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Abstract

Consider the minimal fS-shift containing the shift space generated by a given Sturmian word.
In this paper we characterize such f§ and investigate their combinatorial, dynamical and measure-
theoretical properties and prove that such f are transcendental numbers.
© 2004 Elsevier B.V. All rights reserved.
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1. Introduction

A Sturmian word is an infinite word s over a binary alphabet 4, whose complexity
function satisfies P(s,n) = n+ 1 for all n>0, i.e., the number of factors of s with
length n is exactly n + 1. Sturmian words are aperiodic infinite words with minimal
complexity [14,7].

Let f>1 be a real number. We consider the f-transformation 7 on [0, 1] defined by
Tp:x+> Pxmod 1. Then the S-expansion of x € [0, 1], denoted by dg(x), is a sequence
of integers determined by the following rule:

dp(x) = (x;)i>1 if and only if x; =[BT}~ (x)],

where [¢] is the largest integer not greater than r. The f-shift Sp is the closure
of {dp(x)[x€[0,1)} with respect to the topology of AN. In [15], Parry completely
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characterized S in terms of dy(1) and the lexicographic order on 4. From Parry’s
result we note that the collection of all f-shifts is totally ordered. The main concern
of this article is about the minimal fS-shift containing the shift space generated by a
Sturmian word.

We call f>1 a (maximal) self-Sturmian number if dg(1) is a Sturmian word (and
a(dp(l)) = {|B] — 1,[B]}). We show that Sy minimally contains the shift space
generated by some Sturmian word if and only if f§ is self-Sturmian. This gives a large
class of specified f-transformations 7 and moreover for a maximal self-Sturmian f, the
diameter of the closure of {7}1},50 is minimal in a certain sense. We also prove the
transcendence of such . This is a partial answer to the question posed by Blanchard

[3].

2. Sturmian words and lexicographic order

Since P(s,1)=2, Sturmian words are forced to be infinite words over the alphabet
A=1{0,1} by renaming if necessary. Then the height h(x) of a word x is the number
of occurrences of 1 in x. We say a subset X of 4* is balanced if for any x,y € X,
|A(x) — h(y)| <1 whenever x and y have the same lengths. An infinite word s is also
called balanced if the factor set F(s) is balanced. In [7], Coven and Hedlund described
the balanced property in more detail.

Theorem 2.1. Suppose X C A* and x € X implies F(x) CX. Then X is unbalanced if
and only if there exists a palindrome word w such that both Ow0 and 1wl lie in X.

For a real number ¢, [7] is the smallest integer not less than ¢, and {¢} the fractional
part of ¢, i.e., t=[t] +{¢}. Let o, p be two real numbers in [0, 1]. We now define two
infinite words over {0, 1}. Consider, for n>0,

Sup(n) = a(n + 1)+ p| — [an + p], 5, ,(n) = [a(n + 1)+ p| — [an + p].

The infinite words s, s, , are termed lower and upper mechanical words, respectively,
with slope o and intercept p. If o is irrational, we see s, 0=0c,, S;,o = 1¢, for some
infinite word ¢,. Here the word ¢, is called the characteristic word of slope o. Morse
and Hedlund [14] proved two alternative characterizations of Sturmian words.

Theorem 2.2. For an infinite word s, the following are equivalent.
e s is Sturmian.

e s is aperiodic and balanced.

e s is irrationally mechanical, i.e., the slope is irrational.

The following proposition prescribes factor sets of Sturmian words.

Proposition 2.1 (Mignosi [13]). For two Sturmian words s, t, if they have the same
slope, then F(s)=F(t). And F(s)NF(t) is finite otherwise.
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We denote by o the shift map, and by ((s) its orbit closure of s. Since Sturmian
words are uniformly recurrent, ¢(s) is minimal if s is Sturmian.

Proposition 2.2. Let s be a Sturmian word with slope o. Then O(s) is the set of all
mechanical words of slope o.

The proof is a consequence of a lemma.

Lemma 2.1. For a fixed irrational ac(0,1), 5o, is continuous from the right and
Sy, Jrom the left as functions of p.

Proof. Let >0, s, 4, s;_,pn be given. We choose an integer N >0 such that 2N <&
Put 6; = min{1 —{on+po} |0<n<N+1}. Then 0<p—py<9;/2 implies d(s,, p, 55 p,)
<e. For the upper mechanical word, we define J, by the minimum of nonzero fractions
{on+ po} for 0<Sn<N + 1. Then 0< pg — p <9/2 implies d(s7, s, ,,) <e. If po=0,
then we can assume po=1. [J

Proof of Proposition 2.2. By the minimality of (/(s) we may assume s=s,0=lcy
Since o is irrational, an is never an integer for nonzero n. Hence 6" (s) = 55, {51} :s;’ (o}
holds for any n>1. Given s, , and s, , we can pick two increasing sequences of in-
tegers (Pn)n>0> (gn)n=0 such that {ap,} \ p and {ag,} 7 p. Then one finds

lim o”(s) =s,,, lim o”(s) =s,
n—o00 ’

n—o00 P

Conversely assume ¢ € ((s). Then ¢ is balanced since F(¢) C F(s), and the minimality
implies the aperiodicity of ¢. ¢ has the slope a. Otherwise F(s)NF(¢) would be finite
by Proposition 2.1. But every factor of ¢ also occurs in s. [

In the next section, what we need critically is the lexicographic order between Stur-
mian words. We have the following. For its proof, see [10].

Proposition 2.3. Suppose o € (0,1) is irrational and p,p’ €[0,1) are real. Then
Sup < Sup if and only if p < p'.

Corollary 2.3.1 (Borel and Laubie [6]). Let o be an irrational number in (0,1). Then
0cy <84, <lcy for any 0<p<1. In particular we have for all n>1,

le, > d"(ley) and Ocy < 0"(0cy).

3. p-shifts and self-Sturmian numbers

Just as the number 1 dominates any number in [0,1), so does dpg(1) in Sz with
respect to lexicographic order, which was shown by Parry [15]. Moreover, Parry also
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determined the sequences that can be [-expansions of 1 for some [f>1. These se-
quences obey the next rule.

Theorem 3.1. A sequence s€{0,1,...,|B]}N is a B-expansion of 1 for some B if and
only if "(s)<s for all n=1. In this case, such a p is unique.

From now on we replace the alphabet 4={0,1} by {a,b} for any a,b€Z and
0<a<bh. For a Sturmian word s over {a,b} with slope «, any ¢€ ((s) lies be-
tween ac, and bc,, where ¢, is the characteristic word over {a,b}. We write this
as ac, < (O(s)<bc,. This notation represents fS-shift as 0> <Sp<dp(l). In both cases,
the two inequalities are best possible. By Theorem 3.1 and Corollary 2.3.1, there exists
a unique f>1 such that dg(1)=bc,. From the fact that y<0 implies S, CSp, one
can deduce that Sg is the minimal S-shift containing (O(s). Moreover, the closure of
{a"(dp(1))}n>0 is equal to (O(s) and ac,, bc, are accumulation points by Proposition
2.2. We state these as a theorem. For an infinite word x, o(x) is the set of letters
involved in x.

Theorem 3.2. Suppose s is Sturmian of slope o _and o(s)={a,b} with 0<a<b. If
Sp is the smallest B-shift containing ((s), then {a"(dg(1))},.,=(s) and B is the
unique positive solution of 1="3_"((b— a)s, o(n) + a)/x"*'.

In [5], Blanchard classified f-shifts into five categories, and for each f contained in
some classes the morphology of dg(1) was totally understood by Parry and Bertrand-
Mathis [15,4]. The language theoretical terminology used in the next proposition is
referred to [5] or the bibliography therein.

Proposition 3.1. For > 1, the following equivalences hold.

o fc%:: Sy is a shift of finite type if and only if dg(1) is finite.

o fc %, Sp is sofic if and only if dp(1) is ultimately periodic.

o fc b3 Sy is specified if and only if there exists n€ N such that the number of
consecutive 0’s in dpg(1) is less than n.

o B €@y Sp is synchronizing if and only if some word of F(Spg) does not appear in
dp(1).

o fc%s: Sg has none of the above properties if and only if all words of F(Sg) appear
at least once in dg(1).

One sees immediately the inclusions:
0£E CC C¥ Cb C(l,00), €5=(1,00)\bs.
On the other hand, Schmeling [16] determined each size of the classes.
Proposition 3.2. 45 has Hausdorff dimension 1 and €s has full Lebesgue measure.

Now we concentrate on a special class of real numbers that is contained in %7.



D.P. Chi, D.Y. Kwon/ Theoretical Computer Science 321 (2004) 395-404 399

Definition. Let f>1. We call f a self-Sturmian number if dg(1) is a Sturmian word
over a binary alphabet 4={a,b}, 0<a<b=|f]. In particular, § is maximally self-
Sturmian if it is self-Sturmian and a(dg(1))={[p] — 1, |f]}.

Remark. Not every Sturmian word is equal to dg(1) for some f>1. In such cases,
dg(1)=bc, and a(c,)={a,b} for some irrational « and integers 0 <a <b.

Definition. diam: (1,00) — [0, 1] is the function that maps f to the diameter of Tj-orbit
of 1, ie., diam(f):=diam{T1},>0= sup{|x — y|:x, y € {T§1},>0}.

One can note that if €%, or € (1,00)\3, then diam(ff)=1 since both 0 and 1
lie in the closure of {71},>. We get from the definitions,

Proposition 3.3. Suppose f is self-Sturmian and a(dp(1))={a,b} with 0 < a<b=
[f]. Then f € €3\%, and diam(f)=(b — a)/p.

Maximal self-Sturmian numbers are distinguished from the dynamical point of view.

Theorem 3.3. f>1 is maximally self-Sturmian if and only if f& €, and 1 — 1/ <
Tl’}’lglfor any n=0.

Proof. We prove the sufficiency. The hypothesis implies that dg(1) is aperiodic and
a(dp(1))={[p] — 1,|B]}. Put a= ] —1 and b=|f]. If dg(1) is unbalanced, then
Theorem 2.1 guarantees the existence of a palindrome word w such that both awa, bwb
are factors of dg(1). For dg(1)=bdd; ..., one sees dg(1 — 1/p)=add,.... We get

ady---dyd,1 < awa < bwb < bdy---d,d 1,

where n is the length of w. This yields a contradiction. Hence dg(1) is a Sturmian
word of some slope o and it dominates all its shifts, and therefore dg(1) = bc,. [

The diameter of a maximal self-Sturmian number is minimal in the following sense.
Corollary 3.3.1. For any p>1, either €%, or diam(f)=>1/f.

Proposition 3.2 shows the set of self-Sturmian numbers is of Lebesgue measure zero.
Then what about the size of {7j1} _ ~for a fixed self-Sturmian number f? The last

paragraph of this section is devoted to showmg {T ”1} has Lebesgue measure zero,
whereas the orbit closure of an irrational rotation has full Lebesgue measure even
though Theorem 3.2 indicates that two orbit closures in full shift coincide.

A f-transformation 7 has an invariant ergodic measure vg whose Radon-Nikodym
derivative with respect to Lebesgue measure is given by

hg(x) = F(ﬁ) > ﬁn x e [0,1].

A<T”
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Here F(f) is the normalizing factor. Suppose dg(1)=epé; .... Parry noted that

'S an(x) — Tl (n+ 1z,
F(ﬁ) / Z ﬁn _/O (Z ﬂn ) Z ﬁn+l 5

x< T”l n=0

where

1if x < T{1
= B>
() { 0 otherwise.

The frequency of |f] in dp(x) is, if the limit exists, given by

‘ 1 n—1 .
Jim Zoj HT})).
where y is the characteristic function of [|$]/f, 1]. Owing to Birkhoff Ergodic Theorem,
we can say more. For almost all x in [0, 1], the frequency of |f] in dp(x) equals

dx

up([B]) : I

F(ﬁ) /Lﬁj/ﬂ

x<T”1

A similar reasoning also applies to the frequency of the other digit.

Lemma 3.1. If § is self-Sturmian and o(dp(1))={a,b} with 0<a<b=|f], then for
almost every x in [0,1], the frequency of b in dp(x) is equal to

j ¢]
(b = 577 = s j 2o 15

and the frequency of a in dg(x) is equal to

5 1 1 - &n
W= E @ T F R <ZJ T 20 WDW) ’
where dp(1)=¢eoe16,... and J ={n>0|¢, =b}, K={n>0ls, =a}.

Proof. Let o be a number such that dp(1l)=bc, =¢&pe1& ..., where ¢, is the char-
acteristic word of slope o over the alphabet {a,b}. First we compute the following

integral:
/ L4 //f

=/
LBI/B
1

=1
— _ () dx =
nz:% p /Lﬂj/ﬁa 0 Z B

[e )

an(x) dx

x<T”l
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where
o [T BB it BB < T,
" 0 otherwise.
Since |f]/p<T 5l is equivalent to ¢, =b, it follows from Fubini Theorem that
SR E S S S S S
- g\ P g ) Bt " n—1 prl
neJ neJ m=n+1 n=0 n=0

where 4, is the number of b’s in the word &¢; - - - ¢, and we put #_; =0 by convention.
Noting that 4, = [a(n + 1)], we finally get & = > [on]e,/p .
For almost every x in [0, 1], the frequency of a in dg(x) is equal to

7 1 /(a+1)/lf 1
np(a) = oo = = > dv
EB)  FB) J ap <7 p
The integration is derived as follows:

(a+1)/B Z 1 (a+1)/B i an(x)
= / — dx = / dx
a7 B ap = P

=0

>~ 1 /(a+1)//3 e b,
= “on a (x)dx = o’
; ﬁ alf ! ; ﬂ
where
1/p if (a+1)/p < Ty,
b, = T,’}l—a/ﬂ if a/ﬂST/g’l < (a+ 1)/B,
0 if T[;’l < a/f.

Since only a and b appear in dg(l), the inequality T 5 1<a/f never occurs and
(a+1)/B<Ty1 is reduced to |B|/B<Tj1. So the integration is expressed as

1 1/, I~
I it T g (-5) -t T ¥ e

neJ nek neJ nekK m=n+1

By changing the order of summation indices, we find

s=> #+Z(n+lfhn)%:z ﬁ+2(nfhn_l)%. O
n=0 n=0

neJ neJ

Theorem 3.4. If  is self-Sturmian, then {Tl’}l}n>0 is of Lebesgue measure zero.

Proof. We adopt the notations used in Lemma 3.1 above. For any x in {7 [’gl}n>0, the
infinite word dp(x) is Sturmian. The frequency of b in dp(x), therefore, has the value
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o, while the frequency of a has 1 —a. We will prove that at least one of these values
is different from those given in Lemma 3.1.

At first we suppose a=0. Then the integration is given by .# = >, _; [an]b/p"".
Similarly, one sees aF(f)= ), ., (an + )b/, It holds that n€J if and only if
[on] <om + o because &, =b([a(n+ 1)] — [an]). Whence ug(b)=7/F(f) < a.

Next, we suppose | <a<b and, in addition, ||« > 1. Noting the index set J contains
0, let ky be the smallest element of K. One sees

R M Y

We know that (on + a)>[on] if n€J, and [on]|>(on + a) if n€ K. The series can
be bounded from below as

‘ (on 4+ o)— a
o (f)—S > Z ﬁn+l Z Bl ( ) - (ﬁknﬂ T )
neJ nek
1 a
TB (ﬁk"“ *) -
because |f|a>1 and ko> 1. Hence we have up(b) = J/F(p)<o.
If |BJo<1, then o<1/ B] <3, which implies ko= 1. We observe

(I—W)F(ﬁ)—fzz 1+focn1_(fxn+oc)b Z 1+ [on] —(ozn—i—:x)

neJ nekK

e ﬁnH = ﬁn+l
o % ﬁn+l
1 - 1+ [on]—(an + o) |
( B ”')*Z prl (ﬁ+>

nek

By the assumption, the inequality (1 — «)b>b—1 > 1 is true. Hence we have
L+ [on] — (on + oc)

R Y )

nek neJ\{0}

ﬁ Z ﬂn+1 ’

neJ\{0}

ﬁn+l

since the least integer in J\{0} is greater than or equal to 2 and if n€K, then 1 +
[an] — (on + o)>1. We have proved ug(a) = #/F(f)<1—o. [

4. Transcendence of self-Sturmian numbers

We know that f§ is an algebraic integer for every f§ € %,. Then are there transcenden-
tal numbers in %3, 4, and ¥5s? This was questioned by Blanchard [5]. From Schmel-
ing’s results, @5 is abundant in transcendental numbers. But a transcendental number
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reported in % is, to the knowledge of the authors, only Komornik—Loreti constant
0=1.787231650.... This constant is the smallest number in (1,2), for which there is
only one expansion of 1 as 1= "7 ¢,067", ¢ €{0,1} [9]. Later it turned out to be
transcendental [1,2]. This section contains the proof that all self-Sturmian numbers are
transcendental. That enriches %3 with transcendental numbers of continuum cardinality.
In fact, Sturmian words hitherto have given births to transcendental numbers in other

manners, e.g. [8,3]. We need a classical result on transcendence.

Proposition 4.1. Let the function f be defined by

oo

fw,z) =" [nw]z",

n=1

where w is real and z is complex with |z| < 1. Then f(w,a) is transcendental if
is irrational and o is a nonzero algebraic number with |o| <1.

Indeed Mahler [12] proved in 1929 the preceding result for quadratic irrational ’s,
and Loxton and van der Poorten [11] extended the case to arbitrary irrational m’s. We
are now in a position to state the main result of this section.

Theorem 4.1. Every self-Sturmian number is transcendental.

Proof. Since f is self-Sturmian, we have for some irrational o € (0, 1),

(b —a)syo(n) +a (b—a)|on+1)| — |on])+a
‘3 . Z

n=0 B’H_l BH-H
lo(n+ 1) — L n| a
) Z BnJrl + ﬁ -1
Thus the following equality holds:
L la(n+1)] — |on] | b—a a
o (-5 ) W

n=0
On the other hand,

ita(HﬁIn)H o] _ 5~ L] ” ﬂi i _( >Z 1],

n=0 n=1 n=1 n=1

If p were algebraic, the left-hand side of Eq. (1) would be transcendental by Proposition
4.1 whereas the right one algebraic. [

Example. For 0 < a < b let fo =a, f1 = ab and f,12 = fur1fn, n = 0. The

Fibonacci word f, which is Sturmian, is defined by

f = lim f, = abaababaabaababaababaabaababaabaab - - - .

n— o0
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We assume dg(1)=>bf. Then such f € (b,b+ 1) exists and is transcendental. Further-
more, diam{7§1},>0=(b — a)/p and {T/’gl}n>0 is Lebesgue negligible.
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