

Available online at www.sciencedirect.com

Theoretical Computer Science 321 (2004) 395-404

Theoretical Computer Science

www.elsevier.com/locate/tcs

Note Sturmian words, β -shifts, and transcendence

Dong Pyo Chi^{a,1}, DoYong Kwon^{b,*,2}

^aSchool of Mathematical Sciences, Seoul National University, Seoul 151-747, Republic of Korea ^bSchool of Computational Sciences, Korea Institute for Advanced Study, Seoul 130-722, Republic of Korea

Received 25 November 2003; received in revised form 25 February 2004; accepted 11 March 2004 Communicated by D. Perrin

Abstract

Consider the minimal β -shift containing the shift space generated by a given Sturmian word. In this paper we characterize such β and investigate their combinatorial, dynamical and measuretheoretical properties and prove that such β are transcendental numbers. © 2004 Elsevier B.V. All rights reserved.

Keywords: Sturmian word; β -shift; Self-Sturmian number

1. Introduction

A Sturmian word is an infinite word *s* over a binary alphabet *A*, whose complexity function satisfies P(s,n) = n + 1 for all $n \ge 0$, i.e., the number of factors of *s* with length *n* is exactly n + 1. Sturmian words are aperiodic infinite words with minimal complexity [14,7].

Let $\beta > 1$ be a real number. We consider the β -transformation T_{β} on [0, 1] defined by $T_{\beta}: x \mapsto \beta x \mod 1$. Then the β -expansion of $x \in [0, 1]$, denoted by $d_{\beta}(x)$, is a sequence of integers determined by the following rule:

 $d_{\beta}(x) = (x_i)_{i \ge 1}$ if and only if $x_i = \lfloor \beta T_{\beta}^{i-1}(x) \rfloor$,

where $\lfloor t \rfloor$ is the largest integer not greater than t. The β -shift S_{β} is the closure of $\{d_{\beta}(x)|x \in [0,1)\}$ with respect to the topology of $A^{\mathbb{N}}$. In [15], Parry completely

0304-3975/\$ - see front matter © 2004 Elsevier B.V. All rights reserved. doi:10.1016/j.tcs.2004.03.035

^{*} Corresponding author. Tel.: 82-2-958-3819; fax: 82-2-958-3820.

E-mail addresses: dpchi@math.snu.ac.kr (D.P. Chi), doyong@kias.re.kr (D.Y. Kwon).

¹ Supported by Korea Research Foundation Grant (KRF-2000-015-DP0031).

² Supported by BK21 Program in Korea and by KIAS Research Fund (No.03-0155-001).

characterized S_{β} in terms of $d_{\beta}(1)$ and the lexicographic order on $A^{\mathbb{N}}$. From Parry's result we note that the collection of all β -shifts is totally ordered. The main concern of this article is about the minimal β -shift containing the shift space generated by a Sturmian word.

We call $\beta > 1$ a (maximal) self-Sturmian number if $d_{\beta}(1)$ is a Sturmian word (and $\alpha(d_{\beta}(1)) = \{\lfloor \beta \rfloor - 1, \lfloor \beta \rfloor\}$). We show that S_{β} minimally contains the shift space generated by some Sturmian word if and only if β is self-Sturmian. This gives a large class of specified β -transformations T_{β} and moreover for a maximal self-Sturmian β , the diameter of the closure of $\{T_{\beta}^{n}1\}_{n\geq 0}$ is minimal in a certain sense. We also prove the transcendence of such β . This is a partial answer to the question posed by Blanchard [5].

2. Sturmian words and lexicographic order

Since P(s, 1) = 2, Sturmian words are forced to be infinite words over the alphabet $A = \{0, 1\}$ by renaming if necessary. Then the *height* h(x) of a word x is the number of occurrences of 1 in x. We say a subset X of A^* is *balanced* if for any $x, y \in X$, $|h(x) - h(y)| \le 1$ whenever x and y have the same lengths. An infinite word s is also called *balanced* if the factor set F(s) is balanced. In [7], Coven and Hedlund described the balanced property in more detail.

Theorem 2.1. Suppose $X \subset A^*$ and $x \in X$ implies $F(x) \subset X$. Then X is unbalanced if and only if there exists a palindrome word w such that both 0w0 and 1w1 lie in X.

For a real number t, $\lceil t \rceil$ is the smallest integer not less than t, and $\{t\}$ the fractional part of t, i.e., $t = \lfloor t \rfloor + \{t\}$. Let α , ρ be two real numbers in [0, 1]. We now define two infinite words over $\{0, 1\}$. Consider, for $n \ge 0$,

$$s_{\alpha,\rho}(n) = \lfloor \alpha(n+1) + \rho \rfloor - \lfloor \alpha n + \rho \rfloor, \ s'_{\alpha,\rho}(n) = \lceil \alpha(n+1) + \rho \rceil - \lceil \alpha n + \rho \rceil.$$

The infinite words $s_{\alpha,\rho}$, $s'_{\alpha,\rho}$ are termed *lower* and *upper mechanical words*, respectively, with *slope* α and *intercept* ρ . If α is irrational, we see $s_{\alpha,0} = 0c_{\alpha}$, $s'_{\alpha,0} = 1c_{\alpha}$ for some infinite word c_{α} . Here the word c_{α} is called the *characteristic word* of slope α . Morse and Hedlund [14] proved two alternative characterizations of Sturmian words.

Theorem 2.2. For an infinite word s, the following are equivalent.

- s is Sturmian.
- *s* is aperiodic and balanced.
- s is irrationally mechanical, i.e., the slope is irrational.

The following proposition prescribes factor sets of Sturmian words.

Proposition 2.1 (Mignosi [13]). For two Sturmian words s, t, if they have the same slope, then F(s) = F(t). And $F(s) \cap F(t)$ is finite otherwise.

We denote by σ the shift map, and by $\overline{\mathcal{O}}(s)$ its orbit closure of s. Since Sturmian words are uniformly recurrent, $\overline{\mathcal{O}}(s)$ is minimal if s is Sturmian.

Proposition 2.2. Let *s* be a Sturmian word with slope α . Then $\overline{\mathbb{O}}(s)$ is the set of all mechanical words of slope α .

The proof is a consequence of a lemma.

Lemma 2.1. For a fixed irrational $\alpha \in (0,1)$, $s_{\alpha,\rho}$ is continuous from the right and $s'_{\alpha,\rho}$ from the left as functions of ρ .

Proof. Let $\varepsilon > 0$, s_{α,ρ_0} , s'_{α,ρ_0} be given. We choose an integer N > 0 such that $2^{-N} < \varepsilon$. Put $\delta_1 = \min\{1 - \{\alpha n + \rho_0\} \mid 0 \le n \le N + 1\}$. Then $0 \le \rho - \rho_0 < \delta_1/2$ implies $d(s_{\alpha,\rho}, s_{\alpha,\rho_0}) < \varepsilon$. For the upper mechanical word, we define δ_2 by the minimum of nonzero fractions $\{\alpha n + \rho_0\}$ for $0 \le n \le N + 1$. Then $0 \le \rho_0 - \rho < \delta_2/2$ implies $d(s'_{\alpha,\rho}, s'_{\alpha,\rho_0}) < \varepsilon$. If $\rho_0 = 0$, then we can assume $\rho_0 = 1$. \Box

Proof of Proposition 2.2. By the minimality of $\overline{\mathcal{C}}(s)$ we may assume $s = s'_{\alpha,0} = 1c_{\alpha}$. Since α is irrational, αn is never an integer for nonzero n. Hence $\sigma^n(s) = s_{\alpha,\{\alpha n\}} = s'_{\alpha,\{\alpha n\}}$ holds for any $n \ge 1$. Given $s_{\alpha,\rho}$ and $s'_{\alpha,\rho}$ we can pick two increasing sequences of integers $(p_n)_{n\ge 0}$, $(q_n)_{n\ge 0}$ such that $\{\alpha p_n\} \searrow \rho$ and $\{\alpha q_n\} \nearrow \rho$. Then one finds

$$\lim_{n\to\infty} \sigma^{p_n}(s) = s_{\alpha,\rho}, \lim_{n\to\infty} \sigma^{q_n}(s) = s'_{\alpha,\rho}$$

Conversely assume $t \in \overline{\mathcal{O}}(s)$. Then t is balanced since $F(t) \subset F(s)$, and the minimality implies the aperiodicity of t. t has the slope α . Otherwise $F(s) \cap F(t)$ would be finite by Proposition 2.1. But every factor of t also occurs in s. \Box

In the next section, what we need critically is the lexicographic order between Sturmian words. We have the following. For its proof, see [10].

Proposition 2.3. Suppose $\alpha \in (0,1)$ is irrational and $\rho, \rho' \in [0,1)$ are real. Then

$$s_{\alpha,\rho} < s_{\alpha,\rho'}$$
 if and only if $\rho < \rho'$.

Corollary 2.3.1 (Borel and Laubie [6]). Let α be an irrational number in (0,1). Then $0c_{\alpha} < s_{\alpha,\rho} < 1c_{\alpha}$ for any $0 < \rho < 1$. In particular we have for all $n \ge 1$,

 $1c_{\alpha} > \sigma^{n}(1c_{\alpha})$ and $0c_{\alpha} < \sigma^{n}(0c_{\alpha})$.

3. β -shifts and self-Sturmian numbers

Just as the number 1 dominates any number in [0,1), so does $d_{\beta}(1)$ in S_{β} with respect to lexicographic order, which was shown by Parry [15]. Moreover, Parry also

determined the sequences that can be β -expansions of 1 for some $\beta > 1$. These sequences obey the next rule.

Theorem 3.1. A sequence $s \in \{0, 1, ..., \lfloor \beta \rfloor\}^{\mathbb{N}}$ is a β -expansion of 1 for some β if and only if $\sigma^n(s) < s$ for all $n \ge 1$. In this case, such a β is unique.

From now on we replace the alphabet $A = \{0, 1\}$ by $\{a, b\}$ for any $a, b \in \mathbb{Z}$ and $0 \leq a < b$. For a Sturmian word *s* over $\{a, b\}$ with slope α , any $t \in \overline{\mathcal{O}}(s)$ lies between ac_{α} and bc_{α} , where c_{α} is the characteristic word over $\{a, b\}$. We write this as $ac_{\alpha} \leq \overline{\mathcal{O}}(s) \leq bc_{\alpha}$. This notation represents β -shift as $0^{\infty} \leq S_{\beta} \leq d_{\beta}(1)$. In both cases, the two inequalities are best possible. By Theorem 3.1 and Corollary 2.3.1, there exists a unique $\beta > 1$ such that $d_{\beta}(1) = bc_{\alpha}$. From the fact that $\gamma < \theta$ implies $S_{\gamma} \subseteq S_{\theta}$, one can deduce that S_{β} is the minimal β -shift containing $\overline{\mathcal{O}}(s)$. Moreover, the closure of $\{\sigma^{n}(d_{\beta}(1))\}_{n\geq 0}$ is equal to $\overline{\mathcal{O}}(s)$ and ac_{α} , bc_{α} are accumulation points by Proposition 2.2. We state these as a theorem. For an infinite word x, $\alpha(x)$ is the set of letters involved in x.

Theorem 3.2. Suppose *s* is Sturmian of slope α and $\alpha(s) = \{a, b\}$ with $0 \le a < b$. If S_{β} is the smallest β -shift containing $\overline{\mathbb{O}}(s)$, then $\overline{\{\sigma^{n}(d_{\beta}(1))\}}_{n \ge 0} = \overline{\mathbb{O}}(s)$ and β is the unique positive solution of $1 = \sum_{n=0}^{\infty} ((b-a)s'_{\alpha,0}(n) + a)/x^{n+1}$.

In [5], Blanchard classified β -shifts into five categories, and for each β contained in some classes the morphology of $d_{\beta}(1)$ was totally understood by Parry and Bertrand-Mathis [15,4]. The language theoretical terminology used in the next proposition is referred to [5] or the bibliography therein.

Proposition 3.1. For $\beta > 1$, the following equivalences hold.

- $\beta \in \mathscr{C}_1$: S_β is a shift of finite type if and only if $d_\beta(1)$ is finite.
- $\beta \in \mathscr{C}_2$: S_β is sofic if and only if $d_\beta(1)$ is ultimately periodic.
- $\beta \in \mathscr{C}_3$: S_β is specified if and only if there exists $n \in \mathbb{N}$ such that the number of consecutive 0's in $d_\beta(1)$ is less than n.
- $\beta \in \mathscr{C}_4$: S_β is synchronizing if and only if some word of $F(S_\beta)$ does not appear in $d_\beta(1)$.
- $\beta \in \mathscr{C}_5$: S_β has none of the above properties if and only if all words of $F(S_\beta)$ appear at least once in $d_\beta(1)$.

One sees immediately the inclusions:

 $\emptyset \neq \mathscr{C}_1 \subset \mathscr{C}_2 \subset \mathscr{C}_3 \subset \mathscr{C}_4 \subset (1,\infty), \quad \mathscr{C}_5 = (1,\infty) \backslash \mathscr{C}_4.$

On the other hand, Schmeling [16] determined each size of the classes.

Proposition 3.2. \mathscr{C}_3 has Hausdorff dimension 1 and \mathscr{C}_5 has full Lebesgue measure.

Now we concentrate on a special class of real numbers that is contained in \mathscr{C}_3 .

Definition. Let $\beta > 1$. We call β a *self-Sturmian number* if $d_{\beta}(1)$ is a Sturmian word over a binary alphabet $A = \{a, b\}, \ 0 \le a < b = \lfloor \beta \rfloor$. In particular, β is *maximally self-Sturmian* if it is self-Sturmian and $\alpha(d_{\beta}(1)) = \{\lfloor \beta \rfloor - 1, \lfloor \beta \rfloor\}$.

Remark. Not every Sturmian word is equal to $d_{\beta}(1)$ for some $\beta > 1$. In such cases, $d_{\beta}(1) = bc_{\alpha}$ and $\alpha(c_{\alpha}) = \{a, b\}$ for some irrational α and integers $0 \le a < b$.

Definition. diam: $(1, \infty) \rightarrow [0, 1]$ is the function that maps β to the diameter of T_{β} -orbit of 1, i.e., diam $(\beta) := \text{diam}\{T_{\beta}^{n}1\}_{n \ge 0} = \sup\{|x - y| : x, y \in \{T_{\beta}^{n}1\}_{n \ge 0}\}.$

One can note that if $\beta \in \mathscr{C}_1$ or $\beta \in (1, \infty) \setminus \mathscr{C}_3$, then diam $(\beta) = 1$ since both 0 and 1 lie in the closure of $\{T_{\beta}^n 1\}_{n \ge 0}$. We get from the definitions,

Proposition 3.3. Suppose β is self-Sturmian and $\alpha(d_{\beta}(1)) = \{a, b\}$ with $0 \leq a < b = \lfloor \beta \rfloor$. Then $\beta \in \mathscr{C}_3 \setminus \mathscr{C}_2$ and diam $(\beta) = (b - a)/\beta$.

Maximal self-Sturmian numbers are distinguished from the dynamical point of view.

Theorem 3.3. $\beta > 1$ is maximally self-Sturmian if and only if $\beta \notin \mathscr{C}_2$ and $1 - 1/\beta \leq T_{\beta}^n 1 \leq 1$ for any $n \geq 0$.

Proof. We prove the sufficiency. The hypothesis implies that $d_{\beta}(1)$ is aperiodic and $\alpha(d_{\beta}(1)) = \{\lfloor \beta \rfloor - 1, \lfloor \beta \rfloor\}$. Put $a = \lfloor \beta \rfloor - 1$ and $b = \lfloor \beta \rfloor$. If $d_{\beta}(1)$ is unbalanced, then Theorem 2.1 guarantees the existence of a palindrome word *w* such that both *awa*, *bwb* are factors of $d_{\beta}(1)$. For $d_{\beta}(1) = bd_1d_2...$, one sees $d_{\beta}(1 - 1/\beta) = ad_1d_2...$ We get

$$ad_1 \cdots d_n d_{n+1} \leq awa < bwb \leq bd_1 \cdots d_n d_{n+1},$$

where *n* is the length of *w*. This yields a contradiction. Hence $d_{\beta}(1)$ is a Sturmian word of some slope α and it dominates all its shifts, and therefore $d_{\beta}(1) = bc_{\alpha}$. \Box

The diameter of a maximal self-Sturmian number is minimal in the following sense.

Corollary 3.3.1. For any $\beta > 1$, either $\beta \in \mathscr{C}_2$ or diam $(\beta) \ge 1/\beta$.

Proposition 3.2 shows the set of self-Sturmian numbers is of Lebesgue measure zero. Then what about the size of $\overline{\{T_{\beta}^{n}1\}}_{n\geq 0}$ for a fixed self-Sturmian number β ? The last paragraph of this section is devoted to showing $\overline{\{T_{\beta}^{n}1\}}_{n\geq 0}$ has Lebesgue measure zero, whereas the orbit closure of an irrational rotation has full Lebesgue measure even though Theorem 3.2 indicates that two orbit closures in full shift coincide.

A β -transformation T_{β} has an invariant ergodic measure v_{β} whose Radon–Nikodym derivative with respect to Lebesgue measure is given by

$$h_{\beta}(x) = \frac{1}{F(\beta)} \sum_{x < T_{\beta}^{n}1} \frac{1}{\beta^{n}}, \quad x \in [0, 1].$$

Here $F(\beta)$ is the normalizing factor. Suppose $d_{\beta}(1) = \varepsilon_0 \varepsilon_1 \dots$ Parry noted that

$$F(\beta) = \int_{0}^{1} \sum_{x < T_{\beta}^{n} 1} \frac{1}{\beta^{n}} dx = \int_{0}^{1} \left(\sum_{n=0}^{\infty} \frac{a_{n}(x)}{\beta^{n}} \right) dx = \sum_{n=0}^{\infty} \frac{T_{\beta}^{n} 1}{\beta^{n}} = \sum_{n=0}^{\infty} \frac{(n+1)\varepsilon_{n}}{\beta^{n+1}}$$

where

$$a_n(x) = \begin{cases} 1 \text{ if } x < T_{\beta}^n 1, \\ 0 \text{ otherwise.} \end{cases}$$

The frequency of $\lfloor \beta \rfloor$ in $d_{\beta}(x)$ is, if the limit exists, given by

$$\lim_{n\to\infty}\frac{1}{n}\sum_{i=0}^{n-1}\chi(T^i_\beta(x)),$$

where χ is the characteristic function of $[\lfloor \beta \rfloor / \beta, 1]$. Owing to Birkhoff Ergodic Theorem, we can say more. For almost all x in [0, 1], the frequency of $\lfloor \beta \rfloor$ in $d_{\beta}(x)$ equals

$$\mu_{\beta}(\lfloor \beta \rfloor) := \frac{1}{F(\beta)} \int_{\lfloor \beta \rfloor/\beta}^{1} \sum_{x < T_{\beta}^{n} \downarrow} \frac{1}{\beta^{n}} dx.$$

A similar reasoning also applies to the frequency of the other digit.

Lemma 3.1. If β is self-Sturmian and $\alpha(d_{\beta}(1)) = \{a, b\}$ with $0 \le a < b = \lfloor \beta \rfloor$, then for almost every x in [0, 1], the frequency of b in $d_{\beta}(x)$ is equal to

$$\mu_{\beta}(b) = \frac{\mathscr{I}}{F(\beta)} = \frac{1}{F(\beta)} \sum_{n=0}^{\infty} \lceil \alpha n \rceil \frac{\varepsilon_n}{\beta^{n+1}}$$

and the frequency of a in $d_{\beta}(x)$ is equal to

$$\mu_{\beta}(a) = \frac{\mathscr{I}}{F(\beta)} = \frac{1}{F(\beta)} \left(\sum_{n \in J} \frac{1}{\beta^{n+1}} + \sum_{n=0}^{\infty} (n - \lceil \alpha n \rceil) \frac{\varepsilon_n}{\beta^{n+1}} \right),$$

where $d_{\beta}(1) = \varepsilon_0 \varepsilon_1 \varepsilon_2 \dots$ and $J = \{n \ge 0 \mid \varepsilon_n = b\}, K = \{n \ge 0 \mid \varepsilon_n = a\}.$

Proof. Let α be a number such that $d_{\beta}(1) = bc_{\alpha} = \varepsilon_0 \varepsilon_1 \varepsilon_2 \dots$, where c_{α} is the characteristic word of slope α over the alphabet $\{a, b\}$. First we compute the following integral:

$$\mathcal{I} := \int_{\lfloor\beta\rfloor/\beta}^{1} \sum_{x < T_{\beta}^{n} 1} \frac{1}{\beta^{n}} dx = \int_{\lfloor\beta\rfloor/\beta}^{1} \sum_{n=0}^{\infty} \frac{a_{n}(x)}{\beta^{n}} dx$$
$$= \sum_{n=0}^{\infty} \frac{1}{\beta^{n}} \int_{\lfloor\beta\rfloor/\beta}^{1} a_{n}(x) dx = \sum_{n=0}^{\infty} \frac{b_{n}}{\beta^{n}},$$

400

where

$$b_n = \begin{cases} T_{\beta}^n 1 - \lfloor \beta \rfloor / \beta & \text{if } \lfloor \beta \rfloor / \beta \leqslant T_{\beta}^n 1, \\ 0 & \text{otherwise.} \end{cases}$$

Since $\lfloor \beta \rfloor / \beta \leq T_{\beta}^{n} 1$ is equivalent to $\varepsilon_{n} = b$, it follows from Fubini Theorem that

$$\mathscr{I} = \sum_{n \in J} \frac{1}{\beta^n} \left(T^n_\beta 1 - \frac{\lfloor \beta \rfloor}{\beta} \right) = \sum_{n \in J} \sum_{m=n+1}^{\infty} \frac{\varepsilon_m}{\beta^{m+1}} = \sum_{n=0}^{\infty} h_n \frac{\varepsilon_{n+1}}{\beta^{n+2}} = \sum_{n=0}^{\infty} h_{n-1} \frac{\varepsilon_n}{\beta^{n+1}},$$

where h_n is the number of b's in the word $\varepsilon_0 \varepsilon_1 \cdots \varepsilon_n$ and we put $h_{-1} = 0$ by convention. Noting that $h_n = \lceil \alpha(n+1) \rceil$, we finally get $\mathscr{I} = \sum_{n=0}^{\infty} \lceil \alpha n \rceil \varepsilon_n / \beta^{n+1}$.

For almost every x in [0,1], the frequency of a in $d_{\beta}(x)$ is equal to

$$\mu_{\beta}(a) = \frac{\mathscr{I}}{F(\beta)} = \frac{1}{F(\beta)} \int_{a/\beta}^{(a+1)/\beta} \sum_{x < T_{\beta}^{n} 1} \frac{1}{\beta^{n}} dx.$$

The integration is derived as follows:

$$\mathscr{J} := \int_{a/\beta}^{(a+1)/\beta} \sum_{x < T_{\beta}^{n}} \frac{1}{\beta^{n}} \, \mathrm{d}x = \int_{a/\beta}^{(a+1)/\beta} \sum_{n=0}^{\infty} \frac{a_{n}(x)}{\beta^{n}} \, \mathrm{d}x$$
$$= \sum_{n=0}^{\infty} \frac{1}{\beta^{n}} \int_{a/\beta}^{(a+1)/\beta} a_{n}(x) \, \mathrm{d}x = \sum_{n=0}^{\infty} \frac{b_{n}}{\beta^{n}},$$

where

$$b_n = \begin{cases} 1/\beta & \text{if } (a+1)/\beta \leqslant T_{\beta}^n 1, \\ T_{\beta}^n 1 - a/\beta & \text{if } a/\beta \leqslant T_{\beta}^n 1 < (a+1)/\beta, \\ 0 & \text{if } T_{\beta}^n 1 < a/\beta. \end{cases}$$

Since only *a* and *b* appear in $d_{\beta}(1)$, the inequality $T_{\beta}^{n} 1 < a/\beta$ never occurs and $(a+1)/\beta \leq T_{\beta}^{n} 1$ is reduced to $\lfloor \beta \rfloor /\beta \leq T_{\beta}^{n} 1$. So the integration is expressed as

$$\mathscr{J} = \sum_{n \in J} \frac{1}{\beta^{n+1}} + \sum_{n \in K} \frac{1}{\beta^n} \left(T^n_\beta 1 - \frac{a}{\beta} \right) = \sum_{n \in J} \frac{1}{\beta^{n+1}} + \sum_{n \in K} \sum_{m=n+1}^{\infty} \frac{\varepsilon_m}{\beta^{m+1}}.$$

By changing the order of summation indices, we find

$$\mathscr{J} = \sum_{n \in J} \frac{1}{\beta^{n+1}} + \sum_{n=0}^{\infty} (n+1-h_n) \frac{\varepsilon_{n+1}}{\beta^{n+2}} = \sum_{n \in J} \frac{1}{\beta^{n+1}} + \sum_{n=0}^{\infty} (n-h_{n-1}) \frac{\varepsilon_n}{\beta^{n+1}}. \quad \Box$$

Theorem 3.4. If β is self-Sturmian, then $\overline{\{T_{\beta}^n\}}_{n\geq 0}$ is of Lebesgue measure zero.

Proof. We adopt the notations used in Lemma 3.1 above. For any x in $\overline{\{T_{\beta}^{n}1\}}_{n\geq 0}$, the infinite word $d_{\beta}(x)$ is Sturmian. The frequency of b in $d_{\beta}(x)$, therefore, has the value

 α , while the frequency of *a* has $1 - \alpha$. We will prove that at least one of these values is different from those given in Lemma 3.1.

At first we suppose a = 0. Then the integration is given by $\mathscr{I} = \sum_{n \in J} \lceil \alpha n \rceil b / \beta^{n+1}$. Similarly, one sees $\alpha F(\beta) = \sum_{n \in J} (\alpha n + \alpha) b / \beta^{n+1}$. It holds that $n \in J$ if and only if $\lceil \alpha n \rceil < \alpha n + \alpha$ because $\varepsilon_n = b(\lceil \alpha(n+1) \rceil - \lceil \alpha n \rceil)$. Whence $\mu_{\beta}(b) = \mathscr{I} / F(\beta) < \alpha$.

Next, we suppose $1 \le a < b$ and, in addition, $\lfloor \beta \rfloor \alpha > 1$. Noting the index set J contains 0, let k_0 be the smallest element of K. One sees

$$\alpha F(\beta) - \mathscr{I} = \sum_{n \in J} \frac{(\alpha n + \alpha) - \lceil \alpha n \rceil}{\beta^{n+1}} b - \sum_{n \in K} \frac{\lceil \alpha n \rceil - (\alpha n + \alpha)}{\beta^{n+1}} a.$$

We know that $(\alpha n + \alpha) > \lceil \alpha n \rceil$ if $n \in J$, and $\lceil \alpha n \rceil > (\alpha n + \alpha)$ if $n \in K$. The series can be bounded from below as

$$\begin{aligned} \alpha F(\beta) - \mathscr{I} > \sum_{n \in J} \frac{(\alpha n + \alpha) - \lceil \alpha n \rceil}{\beta^{n+1}} b - \sum_{n \in K} \frac{a}{\beta^{n+1}} = \left(\frac{\alpha}{\beta} b + \cdots\right) - \left(\frac{a}{\beta^{k_0 + 1}} + \cdots\right) \\ > \frac{1}{\beta} - \left(\frac{a}{\beta^{k_0 + 1}} + \cdots\right) > 0, \end{aligned}$$

because $\lfloor \beta \rfloor \alpha > 1$ and $k_0 \ge 1$. Hence we have $\mu_{\beta}(b) = \mathscr{I}/F(\beta) < \alpha$.

If $\lfloor \beta \rfloor \alpha < 1$, then $\alpha < 1/\lfloor \beta \rfloor \leq \frac{1}{2}$, which implies $k_0 = 1$. We observe

$$(1-\alpha)F(\beta) - \mathscr{J} = \sum_{n \in J} \frac{1+\lceil \alpha n \rceil - (\alpha n + \alpha)}{\beta^{n+1}} b + \sum_{n \in K} \frac{1+\lceil \alpha n \rceil - (\alpha n + \alpha)}{\beta^{n+1}} a$$
$$- \sum_{n \in J} \frac{1}{\beta^{n+1}}$$
$$= \left(\frac{1-\alpha}{\beta} b + \cdots\right) + \sum_{n \in K} \frac{1+\lceil \alpha n \rceil - (\alpha n + \alpha)}{\beta^{n+1}} a - \left(\frac{1}{\beta} + \cdots\right)$$

By the assumption, the inequality $(1 - \alpha)b > b - 1 \ge 1$ is true. Hence we have

$$(1-\alpha)F(\beta) - \mathscr{J} > \sum_{n \in K} \frac{1+|\alpha n| - (\alpha n + \alpha)}{\beta^{n+1}} a - \sum_{n \in J \setminus \{0\}} \frac{1}{\beta^{n+1}}$$
$$> \frac{1}{\beta^2} - \sum_{n \in J \setminus \{0\}} \frac{1}{\beta^{n+1}} > 0,$$

since the least integer in $J \setminus \{0\}$ is greater than or equal to 2 and if $n \in K$, then $1 + \lceil \alpha n \rceil - (\alpha n + \alpha) > 1$. We have proved $\mu_{\beta}(a) = \mathscr{J}/F(\beta) < 1 - \alpha$. \Box

4. Transcendence of self-Sturmian numbers

We know that β is an algebraic integer for every $\beta \in \mathscr{C}_2$. Then are there transcendental numbers in \mathscr{C}_3 , \mathscr{C}_4 , and \mathscr{C}_5 ? This was questioned by Blanchard [5]. From Schmeling's results, \mathscr{C}_5 is abundant in transcendental numbers. But a transcendental number

reported in \mathscr{C}_3 is, to the knowledge of the authors, only Komornik–Loreti constant $\delta = 1.787231650...$ This constant is the smallest number in (1,2), for which there is only one expansion of 1 as $1 = \sum_{n=1}^{\infty} \varepsilon_n \delta^{-n}$, $\varepsilon_n \in \{0,1\}$ [9]. Later it turned out to be transcendental [1,2]. This section contains the proof that all self-Sturmian numbers are transcendental. That enriches \mathscr{C}_3 with transcendental numbers of continuum cardinality. In fact, Sturmian words hitherto have given births to transcendental numbers in other manners, e.g. [8,3]. We need a classical result on transcendence.

Proposition 4.1. Let the function f be defined by

$$f(w,z) = \sum_{n=1}^{\infty} \lfloor nw \rfloor z^n,$$

where w is real and z is complex with |z| < 1. Then $f(\omega, \alpha)$ is transcendental if ω is irrational and α is a nonzero algebraic number with $|\alpha| < 1$.

Indeed Mahler [12] proved in 1929 the preceding result for quadratic irrational ω 's, and Loxton and van der Poorten [11] extended the case to arbitrary irrational ω 's. We are now in a position to state the main result of this section.

Theorem 4.1. Every self-Sturmian number is transcendental.

Proof. Since β is self-Sturmian, we have for some irrational $\alpha \in (0, 1)$,

$$1 - \frac{b-a}{\beta} = \sum_{n=0}^{\infty} \frac{(b-a)s_{\alpha,0}(n) + a}{\beta^{n+1}} = \sum_{n=0}^{\infty} \frac{(b-a)(\lfloor \alpha(n+1) \rfloor - \lfloor \alpha n \rfloor) + a}{\beta^{n+1}}$$
$$= (b-a)\sum_{n=0}^{\infty} \frac{\lfloor \alpha(n+1) \rfloor - \lfloor \alpha n \rfloor}{\beta^{n+1}} + \frac{a}{\beta - 1}.$$

Thus the following equality holds:

$$\sum_{n=0}^{\infty} \frac{\lfloor \alpha(n+1) \rfloor - \lfloor \alpha n \rfloor}{\beta^{n+1}} = \frac{1}{b-a} \left(1 - \frac{b-a}{\beta} - \frac{a}{\beta-1} \right).$$
(1)

On the other hand,

$$\sum_{n=0}^{\infty} \frac{\lfloor \alpha(n+1) \rfloor - \lfloor \alpha n \rfloor}{\beta^{n+1}} = \sum_{n=1}^{\infty} \frac{\lfloor \alpha n \rfloor}{\beta^n} - \frac{1}{\beta} \sum_{n=1}^{\infty} \frac{\lfloor \alpha n \rfloor}{\beta^n} = \left(1 - \frac{1}{\beta}\right) \sum_{n=1}^{\infty} \frac{\lfloor \alpha n \rfloor}{\beta^n}.$$

If β were algebraic, the left-hand side of Eq. (1) would be transcendental by Proposition 4.1 whereas the right one algebraic. \Box

Example. For $0 \le a < b$ let $f_0 = a$, $f_1 = ab$ and $f_{n+2} = f_{n+1}f_n$, $n \ge 0$. The Fibonacci word f, which is Sturmian, is defined by

We assume $d_{\beta}(1) = bf$. Then such $\beta \in (b, b+1)$ exists and is transcendental. Furthermore, diam $\{T_{\beta}^{n}1\}_{n\geq 0} = (b-a)/\beta$ and $\overline{\{T_{\beta}^{n}1\}}_{n\geq 0}$ is Lebesgue negligible.

Acknowledgements

The authors gratefully acknowledge the elaborate comments from the anonymous referee, which improve the readability of the paper.

References

- J.-P. Allouche, M. Cosnard, The Komornik–Loreti constant is transcendental, Amer. Math. Monthly 107 (2000) 448–449.
- [2] J.-P. Allouche, M. Cosnard, Non-integer bases, iteration of continuous real maps, and an arithmetic self-similar set, Acta Math. Hungar. 91 (2001) 325–332.
- [3] J.-P. Allouche, J.L. Davison, M. Queffélec, L.Q. Zamboni, Transcendence of Sturmian or morphic continued fractions, J. Number Theory 91 (2001) 39–66.
- [4] A. Bertrand-Mathis, Développement en base θ ; répartition modulo un de la suite $(x\theta^n)_{n \ge 0}$; langages codés et θ -shift, Bull. Soc. Math. France 114 (1986) 271–323.
- [5] F. Blanchard, β -expansions and symbolic dynamics, Theoret. Comput. Sci. 65 (1989) 131–141.
- [6] J.-P. Borel, F. Laubie, Quelques mots sur la droite projective réelle, J. Théor. Nombres Bordeaux 5 (1993) 23–51.
- [7] E.M. Coven, G.A. Hedlund, Sequences with minimal block growth, Math. Systems Theory 7 (1973) 138-153.
- [8] S. Ferenczi, C. Mauduit, Transcendence of numbers with a low complexity expansion, J. Number Theory 67 (1997) 146–161.
- [9] V. Komornik, P. Loreti, Unique developments in non-integer bases, Amer. Math. Monthly 105 (1998) 636–639.
- [10] M. Lothaire, Algebraic Combinatorics on Words, Cambridge University Press, Cambridge, 2002.
- [11] J.H. Loxton, A.J. van der Poorten, Arithmetic properties of certain functions in several variables III, Bull. Austral. Math. Soc. 16 (1977) 15–47.
- [12] K. Mahler, Arithmetische Eigenschaften der Lösungen einer Klasse von Funktionalgleichungen, Math. Ann. 101 (1929) 342–366.
- [13] F. Mignosi, Infinite words with linear subword complexity, Theoret. Comput. Sci. 65 (1989) 221-242.
- [14] M. Morse, G.A. Hedlund, Symbolic dynamics II, Sturmian trajectories, Amer. J. Math. 62 (1940) 1-42.
- [15] W. Parry, On the β -expansions of real numbers, Acta Math. Acad. Sci. Hungar. 11 (1960) 401–416.
- [16] J. Schmeling, Symbolic dynamics for β -shifts and self-normal numbers, Ergodic Theory Dynam. Systems 17 (1997) 675–694.