, p, ; tj)\ < Y. On 
the other hand, / ~(0, pa , w)I = j p, 1 > 2A, > A, which, on account of (7), 
implies that ~(0, pa ; ti) > R. Furthermore, for any p E r, I ~(0, p; w)i = 
j p 1 > A, , by (9, and A, > A, , so it follows by (4) that 1 ~(0, p; ti)l > A, . 
By (2) this means that r is disjoint from the u-axis. 

We conclude that r satisfies the hypotheses of Lemma 1 with M = 2A, , 
n = 2. Therefore argzeT* z covers [0,25~) at least twice. However, j argp ] < 
n/2 (mod 2~) for all p E l? From this we may deduce (for example by using a 
suitable continuous arc close to r, along the lines of the proof of Lemma 1) 
that there exists p, E r such that arg ~(0, p, ; W) = arg p, (mod 23~). 

Since I x(0, p, ; w)I = j p, 1 and / p, / > A, > 0, it follows that x(0, pa ; t) 
is a nontrivial periodic solution of (1) and Theorem 1 is proved. 

In conclusion, we give the following 

COROLLARY. Let q(t) be a continuous periodic function with period w > 0, 
with only isolated zeros, such that q is somezohere positive. Let a! > 1. Then 
there are injinitely many periodic solutions of the equation 

x”(t) + q(t) I 4W sg+W = 0, 
and if St q(t) dt > 0, they all oscillate (have arbitrarily large zeros). 
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Proof, The existence of periodic solutions follows from Theorem 1 in 
the case that 4 has changes of sign and from the result of Jacobowitz in the 
case that q(t) > 0 for all t. In this latter case, the oscillatory nature of these 
solutions is a result of Atkinson [I] whilst, more generally, if st q(t) dt > 0, 
it follows from [4]. 

If st q(t) dt < 0, the above equation will have nonoscillatory solutions [4]; 
however, it is clear from the construction that the periodic solutions given 
by Theorem 1 will oscillate. We do not know if in this case there can exist 
nonoscillatory periodic solutions. 
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