Note

Sturmian words, β-shifts, and transcendence

Dong Pyo Chia ${ }^{\text {a, }}$, DoYong Kwon ${ }^{\mathrm{b}, *, 2}$
${ }^{\text {a }}$ School of Mathematical Sciences, Seoul National University, Seoul 151-747, Republic of Korea
${ }^{\mathrm{b}}$ School of Computational Sciences, Korea Institute for Advanced Study, Seoul 130-722, Republic of Korea

Received 25 November 2003; received in revised form 25 February 2004; accepted 11 March 2004
Communicated by D. Perrin

Abstract

Consider the minimal β-shift containing the shift space generated by a given Sturmian word. In this paper we characterize such β and investigate their combinatorial, dynamical and measuretheoretical properties and prove that such β are transcendental numbers.

(c) 2004 Elsevier B.V. All rights reserved.

Keywords: Sturmian word; β-shift; Self-Sturmian number

1. Introduction

A Sturmian word is an infinite word s over a binary alphabet A, whose complexity function satisfies $P(s, n)=n+1$ for all $n \geqslant 0$, i.e., the number of factors of s with length n is exactly $n+1$. Sturmian words are aperiodic infinite words with minimal complexity [14,7].
Let $\beta>1$ be a real number. We consider the β-transformation T_{β} on $[0,1]$ defined by $T_{\beta}: x \mapsto \beta x \bmod 1$. Then the β-expansion of $x \in[0,1]$, denoted by $d_{\beta}(x)$, is a sequence of integers determined by the following rule:

$$
d_{\beta}(x)=\left(x_{i}\right)_{i \geqslant 1} \text { if and only if } x_{i}=\left\lfloor\beta T_{\beta}^{i-1}(x)\right\rfloor \text {, }
$$

where $\lfloor t\rfloor$ is the largest integer not greater than t. The β-shift S_{β} is the closure of $\left\{d_{\beta}(x) \mid x \in[0,1)\right\}$ with respect to the topology of $A^{\mathbb{N}}$. In [15], Parry completely

[^0]characterized S_{β} in terms of $d_{\beta}(1)$ and the lexicographic order on $A^{\mathbb{N}}$. From Parry's result we note that the collection of all β-shifts is totally ordered. The main concern of this article is about the minimal β-shift containing the shift space generated by a Sturmian word.

We call $\beta>1$ a (maximal) self-Sturmian number if $d_{\beta}(1)$ is a Sturmian word (and $\left.\alpha\left(d_{\beta}(1)\right)=\{\lfloor\beta\rfloor-1,\lfloor\beta\rfloor\}\right)$. We show that S_{β} minimally contains the shift space generated by some Sturmian word if and only if β is self-Sturmian. This gives a large class of specified β-transformations T_{β} and moreover for a maximal self-Sturmian β, the diameter of the closure of $\left\{T_{\beta}^{n} 1\right\}_{n \geqslant 0}$ is minimal in a certain sense. We also prove the transcendence of such β. This is a partial answer to the question posed by Blanchard [5].

2. Sturmian words and lexicographic order

Since $P(s, 1)=2$, Sturmian words are forced to be infinite words over the alphabet $A=\{0,1\}$ by renaming if necessary. Then the height $h(x)$ of a word x is the number of occurrences of 1 in x. We say a subset X of A^{*} is balanced if for any $x, y \in X$, $|h(x)-h(y)| \leqslant 1$ whenever x and y have the same lengths. An infinite word s is also called balanced if the factor set $F(s)$ is balanced. In [7], Coven and Hedlund described the balanced property in more detail.

Theorem 2.1. Suppose $X \subset A^{*}$ and $x \in X$ implies $F(x) \subset X$. Then X is unbalanced if and only if there exists a palindrome word w such that both $0 w 0$ and $1 w 1$ lie in X.

For a real number $t,\lceil t\rceil$ is the smallest integer not less than t, and $\{t\}$ the fractional part of t, i.e., $t=\lfloor t\rfloor+\{t\}$. Let α, ρ be two real numbers in $[0,1]$. We now define two infinite words over $\{0,1\}$. Consider, for $n \geqslant 0$,

$$
s_{\alpha, \rho}(n)=\lfloor\alpha(n+1)+\rho\rfloor-\lfloor\alpha n+\rho\rfloor, s_{\alpha, \rho}^{\prime}(n)=\lceil\alpha(n+1)+\rho\rceil-\lceil\alpha n+\rho\rceil .
$$

The infinite words $s_{\alpha, \rho}, s_{\alpha, \rho}^{\prime}$ are termed lower and upper mechanical words, respectively, with slope α and intercept ρ. If α is irrational, we see $s_{\alpha, 0}=0 c_{\alpha}, s_{\alpha, 0}^{\prime}=1 c_{\alpha}$ for some infinite word c_{α}. Here the word c_{α} is called the characteristic word of slope α. Morse and Hedlund [14] proved two alternative characterizations of Sturmian words.

Theorem 2.2. For an infinite word s, the following are equivalent.

- s is Sturmian.
- s is aperiodic and balanced.
- s is irrationally mechanical, i.e., the slope is irrational.

The following proposition prescribes factor sets of Sturmian words.
Proposition 2.1 (Mignosi [13]). For two Sturmian words s, t, if they have the same slope, then $F(s)=F(t)$. And $F(s) \cap F(t)$ is finite otherwise.

We denote by σ the shift map, and by $\overline{\mathcal{O}}(s)$ its orbit closure of s. Since Sturmian words are uniformly recurrent, $\overline{\mathcal{O}}(s)$ is minimal if s is Sturmian.

Proposition 2.2. Let s be a Sturmian word with slope α. Then $\overline{\mathcal{O}}(s)$ is the set of all mechanical words of slope α.

The proof is a consequence of a lemma.
Lemma 2.1. For a fixed irrational $\alpha \in(0,1), s_{\alpha, \rho}$ is continuous from the right and $s_{\alpha, \rho}^{\prime}$ from the left as functions of ρ.

Proof. Let $\varepsilon>0, s_{\alpha, \rho_{0}}, s_{\alpha, \rho_{0}}^{\prime}$ be given. We choose an integer $N>0$ such that $2^{-N}<\varepsilon$. Put $\delta_{1}=\min \left\{1-\left\{\alpha n+\rho_{0}\right\} \mid 0 \leqslant n \leqslant N+1\right\}$. Then $0 \leqslant \rho-\rho_{0}<\delta_{1} / 2$ implies $d\left(s_{\alpha, \rho}, s_{\alpha, \rho_{0}}\right)$ $<\varepsilon$. For the upper mechanical word, we define δ_{2} by the minimum of nonzero fractions $\left\{\alpha n+\rho_{0}\right\}$ for $0 \leqslant n \leqslant N+1$. Then $0 \leqslant \rho_{0}-\rho<\delta_{2} / 2$ implies $d\left(s_{\alpha, \rho}^{\prime}, s_{\alpha, \rho_{0}}^{\prime}\right)<\varepsilon$. If $\rho_{0}=0$, then we can assume $\rho_{0}=1$.

Proof of Proposition 2.2. By the minimality of $\overline{\mathcal{O}}(s)$ we may assume $s=s_{\alpha, 0}^{\prime}=1 c_{\alpha}$. Since α is irrational, αn is never an integer for nonzero n. Hence $\sigma^{n}(s)=s_{\alpha,\{\alpha n\}}=s_{\alpha,\{\alpha n\}}^{\prime}$ holds for any $n \geqslant 1$. Given $s_{\alpha, \rho}$ and $s_{\alpha, \rho}^{\prime}$ we can pick two increasing sequences of integers $\left(p_{n}\right)_{n \geqslant 0},\left(q_{n}\right)_{n \geqslant 0}$ such that $\left\{\alpha p_{n}\right\} \searrow \rho$ and $\left\{\alpha q_{n}\right\} \nearrow \rho$. Then one finds

$$
\lim _{n \rightarrow \infty} \sigma^{p_{n}}(s)=s_{\alpha, \rho}, \lim _{n \rightarrow \infty} \sigma^{q_{n}}(s)=s_{\alpha, \rho}^{\prime}
$$

Conversely assume $t \in \overline{\mathcal{O}}(s)$. Then t is balanced since $F(t) \subset F(s)$, and the minimality implies the aperiodicity of t. t has the slope α. Otherwise $F(s) \cap F(t)$ would be finite by Proposition 2.1. But every factor of t also occurs in s.

In the next section, what we need critically is the lexicographic order between Sturmian words. We have the following. For its proof, see [10].

Proposition 2.3. Suppose $\alpha \in(0,1)$ is irrational and $\rho, \rho^{\prime} \in[0,1)$ are real. Then

$$
s_{\alpha, \rho}<s_{\alpha, \rho^{\prime}} \text { if and only if } \rho<\rho^{\prime} .
$$

Corollary 2.3.1 (Borel and Laubie [6]). Let α be an irrational number in $(0,1)$. Then $0 c_{\alpha}<s_{\alpha, \rho}<1 c_{\alpha}$ for any $0<\rho<1$. In particular we have for all $n \geqslant 1$,

$$
1 c_{\alpha}>\sigma^{n}\left(1 c_{\alpha}\right) \quad \text { and } \quad 0 c_{\alpha}<\sigma^{n}\left(0 c_{\alpha}\right) .
$$

3. β-shifts and self-Sturmian numbers

Just as the number 1 dominates any number in $[0,1)$, so does $d_{\beta}(1)$ in S_{β} with respect to lexicographic order, which was shown by Parry [15]. Moreover, Parry also
determined the sequences that can be β-expansions of 1 for some $\beta>1$. These sequences obey the next rule.

Theorem 3.1. A sequence $s \in\{0,1, \ldots,\lfloor\beta\rfloor\}^{\mathbb{N}}$ is a β-expansion of 1 for some β if and only if $\sigma^{n}(s)<s$ for all $n \geqslant 1$. In this case, such a β is unique.

From now on we replace the alphabet $A=\{0,1\}$ by $\{a, b\}$ for any $a, b \in \mathbb{Z}$ and $0 \leqslant a<b$. For a Sturmian word s over $\{a, b\}$ with slope α, any $t \in \overline{\mathcal{O}}(s)$ lies between $a c_{\alpha}$ and $b c_{\alpha}$, where c_{α} is the characteristic word over $\{a, b\}$. We write this as $a c_{\alpha} \leqslant \overline{\mathcal{O}}(s) \leqslant b c_{\alpha}$. This notation represents β-shift as $0^{\infty} \leqslant S_{\beta} \leqslant d_{\beta}(1)$. In both cases, the two inequalities are best possible. By Theorem 3.1 and Corollary 2.3.1, there exists a unique $\beta>1$ such that $d_{\beta}(1)=b c_{\alpha}$. From the fact that $\gamma<\theta$ implies $S_{\gamma} \subsetneq S_{\theta}$, one can deduce that S_{β} is the minimal β-shift containing $\overline{\mathcal{O}}(s)$. Moreover, the closure of $\left\{\sigma^{n}\left(d_{\beta}(1)\right)\right\}_{n \geqslant 0}$ is equal to $\overline{\mathcal{O}}(s)$ and $a c_{\alpha}, b c_{\alpha}$ are accumulation points by Proposition 2.2. We state these as a theorem. For an infinite word $x, \alpha(x)$ is the set of letters involved in x.

Theorem 3.2. Suppose s is Sturmian of slope α and $\alpha(s)=\{a, b\}$ with $0 \leqslant a<b$. If S_{β} is the smallest β-shift containing $\overline{\mathcal{O}}(s)$, then ${\overline{\left\{\sigma^{n}\left(d_{\beta}(1)\right)\right\}_{n \geqslant 0}}}_{n}=\overline{\mathcal{O}}(s)$ and β is the unique positive solution of $1=\sum_{n=0}^{\infty}\left((b-a) s_{\alpha, 0}^{\prime}(n)+a\right) / x^{n+1}$.

In [5], Blanchard classified β-shifts into five categories, and for each β contained in some classes the morphology of $d_{\beta}(1)$ was totally understood by Parry and BertrandMathis [15,4]. The language theoretical terminology used in the next proposition is referred to [5] or the bibliography therein.

Proposition 3.1. For $\beta>1$, the following equivalences hold.

- $\beta \in \mathscr{C}_{1}: S_{\beta}$ is a shift of finite type if and only if $d_{\beta}(1)$ is finite.
- $\beta \in \mathscr{C}_{2}: S_{\beta}$ is sofic if and only if $d_{\beta}(1)$ is ultimately periodic.
- $\beta \in \mathscr{C}_{3}: S_{\beta}$ is specified if and only if there exists $n \in \mathbb{N}$ such that the number of consecutive 0 's in $d_{\beta}(1)$ is less than n.
- $\beta \in \mathscr{C}_{4}: S_{\beta}$ is synchronizing if and only if some word of $F\left(S_{\beta}\right)$ does not appear in $d_{\beta}(1)$.
- $\beta \in \mathscr{C}_{5}: S_{\beta}$ has none of the above properties if and only if all words of $F\left(S_{\beta}\right)$ appear at least once in $d_{\beta}(1)$.

One sees immediately the inclusions:

$$
\emptyset \neq \mathscr{C}_{1} \subset \mathscr{C}_{2} \subset \mathscr{C}_{3} \subset \mathscr{C}_{4} \subset(1, \infty), \quad \mathscr{C}_{5}=(1, \infty) \backslash \mathscr{C}_{4}
$$

On the other hand, Schmeling [16] determined each size of the classes.
Proposition 3.2. \mathscr{C}_{3} has Hausdorff dimension 1 and \mathscr{C}_{5} has full Lebesgue measure.
Now we concentrate on a special class of real numbers that is contained in \mathscr{C}_{3}.

Definition. Let $\beta>1$. We call β a self-Sturmian number if $d_{\beta}(1)$ is a Sturmian word over a binary alphabet $A=\{a, b\}, 0 \leqslant a<b=\lfloor\beta\rfloor$. In particular, β is maximally selfSturmian if it is self-Sturmian and $\alpha\left(d_{\beta}(1)\right)=\{\lfloor\beta\rfloor-1,\lfloor\beta\rfloor\}$.

Remark. Not every Sturmian word is equal to $d_{\beta}(1)$ for some $\beta>1$. In such cases, $d_{\beta}(1)=b c_{\alpha}$ and $\alpha\left(c_{\alpha}\right)=\{a, b\}$ for some irrational α and integers $0 \leqslant a<b$.

Definition. diam : $(1, \infty) \rightarrow[0,1]$ is the function that maps β to the diameter of T_{β}-orbit of 1, i.e., $\operatorname{diam}(\beta):=\operatorname{diam}\left\{T_{\beta}^{n} 1\right\}_{n \geqslant 0}=\sup \left\{|x-y|: x, y \in\left\{T_{\beta}^{n} 1\right\}_{n \geqslant 0}\right\}$.

One can note that if $\beta \in \mathscr{C}_{1}$ or $\beta \in(1, \infty) \backslash \mathscr{C}_{3}$, then $\operatorname{diam}(\beta)=1$ since both 0 and 1 lie in the closure of $\left\{T_{\beta}^{n} 1\right\}_{n \geqslant 0}$. We get from the definitions,

Proposition 3.3. Suppose β is self-Sturmian and $\alpha\left(d_{\beta}(1)\right)=\{a, b\}$ with $0 \leqslant a<b=$ $\lfloor\beta\rfloor$. Then $\beta \in \mathscr{C}_{3} \backslash \mathscr{C}_{2}$ and $\operatorname{diam}(\beta)=(b-a) / \beta$.

Maximal self-Sturmian numbers are distinguished from the dynamical point of view.
Theorem 3.3. $\beta>1$ is maximally self-Sturmian if and only if $\beta \notin \mathscr{C}_{2}$ and $1-1 / \beta \leqslant$ $T_{\beta}^{n} 1 \leqslant 1$ for any $n \geqslant 0$.

Proof. We prove the sufficiency. The hypothesis implies that $d_{\beta}(1)$ is aperiodic and $\alpha\left(d_{\beta}(1)\right)=\{\lfloor\beta\rfloor-1,\lfloor\beta\rfloor\}$. Put $a=\lfloor\beta\rfloor-1$ and $b=\lfloor\beta\rfloor$. If $d_{\beta}(1)$ is unbalanced, then Theorem 2.1 guarantees the existence of a palindrome word w such that both $a w a, b w b$ are factors of $d_{\beta}(1)$. For $d_{\beta}(1)=b d_{1} d_{2} \ldots$, one sees $d_{\beta}(1-1 / \beta)=a d_{1} d_{2} \ldots$. We get

$$
a d_{1} \cdots d_{n} d_{n+1} \leqslant a w a<b w b \leqslant b d_{1} \cdots d_{n} d_{n+1}
$$

where n is the length of w. This yields a contradiction. Hence $d_{\beta}(1)$ is a Sturmian word of some slope α and it dominates all its shifts, and therefore $d_{\beta}(1)=b c_{\alpha}$.

The diameter of a maximal self-Sturmian number is minimal in the following sense.
Corollary 3.3.1. For any $\beta>1$, either $\beta \in \mathscr{C}_{2}$ or $\operatorname{diam}(\beta) \geqslant 1 / \beta$.
Proposition 3.2 shows the set of self-Sturmian numbers is of Lebesgue measure zero. Then what about the size of ${\left.\overline{\{T} T_{\beta}^{n} 1\right\}}_{n \geqslant 0}$ for a fixed self-Sturmian number β ? The last paragraph of this section is devoted to showing $\overline{\left\{T_{\beta}^{n} 1\right\}}{ }_{n \geqslant 0}$ has Lebesgue measure zero, whereas the orbit closure of an irrational rotation has full Lebesgue measure even though Theorem 3.2 indicates that two orbit closures in full shift coincide.

A β-transformation T_{β} has an invariant ergodic measure v_{β} whose Radon-Nikodym derivative with respect to Lebesgue measure is given by

$$
h_{\beta}(x)=\frac{1}{F(\beta)} \sum_{x<T_{\beta}^{n} 1} \frac{1}{\beta^{n}}, \quad x \in[0,1] .
$$

Here $F(\beta)$ is the normalizing factor. Suppose $d_{\beta}(1)=\varepsilon_{0} \varepsilon_{1} \ldots$. Parry noted that

$$
F(\beta)=\int_{0}^{1} \sum_{x<T_{\beta}^{n} 1} \frac{1}{\beta^{n}} \mathrm{~d} x=\int_{0}^{1}\left(\sum_{n=0}^{\infty} \frac{a_{n}(x)}{\beta^{n}}\right) \mathrm{d} x=\sum_{n=0}^{\infty} \frac{T_{\beta}^{n} 1}{\beta^{n}}=\sum_{n=0}^{\infty} \frac{(n+1) \varepsilon_{n}}{\beta^{n+1}},
$$

where

$$
a_{n}(x)=\left\{\begin{array}{l}
1 \text { if } x<T_{\beta}^{n} 1, \\
0 \text { otherwise } .
\end{array}\right.
$$

The frequency of $\lfloor\beta\rfloor$ in $d_{\beta}(x)$ is, if the limit exists, given by

$$
\lim _{n \rightarrow \infty} \frac{1}{n} \sum_{i=0}^{n-1} \chi\left(T_{\beta}^{i}(x)\right)
$$

where χ is the characteristic function of $[\lfloor\beta\rfloor / \beta, 1]$. Owing to Birkhoff Ergodic Theorem, we can say more. For almost all x in $[0,1]$, the frequency of $\lfloor\beta\rfloor$ in $d_{\beta}(x)$ equals

$$
\mu_{\beta}(\lfloor\beta\rfloor):=\frac{1}{F(\beta)} \int_{\lfloor\beta\rfloor / \beta}^{1} \sum_{x<T_{\beta}^{n} 1} \frac{1}{\beta^{n}} \mathrm{~d} x .
$$

A similar reasoning also applies to the frequency of the other digit.
Lemma 3.1. If β is self-Sturmian and $\alpha\left(d_{\beta}(1)\right)=\{a, b\}$ with $0 \leqslant a<b=\lfloor\beta\rfloor$, then for almost every x in $[0,1]$, the frequency of b in $d_{\beta}(x)$ is equal to

$$
\mu_{\beta}(b)=\frac{\mathscr{I}}{F(\beta)}=\frac{1}{F(\beta)} \sum_{n=0}^{\infty}\lceil\alpha n\rceil \frac{\varepsilon_{n}}{\beta^{n+1}},
$$

and the frequency of a in $d_{\beta}(x)$ is equal to

$$
\mu_{\beta}(a)=\frac{\mathscr{J}}{F(\beta)}=\frac{1}{F(\beta)}\left(\sum_{n \in J} \frac{1}{\beta^{n+1}}+\sum_{n=0}^{\infty}(n-\lceil\alpha n\rceil) \frac{\varepsilon_{n}}{\beta^{n+1}}\right),
$$

where $d_{\beta}(1)=\varepsilon_{0} \varepsilon_{1} \varepsilon_{2} \ldots$ and $J=\left\{n \geqslant 0 \mid \varepsilon_{n}=b\right\}, K=\left\{n \geqslant 0 \mid \varepsilon_{n}=a\right\}$.
Proof. Let α be a number such that $d_{\beta}(1)=b c_{\alpha}=\varepsilon_{0} \varepsilon_{1} \varepsilon_{2} \ldots$, where c_{α} is the characteristic word of slope α over the alphabet $\{a, b\}$. First we compute the following integral:

$$
\begin{aligned}
\mathscr{I} & :=\int_{\lfloor\beta\rfloor / \beta}^{1} \sum_{x<T_{\beta}^{n} 1} \frac{1}{\beta^{n}} \mathrm{~d} x=\int_{\lfloor\beta\rfloor / \beta}^{1} \sum_{n=0}^{\infty} \frac{a_{n}(x)}{\beta^{n}} \mathrm{~d} x \\
& =\sum_{n=0}^{\infty} \frac{1}{\beta^{n}} \int_{\lfloor\beta\rfloor / \beta}^{1} a_{n}(x) \mathrm{d} x=\sum_{n=0}^{\infty} \frac{b_{n}}{\beta^{n}},
\end{aligned}
$$

where

$$
b_{n}= \begin{cases}T_{\beta}^{n} 1-\lfloor\beta\rfloor / \beta & \text { if }\lfloor\beta\rfloor / \beta \leqslant T_{\beta}^{n} 1 \\ 0 & \text { otherwise }\end{cases}
$$

Since $\lfloor\beta\rfloor / \beta \leqslant T_{\beta}^{n} 1$ is equivalent to $\varepsilon_{n}=b$, it follows from Fubini Theorem that

$$
\mathscr{I}=\sum_{n \in J} \frac{1}{\beta^{n}}\left(T_{\beta}^{n} 1-\frac{\lfloor\beta\rfloor}{\beta}\right)=\sum_{n \in J} \sum_{m=n+1}^{\infty} \frac{\varepsilon_{m}}{\beta^{m+1}}=\sum_{n=0}^{\infty} h_{n} \frac{\varepsilon_{n+1}}{\beta^{n+2}}=\sum_{n=0}^{\infty} h_{n-1} \frac{\varepsilon_{n}}{\beta^{n+1}}
$$

where h_{n} is the number of b 's in the word $\varepsilon_{0} \varepsilon_{1} \cdots \varepsilon_{n}$ and we put $h_{-1}=0$ by convention. Noting that $h_{n}=\lceil\alpha(n+1)\rceil$, we finally get $\mathscr{I}=\sum_{n=0}^{\infty}\lceil\alpha n\rceil \varepsilon_{n} / \beta^{n+1}$.

For almost every x in $[0,1]$, the frequency of a in $d_{\beta}(x)$ is equal to

$$
\mu_{\beta}(a)=\frac{\mathscr{J}}{F(\beta)}=\frac{1}{F(\beta)} \int_{a / \beta}^{(a+1) / \beta} \sum_{x<T_{\beta}^{n} 1} \frac{1}{\beta^{n}} \mathrm{~d} x
$$

The integration is derived as follows:

$$
\begin{aligned}
\mathscr{J} & :=\int_{a / \beta}^{(a+1) / \beta} \sum_{x<T_{\beta}^{n} 1} \frac{1}{\beta^{n}} \mathrm{~d} x=\int_{a / \beta}^{(a+1) / \beta} \sum_{n=0}^{\infty} \frac{a_{n}(x)}{\beta^{n}} \mathrm{~d} x \\
& =\sum_{n=0}^{\infty} \frac{1}{\beta^{n}} \int_{a / \beta}^{(a+1) / \beta} a_{n}(x) \mathrm{d} x=\sum_{n=0}^{\infty} \frac{b_{n}}{\beta^{n}}
\end{aligned}
$$

where

$$
b_{n}= \begin{cases}1 / \beta & \text { if }(a+1) / \beta \leqslant T_{\beta}^{n} 1 \\ T_{\beta}^{n} 1-a / \beta & \text { if } a / \beta \leqslant T_{\beta}^{n} 1<(a+1) / \beta \\ 0 & \text { if } T_{\beta}^{n} 1<a / \beta\end{cases}
$$

Since only a and b appear in $d_{\beta}(1)$, the inequality $T_{\beta}^{n} 1<a / \beta$ never occurs and $(a+1) / \beta \leqslant T_{\beta}^{n} 1$ is reduced to $\lfloor\beta\rfloor / \beta \leqslant T_{\beta}^{n} 1$. So the integration is expressed as

$$
\mathscr{J}=\sum_{n \in J} \frac{1}{\beta^{n+1}}+\sum_{n \in K} \frac{1}{\beta^{n}}\left(T_{\beta}^{n} 1-\frac{a}{\beta}\right)=\sum_{n \in J} \frac{1}{\beta^{n+1}}+\sum_{n \in K} \sum_{m=n+1}^{\infty} \frac{\varepsilon_{m}}{\beta^{m+1}}
$$

By changing the order of summation indices, we find

$$
\mathscr{J}=\sum_{n \in J} \frac{1}{\beta^{n+1}}+\sum_{n=0}^{\infty}\left(n+1-h_{n}\right) \frac{\varepsilon_{n+1}}{\beta^{n+2}}=\sum_{n \in J} \frac{1}{\beta^{n+1}}+\sum_{n=0}^{\infty}\left(n-h_{n-1}\right) \frac{\varepsilon_{n}}{\beta^{n+1}}
$$

Theorem 3.4. If β is self-Sturmian, then ${\overline{\left\{T_{\beta}^{n} 1\right\}}}_{n \geqslant 0}$ is of Lebesgue measure zero.
Proof. We adopt the notations used in Lemma 3.1 above. For any x in ${\overline{\left\{T T_{\beta}^{n} 1\right\}}}_{n \geqslant 0}$, the infinite word $d_{\beta}(x)$ is Sturmian. The frequency of b in $d_{\beta}(x)$, therefore, has the value
α, while the frequency of a has $1-\alpha$. We will prove that at least one of these values is different from those given in Lemma 3.1.

At first we suppose $a=0$. Then the integration is given by $\mathscr{I}=\sum_{n \in J}\lceil\alpha n\rceil b / \beta^{n+1}$. Similarly, one sees $\alpha F(\beta)=\sum_{n \in J}(\alpha n+\alpha) b / \beta^{n+1}$. It holds that $n \in J$ if and only if $\lceil\alpha n\rceil<\alpha n+\alpha$ because $\varepsilon_{n}=b(\lceil\alpha(n+1)\rceil-\lceil\alpha n\rceil)$. Whence $\mu_{\beta}(b)=\mathscr{I} / F(\beta)<\alpha$.

Next, we suppose $1 \leqslant a<b$ and, in addition, $\lfloor\beta\rfloor \alpha>1$. Noting the index set J contains 0 , let k_{0} be the smallest element of K. One sees

$$
\alpha F(\beta)-\mathscr{I}=\sum_{n \in J} \frac{(\alpha n+\alpha)-\lceil\alpha n\rceil}{\beta^{n+1}} b-\sum_{n \in K} \frac{\lceil\alpha n\rceil-(\alpha n+\alpha)}{\beta^{n+1}} a .
$$

We know that $(\alpha n+\alpha)>\lceil\alpha n\rceil$ if $n \in J$, and $\lceil\alpha n\rceil>(\alpha n+\alpha)$ if $n \in K$. The series can be bounded from below as

$$
\begin{aligned}
\alpha F(\beta)-\mathscr{I} & >\sum_{n \in J} \frac{(\alpha n+\alpha)-\lceil\alpha n\rceil}{\beta^{n+1}} b-\sum_{n \in K} \frac{a}{\beta^{n+1}}=\left(\frac{\alpha}{\beta} b+\cdots\right)-\left(\frac{a}{\beta^{k_{0}+1}}+\cdots\right) \\
& >\frac{1}{\beta}-\left(\frac{a}{\beta^{k_{0}+1}}+\cdots\right)>0
\end{aligned}
$$

because $\lfloor\beta\rfloor \alpha>1$ and $k_{0} \geqslant 1$. Hence we have $\mu_{\beta}(b)=\mathscr{I} / F(\beta)<\alpha$.
If $\lfloor\beta\rfloor \alpha<1$, then $\alpha<1 /\lfloor\beta\rfloor \leqslant \frac{1}{2}$, which implies $k_{0}=1$. We observe

$$
\begin{aligned}
(1-\alpha) F(\beta)-\mathscr{J}= & \sum_{n \in J} \frac{1+\lceil\alpha n\rceil-(\alpha n+\alpha)}{\beta^{n+1}} b+\sum_{n \in K} \frac{1+\lceil\alpha n\rceil-(\alpha n+\alpha)}{\beta^{n+1}} a \\
& -\sum_{n \in J} \frac{1}{\beta^{n+1}} \\
= & \left(\frac{1-\alpha}{\beta} b+\cdots\right)+\sum_{n \in K} \frac{1+\lceil\alpha n\rceil-(\alpha n+\alpha)}{\beta^{n+1}} a-\left(\frac{1}{\beta}+\cdots\right) .
\end{aligned}
$$

By the assumption, the inequality $(1-\alpha) b>b-1 \geqslant 1$ is true. Hence we have

$$
\begin{aligned}
(1-\alpha) F(\beta)-\mathscr{J} & >\sum_{n \in K} \frac{1+\lceil\alpha n\rceil-(\alpha n+\alpha)}{\beta^{n+1}} a-\sum_{n \in J \backslash\{0\}} \frac{1}{\beta^{n+1}} \\
& >\frac{1}{\beta^{2}}-\sum_{n \in J \backslash\{0\}} \frac{1}{\beta^{n+1}}>0,
\end{aligned}
$$

since the least integer in $J \backslash\{0\}$ is greater than or equal to 2 and if $n \in K$, then $1+$ $\lceil\alpha n\rceil-(\alpha n+\alpha)>1$. We have proved $\mu_{\beta}(a)=\mathscr{F} \mid F(\beta)<1-\alpha$.

4. Transcendence of self-Sturmian numbers

We know that β is an algebraic integer for every $\beta \in \mathscr{C}_{2}$. Then are there transcendental numbers in $\mathscr{C}_{3}, \mathscr{C}_{4}$, and \mathscr{C}_{5} ? This was questioned by Blanchard [5]. From Schmeling's results, \mathscr{C}_{5} is abundant in transcendental numbers. But a transcendental number
reported in \mathscr{C}_{3} is, to the knowledge of the authors, only Komornik-Loreti constant $\delta=1.787231650 \ldots$. This constant is the smallest number in $(1,2)$, for which there is only one expansion of 1 as $1=\sum_{n=1}^{\infty} \varepsilon_{n} \delta^{-n}, \varepsilon_{n} \in\{0,1\}$ [9]. Later it turned out to be transcendental [1,2]. This section contains the proof that all self-Sturmian numbers are transcendental. That enriches \mathscr{C}_{3} with transcendental numbers of continuum cardinality. In fact, Sturmian words hitherto have given births to transcendental numbers in other manners, e.g. [8,3]. We need a classical result on transcendence.

Proposition 4.1. Let the function f be defined by

$$
f(w, z)=\sum_{n=1}^{\infty}\lfloor n w\rfloor z^{n},
$$

where w is real and z is complex with $|z|<1$. Then $f(\omega, \alpha)$ is transcendental if ω is irrational and α is a nonzero algebraic number with $|\alpha|<1$.

Indeed Mahler [12] proved in 1929 the preceding result for quadratic irrational ω 's, and Loxton and van der Poorten [11] extended the case to arbitrary irrational ω 's. We are now in a position to state the main result of this section.

Theorem 4.1. Every self-Sturmian number is transcendental.
Proof. Since β is self-Sturmian, we have for some irrational $\alpha \in(0,1)$,

$$
\begin{aligned}
1-\frac{b-a}{\beta} & =\sum_{n=0}^{\infty} \frac{(b-a) s_{\alpha, 0}(n)+a}{\beta^{n+1}}=\sum_{n=0}^{\infty} \frac{(b-a)(\lfloor\alpha(n+1)\rfloor-\lfloor\alpha n\rfloor)+a}{\beta^{n+1}} \\
& =(b-a) \sum_{n=0}^{\infty} \frac{\lfloor\alpha(n+1)\rfloor-\lfloor\alpha n\rfloor}{\beta^{n+1}}+\frac{a}{\beta-1} .
\end{aligned}
$$

Thus the following equality holds:

$$
\begin{equation*}
\sum_{n=0}^{\infty} \frac{\lfloor\alpha(n+1)\rfloor-\lfloor\alpha n\rfloor}{\beta^{n+1}}=\frac{1}{b-a}\left(1-\frac{b-a}{\beta}-\frac{a}{\beta-1}\right) \tag{1}
\end{equation*}
$$

On the other hand,

$$
\sum_{n=0}^{\infty} \frac{\lfloor\alpha(n+1)\rfloor-\lfloor\alpha n\rfloor}{\beta^{n+1}}=\sum_{n=1}^{\infty} \frac{\lfloor\alpha n\rfloor}{\beta^{n}}-\frac{1}{\beta} \sum_{n=1}^{\infty} \frac{\lfloor\alpha n\rfloor}{\beta^{n}}=\left(1-\frac{1}{\beta}\right) \sum_{n=1}^{\infty} \frac{\lfloor\alpha n\rfloor}{\beta^{n}} .
$$

If β were algebraic, the left-hand side of Eq. (1) would be transcendental by Proposition 4.1 whereas the right one algebraic.

Example. For $0 \leqslant a<b$ let $f_{0}=a, f_{1}=a b$ and $f_{n+2}=f_{n+1} f_{n}, n \geqslant 0$. The Fibonacci word f, which is Sturmian, is defined by

$$
f=\lim _{n \rightarrow \infty} f_{n}=\text { abaababaabaababaababaabaababaabaab } \cdots
$$

We assume $d_{\beta}(1)=b f$. Then such $\beta \in(b, b+1)$ exists and is transcendental. Furthermore, $\operatorname{diam}\left\{T_{\beta}^{n} 1\right\}_{n \geqslant 0}=(b-a) / \beta$ and ${\overline{\left\{T_{\beta}^{n} 1\right\}}}_{n \geqslant 0}$ is Lebesgue negligible.

Acknowledgements

The authors gratefully acknowledge the elaborate comments from the anonymous referee, which improve the readability of the paper.

References

[1] J.-P. Allouche, M. Cosnard, The Komornik-Loreti constant is transcendental, Amer. Math. Monthly 107 (2000) 448-449.
[2] J.-P. Allouche, M. Cosnard, Non-integer bases, iteration of continuous real maps, and an arithmetic self-similar set, Acta Math. Hungar. 91 (2001) 325-332.
[3] J.-P. Allouche, J.L. Davison, M. Queffélec, L.Q. Zamboni, Transcendence of Sturmian or morphic continued fractions, J. Number Theory 91 (2001) 39-66.
[4] A. Bertrand-Mathis, Développement en base θ; répartition modulo un de la suite $\left(x \theta^{n}\right)_{n \geqslant 0}$; langages codés et θ-shift, Bull. Soc. Math. France 114 (1986) 271-323.
[5] F. Blanchard, β-expansions and symbolic dynamics, Theoret. Comput. Sci. 65 (1989) 131-141.
[6] J.-P. Borel, F. Laubie, Quelques mots sur la droite projective réelle, J. Théor. Nombres Bordeaux 5 (1993) 23-51.
[7] E.M. Coven, G.A. Hedlund, Sequences with minimal block growth, Math. Systems Theory 7 (1973) 138-153.
[8] S. Ferenczi, C. Mauduit, Transcendence of numbers with a low complexity expansion, J. Number Theory 67 (1997) 146-161.
[9] V. Komornik, P. Loreti, Unique developments in non-integer bases, Amer. Math. Monthly 105 (1998) 636-639.
[10] M. Lothaire, Algebraic Combinatorics on Words, Cambridge University Press, Cambridge, 2002.
[11] J.H. Loxton, A.J. van der Poorten, Arithmetic properties of certain functions in several variables III, Bull. Austral. Math. Soc. 16 (1977) 15-47.
[12] K. Mahler, Arithmetische Eigenschaften der Lösungen einer Klasse von Funktionalgleichungen, Math. Ann. 101 (1929) 342-366.
[13] F. Mignosi, Infinite words with linear subword complexity, Theoret. Comput. Sci. 65 (1989) 221-242.
[14] M. Morse, G.A. Hedlund, Symbolic dynamics II, Sturmian trajectories, Amer. J. Math. 62 (1940) 1-42.
[15] W. Parry, On the β-expansions of real numbers, Acta Math. Acad. Sci. Hungar. 11 (1960) 401-416.
[16] J. Schmeling, Symbolic dynamics for β-shifts and self-normal numbers, Ergodic Theory Dynam. Systems 17 (1997) 675-694.

[^0]: * Corresponding author. Tel.: 82-2-958-3819; fax: 82-2-958-3820.

 E-mail addresses: dpchi@math.snu.ac.kr (D.P. Chi), doyong@kias.re.kr (D.Y. Kwon).
 ${ }^{1}$ Supported by Korea Research Foundation Grant (KRF-2000-015-DP0031).
 ${ }^{2}$ Supported by BK21 Program in Korea and by KIAS Research Fund (No.03-0155-001).

