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Abstract

Consider the minimal �-shift containing the shift space generated by a given Sturmian word.
In this paper we characterize such � and investigate their combinatorial, dynamical and measure-
theoretical properties and prove that such � are transcendental numbers.
c© 2004 Elsevier B.V. All rights reserved.
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1. Introduction

A Sturmian word is an in6nite word s over a binary alphabet A, whose complexity
function satis6es P(s; n) = n + 1 for all n¿0, i.e., the number of factors of s with
length n is exactly n + 1. Sturmian words are aperiodic in6nite words with minimal
complexity [14,7].
Let �¿1 be a real number. We consider the �-transformation T� on [0; 1] de6ned by

T� : x �→ �xmod 1. Then the �-expansion of x∈ [0; 1], denoted by d�(x), is a sequence
of integers determined by the following rule:

d�(x) = (xi)i¿1 if and only if xi = ��T i−1
� (x)�;

where �t� is the largest integer not greater than t. The �-shift S� is the closure
of {d�(x)|x∈ [0; 1)} with respect to the topology of AN. In [15], Parry completely
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characterized S� in terms of d�(1) and the lexicographic order on AN. From Parry’s
result we note that the collection of all �-shifts is totally ordered. The main concern
of this article is about the minimal �-shift containing the shift space generated by a
Sturmian word.
We call �¿1 a (maximal) self-Sturmian number if d�(1) is a Sturmian word (and

�(d�(1)) = {��� − 1; ���}). We show that S� minimally contains the shift space
generated by some Sturmian word if and only if � is self-Sturmian. This gives a large
class of speci6ed �-transformations T� and moreover for a maximal self-Sturmian �, the
diameter of the closure of {Tn

�1}n¿0 is minimal in a certain sense. We also prove the
transcendence of such �. This is a partial answer to the question posed by Blanchard
[5].

2. Sturmian words and lexicographic order

Since P(s; 1)=2, Sturmian words are forced to be in6nite words over the alphabet
A= {0; 1} by renaming if necessary. Then the height h(x) of a word x is the number
of occurrences of 1 in x. We say a subset X of A∗ is balanced if for any x; y∈X;
|h(x)− h(y)|61 whenever x and y have the same lengths. An in6nite word s is also
called balanced if the factor set F(s) is balanced. In [7], Coven and Hedlund described
the balanced property in more detail.

Theorem 2.1. Suppose X ⊂A∗ and x∈X implies F(x)⊂X . Then X is unbalanced if
and only if there exists a palindrome word w such that both 0w0 and 1w1 lie in X.

For a real number t, �t� is the smallest integer not less than t, and {t} the fractional
part of t, i.e., t= �t�+{t}. Let �, � be two real numbers in [0; 1]. We now de6ne two
in6nite words over {0; 1}. Consider, for n¿0,

s�;�(n) = ��(n+ 1) + �� − ��n+ ��; s′�;�(n) = ��(n+ 1) + �� − ��n+ ��:

The in6nite words s�;�, s′�;� are termed lower and upper mechanical words, respectively,
with slope � and intercept �. If � is irrational, we see s�;0 = 0c�, s′�;0 = 1c� for some
in6nite word c�. Here the word c� is called the characteristic word of slope �. Morse
and Hedlund [14] proved two alternative characterizations of Sturmian words.

Theorem 2.2. For an in7nite word s, the following are equivalent.
• s is Sturmian.
• s is aperiodic and balanced.
• s is irrationally mechanical, i.e., the slope is irrational.

The following proposition prescribes factor sets of Sturmian words.

Proposition 2.1 (Mignosi [13]). For two Sturmian words s, t, if they have the same
slope, then F(s)=F(t). And F(s)∩F(t) is 7nite otherwise.
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We denote by � the shift map, and by O(s) its orbit closure of s. Since Sturmian
words are uniformly recurrent, O(s) is minimal if s is Sturmian.

Proposition 2.2. Let s be a Sturmian word with slope �. Then O(s) is the set of all
mechanical words of slope �.

The proof is a consequence of a lemma.

Lemma 2.1. For a 7xed irrational �∈ (0; 1), s�; � is continuous from the right and
s′�; � from the left as functions of �.

Proof. Let �¿0, s�; �0 , s
′
�; �0 be given. We choose an integer N¿0 such that 2−N ¡ �.

Put �1 = min{1−{�n+�0} | 06n6N+1}. Then 06�−�0¡�1=2 implies d(s�; �; s�; �0 )
¡�. For the upper mechanical word, we de6ne �2 by the minimum of nonzero fractions
{�n+ �0} for 06n6N + 1. Then 06�0 − �¡�2=2 implies d(s′�;�; s

′
�; �0 )¡�. If �0 = 0,

then we can assume �0 = 1.

Proof of Proposition 2.2. By the minimality of O(s) we may assume s= s′�;0 = 1c�.
Since � is irrational, �n is never an integer for nonzero n. Hence �n(s) = s�;{�n}= s′�;{�n}
holds for any n¿1. Given s�; � and s′�; � we can pick two increasing sequences of in-
tegers (pn)n¿0, (qn)n¿0 such that {�pn} ↘ � and {�qn} ↗ �. Then one 6nds

lim
n→∞ �pn(s) = s�;�; lim

n→∞ �qn(s) = s′�;�:

Conversely assume t ∈O(s). Then t is balanced since F(t)⊂F(s), and the minimality
implies the aperiodicity of t. t has the slope �. Otherwise F(s)∩F(t) would be 6nite
by Proposition 2.1. But every factor of t also occurs in s.

In the next section, what we need critically is the lexicographic order between Stur-
mian words. We have the following. For its proof, see [10].

Proposition 2.3. Suppose � ∈ (0; 1) is irrational and �; �′ ∈ [0; 1) are real. Then

s�;� ¡ s�;�′ if and only if � ¡ �′:

Corollary 2.3.1 (Borel and Laubie [6]). Let � be an irrational number in (0; 1). Then
0c�¡s�;�¡1c� for any 0¡�¡1. In particular we have for all n¿1,

1c� ¿ �n(1c�) and 0c� ¡ �n(0c�):

3. �-shifts and self-Sturmian numbers

Just as the number 1 dominates any number in [0; 1), so does d�(1) in S� with
respect to lexicographic order, which was shown by Parry [15]. Moreover, Parry also



398 D.P. Chi, D.Y. Kwon / Theoretical Computer Science 321 (2004) 395–404

determined the sequences that can be �-expansions of 1 for some �¿1. These se-
quences obey the next rule.

Theorem 3.1. A sequence s∈ {0; 1; : : : ; ���}N is a �-expansion of 1 for some � if and
only if �n(s)¡s for all n¿1. In this case, such a � is unique.

From now on we replace the alphabet A= {0; 1} by {a; b} for any a; b∈Z and
06a¡b. For a Sturmian word s over {a; b} with slope �, any t ∈O(s) lies be-
tween ac� and bc�, where c� is the characteristic word over {a; b}. We write this
as ac�6O(s)6bc�. This notation represents �-shift as 0∞6S�6d�(1). In both cases,
the two inequalities are best possible. By Theorem 3.1 and Corollary 2.3.1, there exists
a unique �¿1 such that d�(1)= bc�. From the fact that $¡% implies S$ ( S%, one
can deduce that S� is the minimal �-shift containing O(s). Moreover, the closure of
{�n(d�(1))}n¿0 is equal to O(s) and ac�, bc� are accumulation points by Proposition
2.2. We state these as a theorem. For an in6nite word x, �(x) is the set of letters
involved in x.

Theorem 3.2. Suppose s is Sturmian of slope � and �(s)= {a; b} with 06a¡b. If
S� is the smallest �-shift containing O(s), then {�n(d�(1))}n¿0 =O(s) and � is the
unique positive solution of 1=

∑∞
n=0 ((b − a)s′�;0(n) + a)=xn+1.

In [5], Blanchard classi6ed �-shifts into 6ve categories, and for each � contained in
some classes the morphology of d�(1) was totally understood by Parry and Bertrand-
Mathis [15,4]. The language theoretical terminology used in the next proposition is
referred to [5] or the bibliography therein.

Proposition 3.1. For �¿1, the following equivalences hold.
• �∈C1: S� is a shift of 7nite type if and only if d�(1) is 7nite.
• �∈C2: S� is so7c if and only if d�(1) is ultimately periodic.
• �∈C3: S� is speci7ed if and only if there exists n∈N such that the number of

consecutive 0’s in d�(1) is less than n.
• �∈C4: S� is synchronizing if and only if some word of F(S�) does not appear in

d�(1).
• �∈C5: S� has none of the above properties if and only if all words of F(S�) appear

at least once in d�(1).

One sees immediately the inclusions:

∅ �= C1 ⊂ C2 ⊂ C3 ⊂ C4 ⊂ (1;∞); C5 = (1;∞)\C4:

On the other hand, Schmeling [16] determined each size of the classes.

Proposition 3.2. C3 has Hausdor< dimension 1 and C5 has full Lebesgue measure.

Now we concentrate on a special class of real numbers that is contained in C3.



D.P. Chi, D.Y. Kwon / Theoretical Computer Science 321 (2004) 395–404 399

De#nition. Let �¿1. We call � a self-Sturmian number if d�(1) is a Sturmian word
over a binary alphabet A= {a; b}, 06a¡b= ���. In particular, � is maximally self-
Sturmian if it is self-Sturmian and �(d�(1))= {��� − 1; ���}.

Remark. Not every Sturmian word is equal to d�(1) for some �¿1. In such cases,
d�(1)= bc� and �(c�)= {a; b} for some irrational � and integers 06a¡b.

De#nition. diam : (1;∞)→ [0; 1] is the function that maps � to the diameter of T�-orbit
of 1, i.e., diam(�) := diam{Tn

�1}n¿0 = sup{|x − y| : x; y∈ {Tn
�1}n¿0}.

One can note that if �∈C1 or �∈ (1;∞)\C3, then diam(�)= 1 since both 0 and 1
lie in the closure of {Tn

�1}n¿0. We get from the de6nitions,

Proposition 3.3. Suppose � is self-Sturmian and �(d�(1))= {a; b} with 0 6 a¡b=
���. Then �∈C3\C2 and diam(�)= (b − a)=�.

Maximal self-Sturmian numbers are distinguished from the dynamical point of view.

Theorem 3.3. �¿1 is maximally self-Sturmian if and only if � =∈C2 and 1− 1=� 6
Tn
�161 for any n¿0.

Proof. We prove the suLciency. The hypothesis implies that d�(1) is aperiodic and
�(d�(1))= {��� − 1; ���}. Put a = ��� − 1 and b= ���. If d�(1) is unbalanced, then
Theorem 2.1 guarantees the existence of a palindrome word w such that both awa, bwb
are factors of d�(1). For d�(1)= bd1d2 : : : ; one sees d�(1− 1=�)= ad1d2 : : : : We get

ad1 · · ·dndn+1 6 awa ¡ bwb6 bd1 · · ·dndn+1;

where n is the length of w. This yields a contradiction. Hence d�(1) is a Sturmian
word of some slope � and it dominates all its shifts, and therefore d�(1) = bc�.

The diameter of a maximal self-Sturmian number is minimal in the following sense.

Corollary 3.3.1. For any �¿1, either �∈C2 or diam(�)¿1=�.

Proposition 3.2 shows the set of self-Sturmian numbers is of Lebesgue measure zero.
Then what about the size of {Tn

�1}n¿0 for a 6xed self-Sturmian number �? The last
paragraph of this section is devoted to showing {Tn

�1}n¿0 has Lebesgue measure zero,
whereas the orbit closure of an irrational rotation has full Lebesgue measure even
though Theorem 3.2 indicates that two orbit closures in full shift coincide.
A �-transformation T� has an invariant ergodic measure &� whose Radon–Nikodym

derivative with respect to Lebesgue measure is given by

h�(x) =
1

F(�)

∑
x¡Tn

� 1

1
�n ; x ∈ [0; 1]:
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Here F(�) is the normalizing factor. Suppose d�(1)= �0�1 : : : : Parry noted that

F(�) =
∫ 1

0

∑
x¡Tn

� 1

1
�n dx =

∫ 1

0

( ∞∑
n=0

an(x)
�n

)
dx =

∞∑
n=0

Tn
�1

�n =
∞∑
n=0

(n+ 1)�n
�n+1 ;

where

an(x) =
{
1 if x ¡ Tn

�1;
0 otherwise:

The frequency of ��� in d�(x) is, if the limit exists, given by

lim
n→∞

1
n

n−1∑
i=0

'(T i
�(x));

where ' is the characteristic function of [���=�; 1]. Owing to BirkhoN Ergodic Theorem,
we can say more. For almost all x in [0; 1], the frequency of ��� in d�(x) equals

(�(���) := 1
F(�)

∫ 1

��	=�

∑
x¡Tn

� 1

1
�n dx:

A similar reasoning also applies to the frequency of the other digit.

Lemma 3.1. If � is self-Sturmian and �(d�(1))= {a; b} with 06a¡b= ���, then for
almost every x in [0; 1], the frequency of b in d�(x) is equal to

(�(b) =
I

F(�)
=

1
F(�)

∞∑
n=0

��n� �n
�n+1 ;

and the frequency of a in d�(x) is equal to

(�(a) =
J

F(�)
=

1
F(�)

(∑
n∈J

1
�n+1 +

∞∑
n=0

(n − ��n�) �n
�n+1

)
;

where d�(1)= �0�1�2 : : : and J = {n¿0 | �n= b}, K = {n¿0|�n= a}.

Proof. Let � be a number such that d�(1)= bc�= �0�1�2 : : : ; where c� is the char-
acteristic word of slope � over the alphabet {a; b}. First we compute the following
integral:

I :=
∫ 1

��	=�

∑
x¡Tn

� 1

1
�n dx =

∫ 1

��	=�

∞∑
n=0

an(x)
�n dx

=
∞∑
n=0

1
�n

∫ 1

��	=�
an(x) dx =

∞∑
n=0

bn
�n ;
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where

bn =
{
Tn
�1− ���=� if ���=�6 Tn

�1;
0 otherwise:

Since ���=�6Tn
�1 is equivalent to �n= b, it follows from Fubini Theorem that

I =
∑
n∈J

1
�n

(
Tn
�1− ���

�

)
=
∑
n∈J

∞∑
m=n+1

�m
�m+1 =

∞∑
n=0

hn
�n+1
�n+2 =

∞∑
n=0

hn−1
�n

�n+1 ;

where hn is the number of b’s in the word �0�1 · · · �n and we put h−1 = 0 by convention.
Noting that hn= ��(n+ 1)�, we 6nally get I= ∑∞

n=0��n��n=�n+1.
For almost every x in [0; 1], the frequency of a in d�(x) is equal to

(�(a) =
J

F(�)
=

1
F(�)

∫ (a+1)=�

a=�

∑
x¡Tn

� 1

1
�n dx:

The integration is derived as follows:

J :=
∫ (a+1)=�

a=�

∑
x¡Tn

� 1

1
�n dx =

∫ (a+1)=�

a=�

∞∑
n=0

an(x)
�n dx

=
∞∑
n=0

1
�n

∫ (a+1)=�

a=�
an(x) dx =

∞∑
n=0

bn
�n ;

where

bn =



1=� if (a+ 1)=�6 Tn

�1;
T n
�1− a=� if a=�6 Tn

�1¡ (a+ 1)=�;
0 if Tn

�1¡ a=�:

Since only a and b appear in d�(1), the inequality Tn
�1¡a=� never occurs and

(a+ 1)=�6Tn
�1 is reduced to ���=�6Tn

�1. So the integration is expressed as

J =
∑
n∈J

1
�n+1 +

∑
n∈K

1
�n

(
Tn
�1− a

�

)
=
∑
n∈J

1
�n+1 +

∑
n∈K

∞∑
m=n+1

�m
�m+1 :

By changing the order of summation indices, we 6nd

J =
∑
n∈J

1
�n+1 +

∞∑
n=0

(n+ 1− hn)
�n+1
�n+2 =

∑
n∈J

1
�n+1 +

∞∑
n=0

(n − hn−1)
�n

�n+1 :

Theorem 3.4. If � is self-Sturmian, then {Tn
�1}n¿0 is of Lebesgue measure zero.

Proof. We adopt the notations used in Lemma 3.1 above. For any x in {Tn
�1}n¿0, the

in6nite word d�(x) is Sturmian. The frequency of b in d�(x), therefore, has the value
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�, while the frequency of a has 1− �. We will prove that at least one of these values
is diNerent from those given in Lemma 3.1.
At 6rst we suppose a=0. Then the integration is given by I=

∑
n∈J ��n�b=�n+1.

Similarly, one sees �F(�)=
∑

n∈J (�n + �)b=�n+1. It holds that n∈ J if and only if
��n�¡�n+ � because �n= b(��(n+ 1)� − ��n�). Whence (�(b)=I=F(�)¡ �.
Next, we suppose 16a¡b and, in addition, ����¿1. Noting the index set J contains

0, let k0 be the smallest element of K . One sees

�F(�)− I =
∑
n∈J

(�n+ �)− ��n�
�n+1 b −

∑
n∈K

��n� − (�n+ �)
�n+1 a:

We know that (�n + �)¿��n� if n∈ J , and ��n�¿(�n + �) if n∈K . The series can
be bounded from below as

�F(�)−I¿
∑
n∈J

(�n+ �)−��n�
�n+1 b−

∑
n∈K

a
�n+1=

(
�
�
b+ · · ·

)
−
(

a
�k0+1

+ · · ·
)

¿
1
�

−
(

a
�k0+1

+ · · ·
)

¿ 0;

because ����¿1 and k0¿1. Hence we have (�(b) = I=F(�)¡�.
If ����¡1, then �¡1=���6 1

2 , which implies k0 = 1. We observe

(1− �)F(�)− J=
∑
n∈J

1 + ��n� − (�n+ �)
�n+1 b+

∑
n∈K

1 + ��n� − (�n+ �)
�n+1 a

−
∑
n∈J

1
�n+1

=
(
1− �
�

b+ · · ·
)
+
∑
n∈K

1 + ��n�−(�n+ �)
�n+1 a−

(
1
�
+ · · ·

)
:

By the assumption, the inequality (1− �)b¿b − 1¿ 1 is true. Hence we have

(1− �)F(�)− J¿
∑
n∈K

1 + ��n� − (�n+ �)
�n+1 a −

∑
n∈J\{0}

1
�n+1

¿
1
�2

−
∑

n∈J\{0}

1
�n+1 ¿ 0;

since the least integer in J\{0} is greater than or equal to 2 and if n∈K , then 1 +
��n� − (�n+ �)¿1. We have proved (�(a) = J=F(�)¡1− �.

4. Transcendence of self-Sturmian numbers

We know that � is an algebraic integer for every �∈C2. Then are there transcenden-
tal numbers in C3, C4, and C5? This was questioned by Blanchard [5]. From Schmel-
ing’s results, C5 is abundant in transcendental numbers. But a transcendental number
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reported in C3 is, to the knowledge of the authors, only Komornik–Loreti constant
�=1:787231650 : : : : This constant is the smallest number in (1; 2), for which there is
only one expansion of 1 as 1=

∑∞
n=1 �n�

−n, �n ∈ {0; 1} [9]. Later it turned out to be
transcendental [1,2]. This section contains the proof that all self-Sturmian numbers are
transcendental. That enriches C3 with transcendental numbers of continuum cardinality.
In fact, Sturmian words hitherto have given births to transcendental numbers in other
manners, e.g. [8,3]. We need a classical result on transcendence.

Proposition 4.1. Let the function f be de7ned by

f(w; z) =
∞∑
n=1

�nw�zn;

where w is real and z is complex with |z| ¡ 1. Then f(!; �) is transcendental if !
is irrational and � is a nonzero algebraic number with |�|¡1.

Indeed Mahler [12] proved in 1929 the preceding result for quadratic irrational !’s,
and Loxton and van der Poorten [11] extended the case to arbitrary irrational !’s. We
are now in a position to state the main result of this section.

Theorem 4.1. Every self-Sturmian number is transcendental.

Proof. Since � is self-Sturmian, we have for some irrational �∈ (0; 1),

1− b − a
�

=
∞∑
n=0

(b − a)s�;0(n) + a
�n+1 =

∞∑
n=0

(b − a)(��(n+ 1)� − ��n�) + a
�n+1

= (b − a)
∞∑
n=0

��(n+ 1)� − ��n�
�n+1 +

a
� − 1

:

Thus the following equality holds:
∞∑
n=0

��(n+ 1)� − ��n�
�n+1 =

1
b − a

(
1− b − a

�
− a

� − 1

)
: (1)

On the other hand,
∞∑
n=0

��(n+ 1)� − ��n�
�n+1 =

∞∑
n=1

��n�
�n − 1

�

∞∑
n=1

��n�
�n =

(
1− 1

�

) ∞∑
n=1

��n�
�n :

If � were algebraic, the left-hand side of Eq. (1) would be transcendental by Proposition
4.1 whereas the right one algebraic.

Example. For 0 6 a ¡ b let f0 = a, f1 = ab and fn+2 = fn+1fn, n ¿ 0. The
Fibonacci word f, which is Sturmian, is de6ned by

f = lim
n→∞ fn = abaababaabaababaababaabaababaabaab · · · :
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We assume d�(1)= bf. Then such �∈ (b; b+1) exists and is transcendental. Further-
more, diam{Tn

�1}n¿0 = (b − a)=� and {Tn
�1}n¿0 is Lebesgue negligible.
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