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Abstract

This paper is devoted to the presentation of a combinatorial approach for analyzing the performance of a generic family of
demodulation methods used in mobile telecommunications.We show that a fundamental formula in this context is in fact highly
connected with a slight modification of a very classical bijection of Knuth between pairs ofYoung tableaux of conjugate shapes
and{0,1}-matrices. These considerations allowed us to obtain the first explicit expressions for several important specializations
of the performance evaluation formula that we studied.
© 2004 Elsevier B.V. All rights reserved.
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1. Introduction

Modulating a numeric signal means to transform it into a wave form. Modulation is therefore a technique of main interest in
a number of engineering domains such as computer networks, mobile communications, satellite transmissions, etc. Due to their
practical importance, modulation methods were of course widely studied in signal processing. The classical Proakis textbook
devotes for instance a full chapter to this subject (cf.[12, Chapter 5]). One should also point out that one of the most important
problems in this area is to be able to evaluate the performance characteristics of the optimum receivers associated with a given
modulation method, which reduces to the computation of various probabilities of errors (see again[12, Chapter 5]).
Among the different families of modulation protocols used in practice, an important class consists in methods where the

modulation reference (i.e. a fixed digital sequence) is also modulated and transmitted. In this kind of situation, the demodulation
decision needs to take into account several noisy informations (the transmitted signal, the transmitted reference, but also copies
of these two signals). It turns out that the probability of errors appearing in such contexts leads very often to the computation of
the following type of probability:

P(U <V ) = P

U =
N∑
i=1

|ui |2<V =
N∑
i=1

|vi |2
 , (1)
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Fig. 1. Two complementary partitions :� = (1,1,2,3) and� = (2,4,5,6,6,6).

where theui andvis stand for independent centered complexGaussian random variables with variances denoted byE[|ui |2]=�i
andE[|vi |2] = �i for everyi ∈ [1, N ] (see also Section 3.2).
The problem of computing explicitely this last probability was hence studied by several researchers from signal processing

(cf. [1,8,12,15]). The most interesting result in this direction was obtained by Barrett (cf.[1]) who proved that the probability
defined by (1) is equal to

P(U <V ) =
N∑
k=1

∏
j 	=k

1

1− �−1
k

�j

N∏
j=1

1

1+ �−1
k

�j

 . (2)

This last formula canalsobedescribed inapurely combinatorialway, usingYoung tableaux (cf. Section3.2).This newapproach
has already led to the first, both algorithmically efficient and numerically stable, practical method for computing the probability
P(U <V ) (cf. Section 3.2 or[4,5]). In this paper, we continue the combinatorial study of Barrett’s formula by connecting it
with a very classical bijection of Knuth (cf.[6, Section A.4.3]or [9]) between pairs of Young tableaux of conjugate shapes and
{0,1}-matrices. These considerations allowed us in particular to get the first explicit expressions for several specializations of
formula (2) (cf. Section 6).

2. Background

2.1. Partitions andYoung tableaux

A partition is a finite non-decreasing sequence� = (�1, �2, . . . , �m) of positive integers. The numbermof elements of� is
called thelengthof the partition�. One can represent each such partition� by aFerrers diagramof shape�, that is to say by a
diagram of�1 + · · · + �m boxes whoseith row contains exactly�i boxes for every 1� i�m. The Ferrers diagram associated
with the partition� = (2,2,4) is for instance given below.

Theconjugatepartition� ˜of a given partition� is the partition obtained by reading the heights of the columns of the Ferrers
diagram associated with�. For instance, for the partition� = (2,2,4) of the above figure, we have� ˜= (1,1,3,3).
When� is a partition whose Ferrers diagram is contained into the square represented by the partitionNN = (N, . . . , N) with

N rows of lengthN, one can also define thecomplementarypartition� of �which is the conjugate of the partition�whose Ferrers
diagram is the complement (read from bottom to top) of the Ferrers diagram of� in the square(NN). Note that this definition
is relative to a given sizeN and that the square does not have to be the smallest one containing�. For instance, forN = 6 and
� = (1,1,2,3), we have� = (3,4,5,5,6,6) and� = (2,4,5,6,6,6) (seeFig. 1).
LetA be a totally ordered alphabet. Atabloidof shape� overA is a filling of the boxes of a Ferrers diagram of shape� with

letters ofA. A tabloid is called aYoung tableauwhen its rows and its columns consist, respectively, of non-decreasing and strictly
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increasing sequences of letters ofA. One can see below aYoung tableau of shape(2,2,4) overA = {a1< · · ·<a5}.

One associates with any Young tableauT overA the monomialAT which is the product of all letters ofA that occur in the
different boxes ofT. One has for instanceAT = a31 a

2
2 a3 a4 a5 for T theYoung tableau of the last example. TheSchur function

s�(A) associated with the partition� is then defined as the sum of all monomialsAT for T running over all Young tableaux
of shape�. We recall that the Schur functions are symmetric polynomials that form a linear basis of the algebra of symmetric
polynomials overA (cf. [11, Section 1.3]).

2.2. Knuth’s bijection

Knuth’s bijection is a famous one-to-one correspondence between{0,1}-matrices and pairs of Young tableaux of conjugate
shapes (cf.[9]). It is based on thecolumn insertionprocess which is a classical combinatorial construction that we present now.
LetA be a totally ordered alphabet. The fundamental step of the column insertion process associates with a lettera ∈ A and a
Young tableauT overA a newYoung tableauT (a) overA defined as follows.

1. If a is strictly larger than all the entries of the first column ofT, the tableauT (a) is obtained by puttinga in a new box at the
top of the first column ofT.

2. Otherwise, one can consider the smallest entrybof the first column ofTwhich is greater than or equal toa. The tableauT (a)

is then obtained by replacingb by a and by applying recursively our insertion scheme, starting now by trying to insertb in
the second column ofT. Our process continues until a replaced entry can go at the top of the next column or until it becomes
the only entry of a new column.

One can easily check thatT (a) is always aYoung tableau. Moreover, our process can be reverted if one knows which new box
it created. Let noww = a1 . . . aN be a word overA. The result of the column insertion process applied tow is theYoung tableau
obtained by column inserting successivelya1, . . . , aN as described above, starting from the emptyYoung tableau.

Note 2.1. TheYoung tableau which is obtained by applying the column insertion process to a wordw = a1 . . . aN overA is the
same as the tableau obtained by applying the row insertion process (i.e. Schensted’s algorithm) to its mirror imagew̃=aN . . . a1
(see[6] for more details).

We are now in the position to present Knuth’s construction. LetM be a matrix from the setMN×N({0,1}) of square{0,1}-
matrices of orderN. Knuth’s bijection associates withM a pair(P,Q) ofYoung tableaux with conjugate shapes over the alphabet
[1, N ] as described below.

1. Construct the 2-row arrayAN which results by listing theN2 pairs(i, j) of [1, N ] × [1, N ] in lexicographic order, i.e.

AN =
(
1 . . . 1 2 . . . 2 . . . . . . N . . . N

1 . . . N 1 . . . N . . . . . . 1 . . . N

)
.

2. Take in this array all the entries corresponding to the 1’s ofM in order to get an array

A(M) =
(
u1 u2 . . . . . . ur
v1 v2 . . . . . . vr

)
.

3. Form the wordw1(M) = v1 . . . vr obtained by reading from left-to-right the bottom entries (the entries of the second row)
ofA(M). The column insertion process applied tow1(M) gives theYoung tableauP.

4. Form finally the second Young tableauQ by placing for everyi ∈ [1, r] the ith elementui of the first row ofA(M) in the
box which is conjugate to theith box created during the column insertion process that led toP.

By reversing the steps of the described construction, we can recover the arrayA(M) (and hence our matrixM) from the pair
(P,Q). We find the box in whichQ has the largest entry; if there are several equal entries, the box that is farthest to the right
is selected. Then we perform the reverse column insertion toP starting with the conjugate of the selected box and remove the
selected box fromQ. We obtain a new pair of Young tableaux with conjugate shapes and perform the same procedure up to the
moment when we get two emptyYoung tableaux.
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Example 2.2. Let us consider the matrix

M =
(0 0 1
1 0 0
0 1 1

)
.

Then the arraysA3 andA(M) are, respectively, equal to

and A(M) =
(
1 2 3 3
3 1 2 3

)
where inA3 we boxed the entries corresponding to the 1’s ofM. Thus,w1(M) = (3,1,2,3). Knuth’s bijection associates with
M the following pair of Young tableaux of conjugate shapes:

We now present a variant of Knuth’s bijection that we will need in the sequel (see also[6, Section A.4.3]). LetM be again
a matrix ofMN×N({0,1}). One can associate withM a new pair(R, S) of Young tableaux with conjugate shapes over the
alphabet[1, N ] which is constructed as follows.

1. Construct first the 2-row arraỹAN which is equal to the sequence of theN2 pairs(i, j) of [1, N ] × [1, N ] taken in the
following order:

ÃN =
(
N . . . N . . . . . . 2 . . . 2 1 . . . 1
1 . . . N . . . . . . 1 . . . N 1 . . . N

)
.

2. Take in this array all the entries corresponding to the 1’s ofM. We get an arraỹA(M).
3. Form the word̃w1(M) obtained by reading from left-to-right the bottom entries ofÃ(M). The column insertion process

applied tow̃1(M) gives theYoung tableauR.
4. Form finally the second Young tableauS from R andÃ(M) using the conjugate sliding process (see[6, Section A.4.3]for

more details) applied tõw1(M). Now, we will briefly describe this process. To this purpose, let us first set

Ã(M) =
(
ũ1 . . . ũr
ṽ1 . . . ṽr

)
.

To construct the secondYoung tableauS, we apply the following procedure:

• Start with one single box containing̃u1.
• For eachi in [2, r], apply successively the following rules.

◦ Add an empty box conjugate to theith box that appears during the construction of theYoung tableauRand slide there
the greater of its two neighbours to the left or below. If the two neighbours have the same entry, the one below is chosen.
If there is only one neighbour, it is chosen by abuse of terminology. This creates a new empty box. This sliding process
continues until the empty box is the first one of the first column.

◦ Put in this box, the following entrỹui .

At the end of this procedure, we get theYoung tableauS. The tableauxRandSare then of conjugate shape.
The following symmetry result connects then the two previous constructions (cf.[6, Section A.4.3]for more details).

Theorem 2.3(Knuth [9] ). Let M be a matrix ofMN×N({0,1}) and let tM be the transpose of M. Let(P,Q) be the result
of Knuth’s bijection applied to M and let(R, S) be the result of the process described above applied totM. Then one has
(P,Q) = (S, R).
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Example 2.4. Take again the matrixM of Example 2.2. The transpose ofM is

tM =
(0 1 0
0 0 1
1 0 1

)
.

Then the arrays̃A3 andÃ(tM) are, respectively, given by

and Ã(tM) =
(
3 3 2 1
1 3 3 2

)
,

where inÃ3 we boxed the entries corresponding to the 1’s oftM. Thusw̃1(
tM)= (1,3,3,2). The above construction associates

with tM the following pair(R, S) ofYoung tableaux:

2.3. Plactic relations

The column insertion process canalso bedescribed algebraically by the plactic formalismdevelopedby Lascoux andSchützen-
berger (cf.[10]) that we will now present. LetA be a totally ordered alphabet. Theplactic monoidis the monoid constructed
overA and subject to the following relations (discovered by Knuth (cf.[9])):

aba ≡ baa, bba ≡ bab for everya <b ∈ A,

acb ≡ cab, bca ≡ bac for everya <b<c ∈ A.

Two words overA are identified under the plactic relations if and only if the Young tableaux obtained by applying the column
insertion process to their mirror images are equal (cf.[6,10]).
We now present an important property of the plactic monoid that we will use in the sequel. LetT be a Young tableau over

A. One can associate withT a wordw(T ) overA by reading the columns ofT from top to bottom and left to right. The words
associated withYoung tableaux in such a way are calledtableau words. For instance, the tableau word associated with theYoung
tableauT at the end of Section 2.1 isw(T ) = a3 a2 a1 a5 a2 a1 a1 a4. Note that applying the column insertion to the mirror
image of a tableau wordw(T ) yields the tableauT. Observe also (see[6, Section 2.1]or [10]) that a word overA is equivalent
with respect to the plactic relations to a unique tableau word (which is therefore associated with theYoung tableau given by the
column insertion process applied to the mirror image ofw).

3. Performance analysis of demodulation protocols

3.1. Demodulation with diversity

Our initial motivation for studying Barrett’s formula came from mobile communications. The probabilityP(U <V ) given
by formula (1) appears indeed naturally in the performance analysis of demodulation methods based on diversity which are
standard in such a context. In order to motivate more strongly our paper, we first present in details this last situation.
We consider a model where one transmits an informationb ∈ {−1,+1} on a noisy channel.1 A referencer =1 is also sent on

the noisy channel at the same time asb. We assume that we receiveN pairs(xi(b), ri )1� i�N ∈ (C × C)N of data (thexi(b)s)
and references (theris)

2 that have the following form

xi(b) = aib + �i for every 1� i�N,

ri = ai
√

�i + �′
i

for every 1� i�N,

1 This situation corresponds to Binary Phase Shift Keying (BPSK).
2 This situation corresponds to spatial diversity, i.e. when more than one antenna is available, but also to multipath reflexion contexts. These

two types of situations typically occur in mobile communications.



408 D. Krob, E.A. Vassilieva /Discrete Applied Mathematics 145 (2005) 403–421

Fig. 2. Two possible noisy bitsx(1) andx(−1) and a noisy referencer in the caseN = 1.

whereai ∈ C is a complex number that models the channel fading associated withxi(b),
3 where�i ∈ R+ is a positive real

number that represents the excess of signal-to-noise ratio (SNR) which is available for the referenceri
4 and where�i ∈ C

and�′
i
∈ C denote finally two independent complex white Gaussian noises. We also assume that everyai is a complex random

variable distributed according to a centered Gaussian density of variance�i for everyi ∈ [1, N ].
According to these assumptions, all observables of our model, i.e. the pairs(xi(b), ri )1� i�N , are complex Gaussian random

variables. We finally also assume that theseN observables areN independent random variables which have their image inC2.
Under these hypotheses it is proved in[3] that

log

(
P(b = +1 |X)

P (b = −1 |X)

)
=

N∑
i=1

4�i
√

�i
1+ �i (�i + 1)

(xi(b) | ri ) (3)

with X = (xi(b), ri )1� i�N and where(� | �) denotes the Hermitian scalar product. The demodulation decision is based on the
associated Bayesian criterium. One indeed decides thatbwas equal to 1 (resp., to−1) when the right-hand side of Formula (3)
is positive (resp., negative).
Intuitively this means that one decides that the valueb = 1 was sent when thexi(b)s are more or less globally in the same

direction than theris.Fig. 2 illustrates the caseN = 1 and one can see that a noisy referencer has a positive (resp., negative)
Hermitian scalar product with a noisy informationxwhenx corresponds to a small pertubation of 1 (resp.,−1).
The bit error probability (BER) of our model is the probability that the valueb = 1 was decoded in−1, i.e. the probability

that one had

N∑
i=1

4�i
√

�i
1+ �i (�i + 1)

(xi(1) | ri )<0.

Using the parallelogram identity, it is now easy to rewrite this last probability as

P

 N∑
i=1

|ui |2 −
N∑

j=1

|vi |2<0

 ,

whereui andvi denote for everyi ∈ [1, N ] the two variables defined by setting

ui =
(

�i
√

�i
1+ �i (�i + 1)

)1/2
(xi(1) + ri ) and vi =

(
�i
√

�i
1+ �i (�i + 1)

)1/2
(xi(1) − ri ).

Our various hypotheses imply then immediately that theuis and thevis are independent complex Gaussian random variables.
Hence, the performance analysis of our model relies exactly on Barrett’s Formula (2) as already indicated in the introduction of

3 Fading is typically the result of the absorption of the signal by buildings. Its complex nature comes from the fact that it models both an
attenuation (its modulus) and a dephasing (its argument).

4 This number�i is usually greater or equal to 1. In practice however, one often takes�i = 1.
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our paper (cf. Formula (1)). It is also interesting to point out the explicit relation between the values of�i and�i appearing in
Barrett’s formula and the�i and�i which is the following:

�i = 2
�i (�i + 1)

1+ �i (�i + 1)

(√
�i + �i

√
�i
)

and �i = 2
�i (�i + 1)

1+ �i (�i + 1)

(√
�i − �i

√
�i
)

with �i = (�i + 1)(�i�i + 1).

3.2. Barrett’s formula

As we saw in the last section, Barrett’s formula is connected with the performance analysis of demodulation methods based
on diversity. More generally, the performance analysis of many other practical digital transmission systems is based on the
computation of the probability that a given Hermitian quadratic formq in complex centered Gaussian variables is negative.
Numerous examples of such situations can be found for instance in Proakis’s standard textbook (cf.[12]).
The problem of computing such a probability was therefore addressed by several researchers from signal processing. A first

formula for this probability was derived by Turin (cf.[15]) and used later by Barrett (cf.[1]) who expressed it as a rational
function of the eigenvalues of the covariance matrix associated withq. Formula (2) appears then as a special case of this more
general result of Barrett. Alternate methods based either on contour integration or on algebraic manipulations (as in[8] or in
annex B of[12]) provide other approaches that involve numerical quadrature of trigonometric functions.
However, all thesemethods lead to algorithms that are not numerically stable due to the presence of artificial singularities such

as the situation�i = �j in Barrett’s formula (2).
5 The first efficient and stable method for computing the probabilityP(U <V )

defined by (1) was obtained by Dornstetter et al. (cf.[4]) using techniques from the theory of symmetric functions (cf.[5]). For
the sake of completeness, we recall below their algorithm.
Step1: Consider the two polynomialsX(z) and�(z) of R[z] defined by setting

X(z) =
N∏
i=1

(1− �i z) and �(z) =
N∏
i=1

(1+ �i z).

Step2: Compute the unique polynomial�(z) of R[z] of degreed(�)�N − 1 such that

�(z)X(z) + 	(z)�(z) = 1

where	(z) stands for some polynomial ofR[z] of degreed(	)�N − 1.
Step3: Evaluate�(0) = P(U <V ) .
The efficiency and the numerical stability of this algorithm come from the fact that the second step of the above method can

be realized by the classical generalized Euclidean algorithm which has the two above-mentioned properties.

3.3. The combinatorial version of Barrett’s formula

Using Barrett’s formula, it was proved (cf.[5]) that Formula (1) reduces to

P(U <V ) = F(�, �)∏
1� i,j �N(�i + �j )

, (4)

whereF(�, �) denotes the symmetric (with respect to the�is and the�js) polynomial

F(�, �) =
∑

�⊆(NN−1)

s
(�,N)

({�1, . . . , �N })s(�,N)({�1, . . . , �N }), (5)

(�, N) representing the complement of the partition(�, N) in the squareNN (cf. [5]). Recall thats�(X) denote the Schur function
associated with the partition� over the alphabetXwhich is equal by definition to the sum of all monomialsXT , defined as the
product of all variables ofX involved inT, for T running over all possibleYoung tableaux of shape�.

5 These last singularities typically create numerical problems in the context of demodulation with diversity described in Section 3.1, where
one must deal both with�is and�is that are very close to each other.
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Fig. 3. A typical example of complementary fillings of a square tableau.

From this combinatorial interpretation of a Schur function, it follows that themonomials involved in the right-hand side of Eq.
(5) are exactly the monomials obtained by taking the product of the elements of all square tableaux of shape(NN) consisting
of twoYoung tableaux of complementary shapes (cf.Fig. 1of Section 2.1) that respect the two constraints:

• ConditionB1: the first Young tableau is only filled by variables that belong to the ordered alphabet� = {�1< · · ·< �N } and
the length of its first row is equal to N.

• ConditionB2: the secondYoung tableau is only filled by variables that belong to the ordered alphabet� = {�1< · · ·< �N }.

A typical example of such a combinatorial structure is given inFig. 3. The first tableau is written there in the usual way. On the
other hand, the second tableau is organized differently: its rows (resp., its columns) are placed from top-to-bottom (resp. from
right-to-left) in the space corresponding to the complement of the first tableau within the square(NN). Note, finally that the
tableaux formed out in such a way are examples of the so-called(k, l)—semi-standard tableaux in the sense of Remmel (see
[13] or [14]).

Example 3.1. ForN = 2, Barrett’s formula reduces to

P(U <V ) = �1�2(�
2
1 + �1�2 + �22) + (�1 + �2)(�

2
1�2 + �1�

2
2) + �21�

2
2

(�1 + �1)(�1 + �2)(�2 + �1)(�2 + �2)

and one can check that the eight monomials occurring in the numerator of this last expression are exactly the products of the
entries of the following eight combinatorial structures:

The complexity of Formula (4) is O(N2
N) where
N denotes the number of monomials involved in its numerator or

equivalently the number of square tableaux of shape(NN) filled as in the typical example ofFig. 3. Unfortunately,
N =2N
2−1

(see below) from which it follows that Formula (4) is impracticable whenN grows. This combinatorial formula is however not
useless since it leads to efficient expressions for several interesting specializations of Barrett’s formula (cf. Section 6). Formula
(4) can also be reformulated in terms of the algorithm given at the end of Section 3.2,which is both practically efficient (its
complexity is quadratic as Barrett’s formula) and numerically stable as already stated (cf.[4,5]).

Proposition 3.2. The number
N of square tableaux of shape(NN) filled by two complementary Young tableaux satisfying

conditionsB1 andB2 is equal to
N = 2N
2−1 .

Proof. Let us denote byP(t) the polynomial ofN[t] that results from the substitution in the numeratorF(�, �) (of the right-hand
side of (4)) of�i and�i by t

i for everyi ∈ [1, N ]. Then a combination of Formulas (2) and (4) yields

P(t) =
∏

1� i,j �N

(ti + tj )

 N∑
k=1

 ∏
1� j 	=k�N

1

1− tj−k

N∏
j=1

1

1+ tj−k

 . (6)
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Note now that the special casez = 0 in the following partial fraction expansion

1∏N
i=1 (1− t iz)

∏N
i=1 (1+ t iz)

=
N∑
k=1

1

1− tkz

 N∏
j=1
j 	=k

1

1− tj−k

N∏
j=1

1

1+ tj−k



+
N∑
k=1

1

1+ tkz

 N∏
j=1

1

1+ tj−k

N∏
j=1
j 	=k

1

1− tj−k


leads immediately to the identity

N∑
k=1

 ∏
1� j 	=k�N

1

1− tj−k

N∏
j=1

1

1+ tj−k

= 1

2
(7)

from which we deduce that one has

P(t) = 1

2

 ∏
1� i,j �N

(ti + tj )

 .

One can now immediately conclude that
N = P(1) = 2N
2−1 which completes our proof.�

We will add finally that the proof of Proposition 3.2 is purely analytic. A bijective proof that explains better this result is now
coming (see Section 5).

4. Column words and their complements

This section is devoted to the presentation of several combinatorial results of independent interest concerning column words
that will be used in the sequel in our paper.

4.1. Column words

LetAbe a totally ordered alphabet.We recall that acolumn(of lengthk) overA is just aYoung tableau of shape 1k = (1, . . . ,1)
overA. If P = {p1< · · ·<pr } is a subset ofA, we denote by[P ] or by [pr , . . . , p1] the unique column of lengthr filled with
all letters ofP. We also denote byC(A)= {[P ], P ⊂ A} the set of all columns overA (including the empty column denoted by
[ ]). A word over the alphabetC(A) is then said to be acolumn word.
It is important to note that one can associate with every Young tableauT over A a column word[T ] which is just the

concatenation of the columns ofT (considered now as letters ofC(A)) read from left-to-right. The column word associated with
theYoung tableau given at the end of Section 2.1 is for instance equal to[a3 a2 a1] [a5 a2 a1] [a1] [a4].
The column words associated withYoung tableaux can be characterized using the partial order� on the alphabetC(A) which

is defined as follows. LetP = {p1< · · ·<pr } andQ= {q1< · · ·<qs} be two subsets ofA. Then one says that[P ]�[Q] if one
hass�r andpi �qi for every 1� i�s. In other words, the column[P ] is less or equal to the column[Q] if and only if one
gets aYoung tableau when putting[Q] at the right of[P ]. It is then easy to see that each column word associated with aYoung
tableau is a non-decreasing column word (with respect to�) and that conversely each non-decreasing column word encodes a
Young tableau.6

Example 4.1. LetA={a <b<c}. Then one hasC(A)={ [ ], [a], [b], [c], [ba], [ca], [cb], [cba] } and the associated partial
order� is given by the Hasse diagram below.

6This last encoding is however not one-to-one due to the fact that the empty column is allowed in the context of column words.
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We need one further notation. IfP = {p1< · · ·<pr } andQ = {q1< · · ·<qs} are two subsets ofA such thatpr <q1, then
we denote by[Q,P ] the unique column of lengthr + s which is filled by all the elements ofP andQ.

4.2. Complement of a column word

Let P andQ be two subsets of a totally ordered alphabetA. The column[P ] is said to be thecomplement(within A)
of the column[Q], denoted by[Q], if and only if one hasP = A\Q. More generally, thecomplementof a column word
[w] = [P1] . . . [Pn] ∈ C(A)∗ is the column word[w] defined by setting[w] = [Pn] . . . [P1].
We can now give the following important result that will be used in the next section when we will deal with complementation

ofYoung tableaux.

Proposition 4.2. The complement of a non-decreasing column word is a non-decreasing column word.

Proof. The proof of our result is based on the two following lemmas, whose proofs can be easily made by suitable inductions
and that are left to the reader.

Lemma 4.3. Let P and Q be two subsets of A such that each element of P is strictly less than each element of Q. Then one has
[P ]�[Q,P ].

Lemma 4.4. Let P and Q be two subsets of A of the same cardinality such that[P ]�[Q]. Then for the complements of the
columns constructed on P and Q, one has[Q]�[P ].

LetPandQbe two subsets ofAsuch that each element ofP is strictly less than each element ofQ. Let alsoRbe another subset
of A of the same cardinality thanP. Suppose finally that the inequality[Q,P ]�[R] holds. Then as an immediate consequence
of the two last lemmas, one has[R]�[Q,P ]. This ends the proof of our result.�

Note 4.5. Observe that Proposition 4.2 shows that the complement[T ] of the column word[T ] associated with aYoung tableau
T overA also naturally encodes aYoung tableau called thecomplement(within A) of T (see[10] p. 140).

4.3. Complementation and plactic equivalence

LetAbe a totally ordered alphabet. Let us then denote by� thenatural projectionofC(A)∗ ontoA∗, i.e. themorphism defined
by setting�([P ]) = pr . . . p1 for every subsetP = {p1< · · ·<pr } of A. The following result (that can be seen as an extension
of Property 3.4 of[10]) gives a simple condition for the plactic equivalence≡ to be preserved under complementation. Remind
that the length of a column word[u] is its number of columns (not the number of letters in the word�([u])!).

Theorem 4.6. Let [u] and [v] be two column words ofC(A)∗ that have the same length. Then one has�([u]) ≡ �([v]) if and
only if one has�([u]) ≡ �([v]).

Proof. Let us first prove two lemmas that correspond to two special cases of our theorem (i.e. the situations where[u]=[ ][Q,p]
and[v] = [Q][p] for the first lemma, and where all columns involved in[u] and[v] are reduced to letters ofA for the second
lemma).

Lemma 4.7. Let p be an element of A and let Q be a subset of A such that p is strictly less than each element of Q. Then one
has�([p] [Q]) ≡ �([Q,p][A]).

Proof. Let �(A) be the maximal element of the totally ordered alphabetA and letq+ denote the immediate successor inA
of any elementq ∈ A distinct of�(A). The interpretation of the plactic equivalence in terms of the column insertion process
allows then to show that one hasq ′�([q]) ≡ �([q])q ′ whenq ′ 	= q andq�([q]) ≡ �([q+])q+ whenq 	= �(A). We are now in
position to prove that one has

�([p] [Q]) ≡ �([Q,p][A]).
We will start from its left-hand side and use the first of the two identities established above to bring all the elements{q ∈
[Q], q >p} to the left with respect to[p]. In the similar way, we will use the second identity to move all the elements{q ∈
[Q], q�p} to the left with respect to[p]. This leads to the desired relation and ends the proof.�
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Lemma 4.8. Leta1 . . . an ∈ A∗ andb1 . . . bn ∈ A∗ be two equivalent(with respect to the plactic relations) words over A. Then
one has�([an] . . . [a1]) ≡ �([bn] . . . [b1]).

Proof. This lemma follows immediately from the fact the plactic relations are stable under complementation as shown in the
proof of Property 3.4 of[10]. �

Let now [u] = [P1] . . . [PN ] and [v] = [Q1] . . . [QN ] be two column words ofC(A)∗ of the same lengthN such that
�([u]) = a1 . . . an and�([v]) = b1 . . . bn are plactically equivalent words ofA∗. Let us denote bypi the number of letters ofA
involved in the columnPi for every 1� i�N . Using the fact that the identity�([ ]p1−1[P1] . . . [ ]pN−1[PN ]) ≡ �([a1] . . . [an])
can be obtained by using only relations of the type[ ][Q,p] ≡ [Q][p], one can now deduce from Lemma 4.7 and from the fact
that�([A]) commutes with every letter ofA that one has

�([u][A]n−N) ≡ �([PN ][A]pN−1 . . . [P1][A]p1−1) ≡ �([an] . . . [a1]).
Symmetrically one can also prove that�([v][A]n−N) ≡ �([bn] . . . [b1]). Using Lemma 4.8, one deduces from these relations
that�([u][A]n−N) ≡ �([v][A]n−N), from which it is immediate to obtain that�([u]) ≡ �([v]) according to the interpretation
of the plactic equivalence in terms of the column insertion process.�
Let us denote bỹ� themirror projectionofC(A)∗ ontoA∗, i.e. the anti-morphism7 defined by setting̃�([P ])=p1 . . . pr for

every subsetP = {p1< · · ·<pr } of A. We are now in the position to show how the column insertion process acts with respect
to complementation of column words.

Corollary 4.9. Let [w] be a column word ofC(A)∗ of length n, let T be the Young tableau obtained by applying the column
insertion process tõ�([w]) and let m be the number of columns of T. Then the Young tableau obtained by applying the column
insertion process tõ�([w]) is the Young tableau naturally associated with the non-decreasing column word[A]n−m[T ].

Proof. Observe first that onemust havem�ndue to the structure of the column insertion process.Our result follows immediately
from Theorem 4.6 applied to the two column words[w] and[T ][ ]n−m and from the basic properties of the plactic equivalence
(cf. Section 2.3). �

Example 4.10.Let us takeA = {1,2,3} and[w] = [3][21][3]. Then we get�([w]) = 3213 and̃�([w]) = 3123. Applying the
column insertion process tõ�([w]), we get theYoung tableau

Hence we havem=2 andn−m=1. Observe that[w]=[21][3][21] and̃�([w])=12312.Applying the column bumping process
to �̃([w]), we get theYoung tableau

5. A bijective proof of Proposition 3.2

Proposition 3.2 gave us the number
N of monomials involved inF(�, �) in a purely analytic way. In particular, its proof did

not provide any insight, neither on the structure ofF(�, �), nor on the simplicity of the fact that one has
N = 2N
2−1 which

is indeed remarkable. This section will be devoted to the construction of a bijective proof that explains this result more deeply.
This bijection will also help us for studying a number of specializations of Barrett’s formula of practical interest (see Section 6).

5.1. A more general combinatorial structure

Let us first introduce a natural generalization of the combinatorial structures that appeared in Section 3.3, that is to say the set
TN of all square tableaux of shape(NN) divided as in this last section into two complementary Young tableaux (but without

7 That is to say a mapping̃� satisfying̃�([P1] . . . [Pn]) = �̃([Pn]) . . . �̃([P1]) for every[P1] . . . [Pn] ∈ C(A)∗.
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Fig. 4. Two typical elements ofT6.

any constraint on them) filled by elements of the alphabets� and�, respectively. The twoYoung tableaux that form an element of
TN will again be organized as already depicted in Section 3.3. The following picture shows two typical examples of elements
ofT6 (Fig. 4).
As we will see in the sequel, it is in fact possible to construct a bijection betweenTN and the setMN×N({0,1}) of all square

{0,1}-matrices of sizeN, which implies that the cardinality ofTN is equal to 2N
2
. It follows then from this last result that


N = 2N
2−1 due to the fact that the number of elements ofTN whose first tableau has a first row of lengthN is obviously (use

the symmetry with respect to the main diagonal of the square(NN) and exchange the role of the alphabets� and� in order to
pass from one case to the other) equal to the number of elements ofTN whose second tableau has a first row of lengthN (which
means equivalently that the first tableau has a first row of length strictly less thanN).

5.2. Description of the bijection

We now present our bijection betweenMN×N({0,1}) andTN . Our construction is based on a slight variation of the well-
knownKnuth correspondence (cf. Section 2.2) that has an interesting symmetry property which is used to derive some practically
important specializations of Barrett’s formula.
Let M be a matrix ofMN×N({0,1}). We apply first Knuth’s bijection (as described in Section 2.2) toM in order to get a

pair (P,Q) of Young tableaux of conjugate shapes� and� .̃ We then associate withQ a newYoung tableauQ of shape� (the
complementary partition of� within the square(NN)) which is defined as follows.

• We denote first the length of� bym (or equivalently the number of columns ofQ). We then decide (by abuse of terminology)
thatQ also has columns indexed by integers strictly greater thanmwhich are all empty.

• We can now define a unique tabloidQ of shape� by requiring that for everyi ∈ [1, N ] theith column ofQ consists exactly of
all the letters of the alphabet{1, . . . , N}, sorted in increasing order from bottom-to-top, that do not appear in the(N − i+1)th
column ofQ.

Observe that the columnwordobtainedby reading from left-to-right the columnsofQ (consideredhere as letters ofC({1, . . . N}))
is equal to[A]N−m[Q]. It follows then immediately from Proposition 4.2 that the tabloidQ is also aYoung tableau.
Hence,�(M) = (P,Q) is a pair of complementaryYoung tableaux within the square(NN). To obtain from it an element of

TN , it suffices to associate with each entryi of P (resp.,Q) the letter�i (resp.,�i ) of the alphabet� (resp.,�). We denote by

(M) the element ofTN that corresponds in such a way to the initial matrixM. Since the mappingQ → Q is one to one,�
is clearly a bijection betweenMN×N({0,1}) and pairs of Young tableaux of complementary shapes over the alphabet[1, N ]
while
 is a bijection betweenMN×N({0,1}) andTN .

Example 5.1. Let us continue Example 2.2. Knuth’s bijection applied to the matrixM introduced in this example gives a pair
(P,Q) of tableaux of conjugate shapes� = (1,1,2) and� ˜= (1,3). The shape� = (2,3), complementary to the shape� within
the square(33), provides the shape of the tableauQ. Filling in its entries by taking (in the reverse order) the complements in
{1,2,3} of the entries of the columns ofQ, we obtain the tableau
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The element
(M) ofT3 associated withM is then the following rewriting of the pair(P,Q):

5.3. Symmetry properties of the bijection

In this section, we present of a strong symmetry property of the bijection
. We start by giving first a new method for
constructing the secondYoung tableauQ associated by
 with a given{0,1}-matrixM.

1. Construct the 2-row arrayBN which results by listing theN2 pairs(i, j) of [1, N ] × [1, N ] in lexicographic order with
respect to the second entry, i.e.

BN =
(
1 . . . N 1 . . . N . . . . . . 1 . . . N

1 . . . 1 2 . . . 2 . . . . . . N . . . N

)
.

2. Select in this array all the entries corresponding to the 0’s ofM.We obtain then a wordw2(M) by reading the top components
of the selected entries. The result of the column insertion process applied tow2(M) is aYoung tableauQ′.

It turns out that theYoung tableauQ′ obtained in this way is exactly the secondYoung tableauQ constructed by the bijection
�, presented in Section 5.2, when applied to the matrixM.

Proposition 5.2. Let M be amatrix ofMN×N({0,1}), letQ be the secondYoung tableau constructed by the bijection� applied
to M and letQ′ be theYoung tableau constructed as above. Then one hasQ′ = Q.

Proof. LetM be a matrix ofMN×N({0,1}) and lettM be its transpose matrix. Let̃AN be the 2-row array associated withtM
as defined in Section 2.2 and letBN be the 2-row array associated withM as defined above. Let us then associate with these two
2-row arrays the two following column words[u(M)] and[v(M)] of lengthN defined by setting:

• [u(M)]= [I1] . . . [IN ]whereIi denotes the sequence (possibly empty) of the entries, written from right to left, of the second
row of ÃN corresponding to the 1’s of theith row of tM;

• [v(M)] = [JN ] . . . [J1] whereJi denotes the sequence (possibly empty) of the entries, written from right-to-left, of the first
row ofBN corresponding to the 0’s of theith column ofM.
For instance, if we take thematrixM of Example 2.2, we have[u(M)]=[2][3][31] (cf. Example 2.4) and[v(M)]=[2][21][31]

(cf. Example 5.3 that follows).
The reader can now check that one always has[v(M)]=[u(M)] (as can be observed in the previous example). Our proposition

follows then fromCorollary 4.9 due to the fact thatQ is the result of the column insertion process applied tow̃1(M)= �̃([u(M)])
according to Theorem 2.3 and thatQ′ is the result of the column insertion process applied tow2(M) = �̃([v(M)]) according to
the construction presented above.�

Example 5.3. This example continues Examples 2.2 and 5.1. In this case, we have

where we boxed the entries that correspond to the 0’s of the associatedmatrixM. Hencew2(M)=(1,3,1,2,2). Then the column
insertion process applied tow2(M) gives theYoung tableau

The following symmetry result is now an immediate consequence of the new intepretation of the bijection� that follows from
the construction given above and Theorem 2.3.
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Corollary 5.4. Let M be a matrix ofMN×N({0,1}) and let(P,Q′) be the result of the bijection� applied to M. Then the
result of the bijection� applied to the matrixs0,1(

tM) obtained by exchanging the 0’s and the 1’s in the transpose matrixtM
of M is equal to(Q′, P ).

Example 5.5. Let us consider again the matrixM of Example 2.2. Then one has

s0,1(
tM) =

(1 0 1
1 1 0
0 1 0

)
.

The reader can then easily check thatw1(s0,1(
tM)) = (1,3,1,2,2) andw2(s0,1(

tM)) = (3,1,2,3) from which it follows that
(taking here again all the notations of the previous examples)

6. Some specializations of Barrett’s formula

In this section, we show how the bijection constructed in Section 5 can be effectively used to find explicit expressions for
several specializations of Barrett’s formula.

6.1. Matrices involved in the combinatorial version of Barrett’s formula

Let us denote byNN the set of all square matricesM ofMN×N({0,1}) such that the length of the first row of the firstYoung
tableauP associated withM by the bijection� (constructed in Section 5.2) is exactly equal toN. Furthermore, let	(t) stand for
the monomial obtained by taking the product of all entries of an elementt of TN . According to the results of Section 3.3, the
symmetric polynomialF(�, �) defined by relation (5), i.e. the nominator of the combinatorial expression (4) of the probability
of error (1), can be expressed as

F(�, �) =
∑

M∈NN

	(
(M)), (8)

where
 stands for the second bijection constructed in Section 5.2.
In order to better understand the combinatorial version of Barrett’s formula, we will explore the fine structure ofNN . Let

againM be a matrix ofMN×N({0,1}). Observe that the length of the first row of theYoung tableauPassociated by�withM is
exactly the length of the longest non-increasing subsequence inw1(M) according to Greene’s theorem (cf.[7] or [6, Chapter 3])
and to the construction ofP (cf. Section 2.2). Since a non-increasing subsequence inw1(M) corresponds to a strictly increasing
subsequence, for the North–East order,8 in the set of the entries ofM associated with 1’s, we get the following characterization
ofNN .

Proposition 6.1. A matrixM ∈ MN×N({0,1}) belongs toNN if and only if there exists a sequence of 1’s of length N in M
such that the corresponding entries form a strictly increasing sequence(of length N) in the North–East order.

Example 6.2. Let us consider again the matrix of Example 5.5, denoted here byM ′, i.e.

The entries associated with the three 1’s ofM ′ boxed on the above picture correspond to the strictly increasing sequence
(3,2)≺NE(2,2)≺NE(1,3) in the North–East order. According to Proposition 6.1,M ′ belongs therefore toN3, which just

8We define the North–East order≺NE over[1, N ]2 by setting(i, j)≺NE(k, l) if and only if i > k andj � l.
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means that the length of the first row of the first tableau associated by� toM ′ is equal to 3 as it can be directly checked in
Example 5.5.

Note 6.3. LetM be a matrix ofMN×N({0,1}). Then for everyk ∈ [1, N ], let us consider:
• the largest numberL0(M, k) that can be realized as the sum of the lengths ofk disjoint sequences (possibly empty) of 0’s in
M such that the corresponding sequences of entries are strictly increasing for the South–East order;9

• the largest numberL1(M, k) that can be realized as the sum of the lengths ofk disjoint sequences (possibly empty) of 1’s in
M such that the corresponding sequences of entries are strictly increasing for the North–East order.
We also define by conventionL0(M,0)=L1(M,0)=0. Greene’s theorem (cf.[7] or [6, Chapter 3]) used in connection with

the constructions of Sections 2.2 and 5.3 shows that

• L0(M, k) − L0(M, k − 1) is equal to the length of thekth column ofQ′,
• L1(M, k) − L1(M, k − 1) is equal to the length of thekth row ofP,
for everyk ∈ [1, N ], if we set�(M)= (P,Q′). Proposition 5.2 then implies that the following simple, but surprising, identity

always holds for everyk ∈ [1, N ]:
L0(M, k) − L0(M, k − 1) + L1(M,N − k + 1) − L1(M,N − k) = N.

As an illustration of these results, let us again consider the matrixM of Example 2.2, i.e.

Then one hasL0(M,1) = 2, L0(M,2) = 4, L0(M,3) = 5, L1(M,1) = 2, L1(M,2) = 3, L1(M,3) = 4 (the corresponding
subsequences of 0’s and 1’s are boxed, circled and triangled in the above picture) from which it is easy to check all the results
of this note.

LetM be a matrix ofNN . According to Proposition 6.1 and to the definition of the North–East order, there exists a sequence
� of lengthN of 1’s inM such that the corresponding sequence of entries has the form�′ = ((N − k + 1, jk))1�k�N where
(jk)1�k�N stands for an increasing sequence of integers of[1, N ]. One can obviously encode such a sequence of 1’s by the
pseudo-composition10 p(�) = (pk)1�k�N of N defined by lettingpk to be the number (possibly equal to zero) of 1’s of�
that belong to thekth column ofM.11 We denote byp(M) the greatest (in the lexicographic order onNN ) pseudo-composition
that can be associated in such a way withM. The setNN can then be partitioned as

NN =
⋃

p∈PN

Np,N (9)

wherePN denotes the set of all pseudo-compositions of lengthN of N and whereNp,N stands for the set of all matrices
M ∈ NN whose associated pseudo-permutationp(M) is equal top.
Let us now associate with every pseudo-compositionp=(p1, . . . , pN ) ofPN the integer	(p) defined as the smallest element

	 of [1, N ] such thatp1 + · · · + p	 = N . The following result gives a fine characterization of the matrices ofNp,N .

Proposition 6.4. Letp = (p1, . . . , pN ) be a pseudo-composition ofPN . Furthermore, let also(jk)1�k�N denote the unique
increasing sequence of integers defined by demanding every k in[1, N ] to be repeatedpk times. A matrix M belongs toNp,N

if and only if it satisfies the two following properties:

• ConditionC1: for everyk ∈ [1, N ], the(N − k + 1, jk)-entry of M is equal to1;
• ConditionC2: for everyk ∈ [1, 	(p) − 1], the(N − (p1 + · · · + pk), k)-entry of M is equal to0.

9We define the South–East order≺SE over[1, N ]2 by setting(i, j)≺SE(k, l) if and only if i < k andj � l.
10A pseudo-composition of an integerN is a sequence of non-negative integers (including 0) whose sum isN.
11The sequence(jk)1� k�N that characterizes�′ (or equivalently�) as described above, is indeed the unique increasing sequence ofN

elements of[1, N ] obtained by repeating each integerk ∈ [1, N ] exactlypk times.
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Proof. ConditionC1 is equivalent to the existence ofNvalues 1 inMwhose associated entries forma strictly increasing sequence
for theNorth–East order encoded by the pseudo-permutationp. On the other hand, conditionC2 expresses that no greater pseudo-
permutation can be associated with a strictly increasing (for the North–East order) sequence ofN entries corresponding to 1’s of
M. �

Example 6.5. Let us consider the matrixM ∈ M3×3({0,1}) defined by setting

The sequences�1 and�2 of 1’s ofM given by the associated sequences of entries

�′
1 = ((3,1)≺NE(2,2)≺NE(1,3)) and �′

2 = ((3,1)≺NE(2,3)≺NE(1,3))

are the unique sequences of length 3 of 1’s inM whose corresponding sequences of entries are strictly increasing for the
North–East order. Sincep(�1) = (1,1,1) andp(�2) = (1,0,2), we getp(M) = (1,1,1). One can also check that Proposition
6.4 holds: we boxed (resp., circled) here the entries ofM that are constrained by Condition C1 (resp., C2) as expected.

6.2. A first specialization :�i = � and�i = � for every i

Let us consider the situation where all�i ’s are equal to some fixed value� and all�i ’s to some fixed value�. Then according
to relation (8), the symmetric polynomialF(�, �) defined by relation (5) reduces to the two variable polynomial

F1(�, �) =
N2∑
i=N

�i�
N2−i�i (10)

where�i denotes the number of matrices ofNN with i 1’s andN2− i 0’s (the above expression comes from the fact that�i =0
for every 0� i�N − 1 since every matrix ofNN has at leastN 1’s). It now follows from relation (9) and from Proposition 6.4
that one has

�i =
N∑

	=1

∑
p∈PN
	(p)=	

(
N2 − (N + 	 − 1)

i − N

)
(11)

since havingi 1’s in a matrix ofNp,N means placingi − N 1’s (N 1’s are already constrained by condition C1) in the

N2 − (N + 	(p) − 1) positions not taken both by theN 1’s fixed by Condition C1 and by the	(p) − 1 0’s fixed by Condition
C2. Now note that the number of pseudo-compositionsp ofPN such that	(p)= 	 is just the number of integer solutions of the
equationi1 + · · · + i	 = N with i	 �1 or equivalently of the equationi′1 + · · · + i′	 = N − 1 (without any constraint), which
is classically known to be equal to the binomial coefficient of order(N − 1, N − 2+ 	) (cf. [2]). It follows then from relation
(11) that one has

�i =
N∑

	=1

(
N − 2+ 	
N − 1

) (
N2 − N − 	 + 1

i − N

)
.

Substituting this last value in relation (10), we obtain

F1(�, �)=
N2∑
i=N

 N∑
	=1

(
N − 2+ 	
N − 1

) (
N2 − N − 	 + 1

i − N

) �N
2−i�i

=
N−1∑
	=0

 N2−N∑
i=0

(
N2 − N − 	

i

)
�N

2−N−	−i�i

( N − 1+ 	
N − 1

)
�	�N

= �N

N−1∑
	=0

(
N − 1+ 	
N − 1

)
(� + �)N

2−N−	�	


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from which the following simple formula for the specialization of the probability of error (12) that we are presently studying
can now easily be deduced:

P1(U <V ) =
(

�

�

)N
N−1∑

	=0

(
N − 1+ 	
N − 1

)(
�

� + �

)N+	
 . (12)

Note that Formula (12) was already obtained in[4] by purely analytic methods.

6.3. Two other specializations

In order to illustrate the genericity of our bijective method, we now show how it can be applied in two special cases that can
also occur in practice (cf. Section 3.1). Our first example (cf. Section 6.3.1) was discussed asymptotically in[4]. We deal below
with it in full generality. In our second example (cf. Section 6.3.2) we give an explicit formula (different from Barrett’s formula)
for a specialization that has not been considered before.

6.3.1. A first situation :�i = � for every i
Let us consider the situation where�i is equal to some fixed value� for everyi ∈ [1, N ], but no restriction is imposed on

the�i ’s. According to relation (8) and to the results of Sections 5.2 and 5.3, the symmetric polynomialF(�, �) reduces to the
multivariable polynomial

F2(�1, . . . , �N, �) =
∑

i1,...,iN �0

0� i1+···+iN �N2−N

�i1,...,iN �i11 . . . �iN
N

�N
2−(i1+···+iN ), (13)

where�i1,...,iN stands for the number of matrices ofNN that have exactlyik 0’s in theirkth row for everyk ∈ [1, N ]. Let us
now associate with everyp = (p1, . . . , pN ) ofPN its complementary pseudo-compositionp̃ = (p̃1, . . . , p̃N ) which is defined
by settingp̃k to be equal to the number of indicesi ∈ [1, N ] such thatp1 + · · · + pi = N − k. It should be observed that̃pk

is the number of 0’s that any matrix ofNp,N is forced to contain in itskth row because of Condition C2. It then follows from
relation (9) and from Proposition 6.1 that one has

�i1,...,iN =
∑

p=(p1,...,pN )∈PN

N∏
k=1

(
N − 1− p̃k

ik − p̃k

)
(14)

since havingik 0’s in thekth row of a matrix ofNp,N means placingik − p̃k 0’s (p̃k 0’s are justified by condition C2) in the
N − 1− p̃k possible positions of thekth row not taken both by the unique 1 forced by condition C1 and by thep̃k 0’s forced by
Condition C2. A combination of relations (13) and (14) gives now immediately the formula

P2(U <V ) = 1∏N
i=1 (�i + �)N


∑
p∈PN

i1,...,iN �0

0� i1+···+iN �N2

N∏
k=1

(
N − 1− p̃k

ik − p̃k

)
�i11 . . . �iN

N
�N

2−(i1+···+iN )

 (15)

for the current specialization of the probability of error (1) that we are studying here. From Formula (15), the reader can also
easily get the asymptotic evaluation obtained in[4] that corresponds to the situation� → 0.

6.3.2. A second situation :�i = � and�i = � for i�m

Let us fixm ∈ [1, N ]. We now consider the situation where for 1� i�m the variable�i is equal to some fixed value� and
the variable�i is equal to some fixed value�, while form + 1� i�N both�i and�i are equal to 1. Then, according to relation
(8) and to the results of Sections 5.2 and 5.3, the symmetric polynomialF(�, �) reduces to the two variable polynomial

F3(�, �) =
mN∑
i,j=0


i,j�
i�j , (16)
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where
i,j denotes the number of matrices ofNN with exactlyi 0’s in theirmfirst rows andj 1’s in their firstmcolumns. Let
p = (p1, . . . , pN ) be an element ofPN and letp̃ = (p̃1, . . . , p̃N ) be its complementary pseudo-composition. Going back to
Proposition 6.1, one can easily check that the following properties hold for every matrixM ∈ Np,N :

• the number of 0’s whose entries are enforced by Condition C2 to belong to the[1,m] × [1,m] square is equal to�0(m, p)=
min(m, p̃1 + · · · + p̃N ) −min(m, p̃m+1 + · · · + p̃N ),

• the number of 1’s whose entries are enforced by Condition C1 to belong to the[1,m] × [1,m] square is equal to�1(m, p)=
max(0, p1 + · · · + pm − (N − m)),

• the number of 0’s whose entries are enforced by Condition C2 to belong to the[m + 1, N ] × [1,m] rectangle is equal to
�0(m, p) =min(p̃m+1 + · · · + p̃N ,m),

• the number of 1’s whose entries are enforced by Condition C1 to belong to the[m + 1, N ] × [1,m] rectangle is equal to
�1(m, p) = p1 + · · · + pm − �1(m, p) =min(N − m,p1 + · · · + pm),

• the number of 0’s whose entries are enforced by Condition C2 to belong to the[1,m] × [m + 1, N ] rectangle is equal to

0(m, p) = p̃1 + · · · + p̃m − �0(m, p),

• the number of 1’s whose entries are enforced by Condition C1 to belong to the[1,m] × [m + 1, N ] rectangle is equal to

1(m, p) = m − �1(m, p) =min(m,N − (p1 + · · · + pl)).

Due to the fact that havingj 1’s in the firstmcolumns andi 0’s in the firstm rows ofM means that there exist exactlyk 1’s (for
somek ∈ [0, j ]) whose entries belong to[1,m]× [1,m], j −k 1’s whose entries belong to[m+1, N ]× [1,m] andi− (m2−k)

0’s whose entries belong to[m+1, N ]× [1, N ], one can now easily check that from relation (9), from Proposition 6.1 and from
our last considerations it follows that one has


i,j =
∑

p∈PN

j∑
k=0

(
m2 − �(m, p)

k − �1(m, p)

)(
m(N − m) − �(m, p)

j − k − �1(m, p)

)(
m(N − m) − 
(m, p)

i − (m2 − k) − 
0(m, p)

)
, (17)

wherewe set�(m, p)=�0(m, p)+�0(m, p),�(m, p)=�0(m, p)+�1(m, p) and
(m, p)=
0(m, p)+
1(m, p).A combination
of relations (16) and (17) leads immediately to an explicit formula (that we will not write down) for the current specialization of
the probability of error (1) that we are studying here. We leave it as an exercise to the reader to deduce from this (non written)
formula the asymptotic evaluations of our probability of error corresponding to the two situations� → 0 and� → 0.
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