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Abstract

This paper is devoted to the presentation of a combinatorial approach for analyzing the performance of a generic family of
demodulation methods used in mobile telecommunications. We show that a fundamental formula in this context is in fact highly
connected with a slight modification of a very classical bijection of Knuth between pairs of Young tableaux of conjugate shapes
and{0, 1}-matrices. These considerations allowed us to obtain the first explicit expressions for several important specializations
of the performance evaluation formula that we studied.
© 2004 Elsevier B.V. All rights reserved.
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1. Introduction

Modulating a numeric signal means to transform it into a wave form. Modulation is therefore a technique of main interest in
a number of engineering domains such as computer networks, mobile communications, satellite transmissions, etc. Due to their
practical importance, modulation methods were of course widely studied in signal processing. The classical Proakis textbook
devotes for instance a full chapter to this subject[(c2, Chapter 5} One should also point out that one of the most important
problems in this area is to be able to evaluate the performance characteristics of the optimum receivers associated with a given
modulation method, which reduces to the computation of various probabilities of errors (seflag&@hapter 5]

Among the different families of modulation protocols used in practice, an important class consists in methods where the
modulation reference (i.e. a fixed digital sequence) is also modulated and transmitted. In this kind of situation, the demodulation
decision needs to take into account several noisy informations (the transmitted signal, the transmitted reference, but also copies
of these two signals). It turns out that the probability of errors appearing in such contexts leads very often to the computation of
the following type of probability:

N N
PU<V)=P|U=Y uP<v=> [uP]. (1)
i=1 i=1

* Corresponding author.
E-mail addressesdk@lix.polytechnique.f(D. Krob), katya@lix.polytechnique.ffE.A. Vassilieva)..

0166-218X/$ - see front matter © 2004 Elsevier B.V. All rights reserved.
doi:10.1016/j.dam.2004.05.005


http://www.elsevier.com/locate/dam
mailto:dk@lix.polytechnique.fr
mailto:katya@lix.polytechnique.fr

404 D. Krob, E.A. Vassilieva/ Discrete Applied Mathematics 145 (2005) 403—-421

e|loe 0|0 ||
0|0 | |00 |0
L IO IO IR IRe N Ko
GO0
(o3 IO IR IO IO IR
Lol IR IR IO IR o Ko

Fig. 1. Two complementary partitions.:= (1, 1, 2, 3) and/ = (2,4, 5, 6, 6, 6).

where the:; andy; s stand for independent centered complex Gaussian random variables with variances deBpieddy= L
andE[|v; 2] = §; for everyi € [1, N] (see also Section 3.2).

The problem of computing explicitely this last probability was hence studied by several researchers from signal processing
(cf. [1,8,12,15). The most interesting result in this direction was obtained by Barretfl(gfwho proved that the probability
defined by (1) is equal to

N

N 1 1
PU<V)=)"_ (]_[ =y I1 ) 2)

—1.
k=1 \j#k j=1 1407

This last formula can also be described in a purely combinatorial way, using Young tableaux (cf. Section 3.2). This new approach
has already led to the first, both algorithmically efficient and numerically stable, practical method for computing the probability
P(U < V) (cf. Section 3.2 of4,5]). In this paper, we continue the combinatorial study of Barrett's formula by connecting it
with a very classical bijection of Knuth (df6, Section A.4.3]r [9]) between pairs of Young tableaux of conjugate shapes and
{0, 1}-matrices. These considerations allowed us in particular to get the first explicit expressions for several specializations of
formula (2) (cf. Section 6).

2. Background
2.1. Partitions and Young tableaux

A partition is a finite non-decreasing sequerce (11, 42, ..., 4) Of positive integers. The numbar of elements ofl. is
called thelengthof the partitioni. One can represent each such partitidsy aFerrers diagramof shape, that is to say by a
diagram ofZ; + - - - + A, boxes whoséth row contains exactly; boxes for every Xi <m. The Ferrers diagram associated
with the partition/ = (2, 2, 4) is for instance given below.

The conjugatepartition A~ of a given partition’ is the partition obtained by reading the heights of the columns of the Ferrers
diagram associated with For instance, for the partitioh= (2, 2, 4) of the above figure, we have = (1, 1, 3, 3).

WhenA is a partition whose Ferrers diagram is contained into the square represented by the pattitoflv, ..., N) with
N rows of length, one can also define themplementarpartition . of 2 which is the conjugate of the partitiorwhose Ferrers
diagram is the complement (read from bottom to top) of the Ferrers diagrarimahe squaréN"). Note that this definition
is relative to a given sizbl and that the square does not have to be the smallest one contaifiaginstance, foiv = 6 and
J=(1,1,2,3), we havev = (3,4,5,5,6,6) and’ = (2, 4,5, 6, 6, 6) (seeFig. 1).

Let A be a totally ordered alphabet.tAbloid of shapel overA is a filling of the boxes of a Ferrers diagram of shapeith
letters ofA. A tabloid is called ¥oung tableawhen its rows and its columns consist, respectively, of non-decreasing and strictly
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increasing sequences of lettersfofOne can see below a Young tableau of shé&@, 4) overA = {a1 < - - - <asg}.

aslas
as|as
alla a1|a4|

One associates with any Young tablétover A the monomiald” which is the product of all letters &% that occur in the

different boxes of. One has for instance’ = ai’" a% azagq as for T the Young tableau of the last example. T®&hur function

5;(A) associated with the partitiohis then defined as the sum of all monomial§ for T running over all Young tableaux
of shapel. We recall that the Schur functions are symmetric polynomials that form a linear basis of the algebra of symmetric
polynomials oveA (cf. [11, Section 1.3}

2.2. Knuth's bijection

Knuth’s bijection is a famous one-to-one correspondence bety@df-matrices and pairs of Young tableaux of conjugate
shapes (cf[9]). It is based on theolumn insertiorprocess which is a classical combinatorial construction that we present now.
Let A be a totally ordered alphabet. The fundamental step of the column insertion process associates with a letserd a
Young tablead” overA a new Young tableail (a) overA defined as follows.

1. If ais strictly larger than all the entries of the first columnlothe tablead («) is obtained by putting in a new box at the
top of the first column of.
2. Otherwise, one can consider the smallest éntrfthe first column off which is greater than or equal@The tablead (a)
is then obtained by replacirtgby a and by applying recursively our insertion scheme, starting now by trying to ib$ert
the second column &f. Our process continues until a replaced entry can go at the top of the next column or until it becomes
the only entry of a new column.

One can easily check th@t(a) is always a Young tableau. Moreover, our process can be reverted if one knows which new box
it created. Letnoww =ay . ..ay be aword oveA. The result of the column insertion process applied te the Young tableau
obtained by column inserting successively . .., ay as described above, starting from the empty Young tableau.

Note 2.1. The Young tableau which is obtained by applying the column insertion process to awerd . . . ay overAis the
same as the tableau obtained by applying the row insertion process (i.e. Schensted’s algorithm) to its miride=mmgge. ag
(se€[6] for more details).

We are now in the position to present Knuth’s construction.Nldte a matrix from the se# y « v ({0, 1}) of square{0, 1}-
matrices of ordeN. Knuth’s bijection associates wit¥ a pair(P, Q) of Young tableaux with conjugate shapes over the alphabet
[1, N] as described below.

1. Construct the 2-row array which results by listing thev?2 pairs(i, j) of [1, N] x [1, N]in lexicographic order, i.e.

Av = 1 ... 1 2 ... 2 ... N ... N
N=\1 .. N1 .. N ... 1 ... N)
2. Take in this array all the entries corresponding to the 1Id @f order to get an array
,%(M):(ul u2 ... u,)
v U2 ... vy

3. Form the wordw1 (M) = v1 ... v, Obtained by reading from left-to-right the bottom entries (the entries of the second row)
of .«Z/(M). The column insertion process appliedt@(M) gives the Young tableaR®.

4. Form finally the second Young tableQuby placing for every € [1, r] theith elementy; of the first row of.«/(M) in the
box which is conjugate to thi¢h box created during the column insertion process that I€d to

By reversing the steps of the described construction, we can recover the-a¢idy (and hence our matrikl) from the pair

(P, Q). We find the box in whiclQ has the largest entry; if there are several equal entries, the box that is farthest to the right
is selected. Then we perform the reverse column insertiédhdtarting with the conjugate of the selected box and remove the
selected box fron®. We obtain a new pair of Young tableaux with conjugate shapes and perform the same procedure up to the
moment when we get two empty Young tableaux.
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Example 2.2. Let us consider the matrix

0 0 1
M:(l 0 0).
011

Then the arrays/3 and.«/ (M) are, respectively, equal to

» (11223)
3:
1 23] [1] 2 3 1[2] 8] ] g ,,o/(M):<l 23 3)

312 3

where in.«73 we boxed the entries corresponding to the 1'MofThus,w1 (M) = (3, 1, 2, 3). Knuth’s bijection associates with
M the following pair of Young tableaux of conjugate shapes:

3]
1 1]3]3

We now present a variant of Knuth’s bijection that we will need in the sequel (se¢6alSection A.4.3). Let M be again
a matrix of .y« n ({0, 1}). One can associate witti a new pair(R, S) of Young tableaux with conjugate shapes over the
alphabefl, N] which is constructed as follows.

1. Construct first the 2-row arraQN which is equal to the sequence of thé pairs (i, j) of [1, N] x [1, N] taken in the
following order:

o (N N 2 .02 1 ... 1
N=\1 ... N . 1 ... N1 .. N)

2. Take in this array all the entries corresponding to the 1l dfVe get an array?i(M);v

3. Form the wordi1(M) obtained by reading from left-to-right the bottom entries«6{M). The column insertion process
applied tow1 (M) gives the Young tableaR.

4. Form finally the second Young table&drom R and.Z (M) using the conjugate sliding process (§&eSection A.4.3for
more details) applied t@1(M). Now, we will briefly describe this process. To this purpose, let us first set

;i(M): (u} Lfr).

v ... Uy

To construct the second Young tableguwve apply the following procedure:

e Start with one single box containing .
e Foreach in [2, r], apply successively the following rules.

o Add an empty box conjugate to thid box that appears during the construction of the Young talfReand slide there
the greater of its two neighbours to the left or below. If the two neighbours have the same entry, the one below is chosen.
If there is only one neighbour, it is chosen by abuse of terminology. This creates a new empty box. This sliding process
continues until the empty box is the first one of the first column.

o Putin this box, the following entry;.

At the end of this procedure, we get the Young tabl8alihe tableauR andSare then of conjugate shape.
The following symmetry result connects then the two previous constructior{§ (&ection A.4.3for more details).

Theorem 2.3(Knuth[9]). Let M be a matrix ofM v ({0, 1}) and let'M be the transpose of M. L&P, Q) be the result
of KnutHs bijection applied to M and letR, S) be the result of the process described above appliddtoThen one has
(P, Q)=(S R).
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Example 2.4. Take again the matrikl of Example 2.2. The transpose dfis

010
t1\4:(001).
10 1

Then the arrays?g; and{;/(‘M ) are, respectively, given by

- 3[3] 2 2[2] 1[1] 1
2[3] 1 23] 1[2] 3 and 5/(9\4):(3 3 2 1)

o =
1 3 3 2)°

where infé/g we boxed the entries corresponding to the 1'96f Thuswy (!M) = (1, 3, 3, 2). The above construction associates
with 131 the following pair(R, S) of Young tableaux:

3]
1[3[3]  [1]3]

2.3. Plactic relations

The columninsertion process can also be described algebraically by the plactic formalism developed by Lascoux and Schiitzen-
berger (cf.[10]) that we will now present. LeA be a totally ordered alphabet. Th&actic monoidis the monoid constructed
overA and subject to the following relations (discovered by Knuth[@jf)):

aba = baa, bba =bab foreverya<be A,
ach = cab, bca =bac foreverya<b<ce A.

Two words ovelA are identified under the plactic relations if and only if the Young tableaux obtained by applying the column
insertion process to their mirror images are equal[6L0]).

We now present an important property of the plactic monoid that we will use in the sequ@&lbeed Young tableau over
A. One can associate witha wordw(T') overA by reading the columns &f from top to bottom and left to right. The words
associated with Young tableaux in such a way are cadlblau wordsFor instance, the tableau word associated with the Young
tableauT at the end of Section 2.1 i8(T) = azap a1 asap ay aj aq. Note that applying the column insertion to the mirror
image of a tableau word (7') yields the tablead. Observe also (s€6, Section 2.1pr [10]) that a word oveA is equivalent
with respect to the plactic relations to a unique tableau word (which is therefore associated with the Young tableau given by the
column insertion process applied to the mirror image/pf

3. Performance analysis of demodulation protocols
3.1. Demodulation with diversity

Our initial motivation for studying Barrett’s formula came from mobile communications. The probaBility< V') given
by formula (1) appears indeed naturally in the performance analysis of demodulation methods based on diversity which are
standard in such a context. In order to motivate more strongly our paper, we first present in details this last situation.
We consider a model where one transmits an informatian{—1, +1} on a noisy channdi. A reference- =1 is also senton
the noisy channel at the same timeba%Ve assume that we receilegpairs(x; (b), r;)1<i< N € (C x C)V of data (thex; (b)s)
and references (tht;s)2 that have the following form

xi(by = ajb+v; forevery I<i<N,
ri = ay/p; +v; forevery I<i<N,

1 This situation corresponds to Binary Phase Shift Keying (BPSK).
2 This situation corresponds to spatial diversity, i.e. when more than one antenna is available, but also to multipath reflexion contexts. These
two types of situations typically occur in mobile communications.
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Fig. 2. Two possible noisy bits(1) andx(—1) and a noisy referenaein the casev = 1.

whereq; € C is a complex number that models the channel fading associated mith3 wherep; € Rt is a positive real
number that represents the excess of signal-to-noise ratio (SNR) which is available for the refétennd wherey; € C
andvg € C denote finally two independent complex white Gaussian noises. We also assume that e/argomplex random
variable distributed according to a centered Gaussian density of vasiafmeeveryi € [1, N].

According to these assumptions, all observables of our model, i.e. theépairs ;)1 <, < v, are complex Gaussian random
variables. We finally also assume that thdkebservables arll independent random variables which have their imag@4n
Under these hypotheses it is proved3hthat

N
log(P(b:+1|X)> 3 4ai/Bi

Pb=-11Xx)) "

1+O<i(ﬁi+1)(xi(b)|ri) 3

i=1

with X = (x; (b), r;)1<i < y @and whergx | ») denotes the Hermitian scalar product. The demodulation decision is based on the
associated Bayesian criterium. One indeed decidedtivas equal to 1 (resp., tol) when the right-hand side of Formula (3)
is positive (resp., negative).

Intuitively this means that one decides that the vadiute 1 was sent when the; (b)s are more or less globally in the same
direction than the;s. Fig. 2illustrates the cas& = 1 and one can see that a noisy referenbas a positive (resp., negative)
Hermitian scalar product with a noisy informatigmvhenx corresponds to a small pertubation of 1 (resgl).

The bit error probability (BER) of our model is the probability that the vdlue 1 was decoded ir-1, i.e. the probability
that one had

N
b <o
o1t o (B +1)
Using the parallelogram identity, it is now easy to rewrite this last probability as
N N
PAY uil? =Y il <o],
i=1 j=1
whereu; andv; denote for every € [1, N] the two variables defined by setting
1/2 1/2
/By /By
R (1 . R (1) — 7).
. <1+ 0 By + 1)) (i and v <1+o«i<ﬁi Tp) WOmw

Our various hypotheses imply then immediately thatitfeand they; s are independent complex Gaussian random variables.
Hence, the performance analysis of our model relies exactly on Barrett's Formula (2) as already indicated in the introduction of

3 Fading is typically the result of the absorption of the signal by buildings. Its complex nature comes from the fact that it models both an
attenuation (its modulus) and a dephasing (its argument).
4This numberp; is usually greater or equal to 1. In practice however, one often f&kesl.
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our paper (cf. Formula (1)). It is also interesting to point out the explicit relation between the valyearafo; appearing in
Barrett's formula and the; andp; which is the following:

=2 D (o) and 5 =2 D (7o)

T Tl (B + D) 1+ (B +1)

with Ai = (OCi + 1)(0(,'&' +1).
3.2. Barrett's formula

As we saw in the last section, Barrett's formula is connected with the performance analysis of demodulation methods based
on diversity. More generally, the performance analysis of many other practical digital transmission systems is based on the
computation of the probability that a given Hermitian quadratic foyin complex centered Gaussian variables is negative.
Numerous examples of such situations can be found for instance in Proakis’s standard textjagg (cf.

The problem of computing such a probability was therefore addressed by several researchers from signal processing. A first
formula for this probability was derived by Turin (dfL5]) and used later by Barrett (dfl]) who expressed it as a rational
function of the eigenvalues of the covariance matrix associatedqwibrmula (2) appears then as a special case of this more
general result of Barrett. Alternate methods based either on contour integration or on algebraic manipulatidi®} ¢asrin
annex B of[12]) provide other approaches that involve numerical quadrature of trigonometric functions.

However, all these methods lead to algorithms that are not numerically stable due to the presence of artificial singularities such
as the situatiod; = d; in Barrett's formula (2P The first efficient and stable method for computing the probabflity < V)
defined by (1) was obtained by Dornstetter et al. @) using techniques from the theory of symmetric functions[f. For
the sake of completeness, we recall below their algorithm.

Stepl: Consider the two polynomials(z) andA(z) of R[z] defined by setting

N N
X@=[]0-z2 and 4@ =]]Q+d2.
i=1 i=1

Step2: Compute the unique polynomialz) of R[z] of degreel(n) <N — 1 such that
()X (2) + p(2)4(z) =1
wherepu(z) stands for some polynomial &f(z] of degreed(u) <N — 1.
Step3: Evaluater(0) = P(U < V).

The efficiency and the numerical stability of this algorithm come from the fact that the second step of the above method can
be realized by the classical generalized Euclidean algorithm which has the two above-mentioned properties.

3.3. The combinatorial version of Barrett's formula

Using Barrett’s formula, it was proved (db]) that Formula (1) reduces to

F(y, o
P(U<V)= L 4
[licijenGi+9))
whereF (y, §) denotes the symmetric (with respect to je and thej ;s) polynomial
Frd)= Y s v Dsgny (1. ox ), ()

AS(NN-1)

(4, N) representing the complement of the partitién~) in the squarev? (cf.[5]). Recall that ; (X) denote the Schur function
associated with the partitiohover the alphabeX which is equal by definition to the sum of all monomi&$, defined as the
product of all variables oX involved inT, for T running over all possible Young tableaux of shape

5These last singularities typically create numerical problems in the context of demodulation with diversity described in Section 3.1, where
one must deal both witlp; s andd; s that are very close to each other.
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X6(X5[X4|X3|X2|X1
05 [ X6[X5[X4[X2|X1
04|05 |06 | X4|X3|X2
03|03 |05 [X5|X4|X3
52 52 (53 (54 X4|X3
0101|0202 |02 |03

Fig. 3. A typical example of complementary fillings of a square tableau.

From this combinatorial interpretation of a Schur function, it follows that the monomials involved in the right-hand side of Eq.
(5) are exactly the monomials obtained by taking the product of the elements of all square tableaux ¢Néhppensisting
of two Young tableaux of complementary shapesFaj. 1 of Section 2.1) that respect the two constraints:

e ConditionB1: the first Young tableau is only filled by variables that belong to the ordered alphabgt; <--- <Jdy} and
the length of its first row is equal to.N
e ConditionB2: the second Young tableau is only filled by variables that belong to the ordered alpkabef < - - - <y}

A typical example of such a combinatorial structure is giveRim 3. The first tableau is written there in the usual way. On the
other hand, the second tableau is organized differently: its rows (resp., its columns) are placed from top-to-bottom (resp. from
right-to-left) in the space corresponding to the complement of the first tableau within the $fjifareNote, finally that the
tableaux formed out in such a way are examples of the so-cdllég—semi-standard tableaux in the sense of Remmel (see

[13] or [14]).

Example 3.1. For N = 2, Barrett’s formula reduces to

1172(02 + 0192 + 33) + (11 + 12) (9302 + 0103) + 6203
(11 + 01 (1 + 02) (2 + 01) (2 + 92)

PWU<V)=

and one can check that the eight monomials occurring in the numerator of this last expression are exactly the products of the
entries of the following eight combinatorial structures:

X1|X2 X1|X2 X1(X2 0o | X1 0o | X2 d9 X1 0o X2 02|09
01(01| [01]62] |62]|02| [61]01]| [01]01]| [01|d2]| |[d1]|d2| |61]d1].

b ) ) i ) ) )

The complexity of Formula (4) is CNZyN) wherey, denotes the number of monomials involved in its numerator or
equivalently the number of square tableaux of sh@p¥) filled as in the typical example fig. 3 Unfortunatelyyy = oN?-1
(see below) from which it follows that Formula (4) is impracticable whigrows. This combinatorial formula is however not
useless since it leads to efficient expressions for several interesting specializations of Barrett’s formula (cf. Section 6). Formula
(4) can also be reformulated in terms of the algorithm given at the end of Section 3.2,which is both practically efficient (its
complexity is quadratic as Barrett's formula) and numerically stable as already stat@d5pf.

Proposition 3.2. The numbery, of square tableaux of shapg@v?) filled by two complementary Young tableaux satisfying
conditionsB1 andB2 is equal toyy = 2V°~1.

Proof. Letus denote by (z) the polynomial ofN[¢] that results from the substitution in the numeraftay, 6) (of the right-hand
side of (4)) ofy; andd; by ¢* for everyi € [1, N]. Then a combination of Formulas (2) and (4) yields

P [ 1 M~
ro= [ «+d{2 [1 1—ti=k Hll—H/—k ’ ©
J=

1<i,j<N k=1 \1<j#k<N
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Note now that the special case= 0 in the following partial fraction expansion

1 _i 1 ﬁ 1 ﬁ 1
l_[lN:]_(l—liZ)nlNzl(l-i-tiZ) k=1 1_tkz J;% 1_t]_k j=1 l+tj_k
J
al 1
+Zl+lkz Ul+zl kl_[ 1—1i=k

leads immediately to the identity

N

1 Moo 1
Z 1_[ 1—¢tj—k jl_[:l1+ti*" 2 "

k=1 \1<j#k<N

from which we deduce that one has

P(t):% [T «+H

1<i,j<N
One can now immediately conclude that = P(1) = 2V?*~1 which completes our proof.(]

We will add finally that the proof of Proposition 3.2 is purely analytic. A bijective proof that explains better this result is now
coming (see Section 5).

4. Column words and their complements

This section is devoted to the presentation of several combinatorial results of independent interest concerning column words
that will be used in the sequel in our paper.

4.1. Column words

LetAbe a totally ordered alphabet. We recall thablumn(of lengthk) overA s just a Young tableau of shapkx (1, ..., 1)
overA. If P ={p1<---< pr}isasubset of, we denote byP] or by [p,, ..., p1] the unique column of lengthfilled with
all letters ofP. We also denote by(A) = {[P], P C A} the set of all columns oveX (including the empty column denoted by
[1). A word over the alphabef(A) is then said to be eolumn word

It is important to note that one can associate with every Young tableawer A a column word[T] which is just the
concatenation of the columns©fconsidered now as letters 6 A)) read from left-to-right. The column word associated with
the Young tableau given at the end of Section 2.1 is for instance equajdg a1] [as a2 a1] [a1] [aal.

The column words associated with Young tableaux can be characterized using the partigl@ndbe alphabet'(A) which
is defined as follows. LeP = {p1 <--- < p,} andQ = {¢g1 < - - - < g5} be two subsets dk. Then one says thaP]<[Q] if one
hass <r and p; <g; for every 1<i <s. In other words, the columpP] is less or equal to the coluni®@] if and only if one
gets a Young tableau when putting] at the right off P]. It is then easy to see that each column word associated with a Young
tableau is a non-decreasing column word (with respeet)tand that conversely each non-decreasing column word encodes a
Young tableatf.

Example 4.1. Let A={a <b <c}. Thenone ha®(A) ={[1, [al, [p], [c], [bal, [cal, [cb], [cha]} and the associated partial
orderx is given by the Hasse diagram below.

[cba] — [ba] — [ca] — [cb]

! |
o] o 2 []

6 This last encoding is however not one-to-one due to the fact that the empty column is allowed in the context of column words.
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We need one further notation. K = {p1 <--- < p,} andQ = {gq1 < - - - < ¢,} are two subsets @& such thatp, < ¢1, then
we denote by Q, P] the unique column of length+ s which is filled by all the elements & andQ.

4.2. Complement of a column word

Let P and Q be two subsets of a totally ordered alphaBetThe column[P] is said to be thecomplemen{within A)
of the column[Q], denoted by[Q], if and only if one hasP = A\ Q. More generally, theomplemenbf a column word
[w] =[P1]...[Py] € 6(A)* is the column wordw] defined by settingw] =[P, ]...[P1].

We can now give the following important result that will be used in the next section when we will deal with complementation
of Young tableaux.

Proposition 4.2. The complement of a non-decreasing column word is a non-decreasing column word.

Proof. The proof of our result is based on the two following lemmas, whose proofs can be easily made by suitable inductions
and that are left to the reader.

Lemma 4.3. Let P and Q be two subsets of A such that each element of P is strictly less than each element of Q. Then one has
[PI<IO. P1.

Lemma 4.4. Let P and Q be two subs%ofﬁof the same cardinality such[fhigt[Q]. Then for the complements of the
columns constructed on P and @ne haq Q]<[P].

LetP andQ be two subsets &t such that each elementBis strictly less than each element@fLet alsoR be another subset
of A of the same cardinality tha. Suppose finally that the inequalif@, P1<[R] holds. Then as an immediate consequence
of the two last lemmas, one hgB]<[Q, P]. This ends the proof of our resultJ

Note 4.5. Observe that Proposition 4.2 shows that the complefifgraf the column word T'] associated with a Young tableau
T overA also naturally encodes a Young tableau calledcthraplemengwithin A) of T (seg[10] p. 140).

4.3. Complementation and plactic equivalence

LetAbe atotally ordered alphabet. Let us then denote thyenatural projectionof #(A)* ontoA*, i.e. the morphism defined
by settingn([P]) = pr ... p1 for every subseP = {p1 < - - - < p,} of A. The following result (that can be seen as an extension
of Property 3.4 0f10]) gives a simple condition for the plactic equivalere¢o be preserved under complementation. Remind
that the length of a column woid] is its number of columns (not the number of letters in the wdifd])!).

Theorem 4.6. Let[«] and[v] be two column words of (A)* that have the same length. Then one hd&]) = =n([v]) if and
only if one hast([u]) = n([v]).

Proof. Letus first prove two lemmas that correspond to two special cases of our theorem (i.e. the situatiofislwtielf@, p]
and[v] = [Q][p] for the first lemma, and where all columns involvedif and[v] are reduced to letters @ffor the second
lemma).

Lemma 4.7. Let p be an element of A and let Q be a subset of A such that p is strictly less than each element of Q. Then one
hasn([p] [Q]) = =n([Q, pI[A]).

Proof. Let w(A) be the maximal element of the totally ordered alphabend letg™ denote the immediate successorin

of any elemeny € A distinct of w(A). The interpretation of the plactic equivalence in terms of the column insertion process
allows then to show that one ha$t([¢]) = n([q])q’ wheng’ # ¢ andgn([q]) = n([gT1)gT wheng # w(A). We are now in
position to prove that one has

n([p] [0D) = =((Q, pI[AD.

We will start from its left-hand side and use the first of the two identities established above to bring all the elgments
[Q], g > p} to the left with respect tgp]. In the similar way, we will use the second identity to move all the elemgnts
[0O], g < p} to the left with respect tfp]. This leads to the desired relation and ends the proif.
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Lemma 4.8. Letay ...a, € A* andby ... b, € A* be two equivalengwith respect to the plactic relatiopsvords over A. Then
one hast([a,]...[a1]) = n([(by]...[b1]).

Proof. This lemma follows immediately from the fact the plactic relations are stable under complementation as shown in the
proof of Property 3.4 of10]. O

Let now [u] = [P1]...[Py] and [v] = [Q1]...[Qn] be two column words of6(A)* of the same lengtiN such that
n([u]) =a1...a, andn([v]) = b1...by are plactically equivalent words @f*. Let us denote by; the number of letters ok
involved in the columrP; for every 1< < N. Using the fact that the identity([ 172~ L[ Py]...[ 1PV I[Py ]) = n(la1]. . . [an))
can be obtained by using only relations of the tygeQ, p] = [Q][p], one can now deduce from Lemma 4.7 and from the fact
thatn([A]) commutes with every letter & that one has

2([llA]"™N) = n(PyIIAIPY L TPOIAYY™Y) = n(an] .. . Tag)).

Symmetrically one can also prove thedv][A]"™N) = n([by] .. .[b1]). Using Lemma 4.8, one deduces from these relations
thatz([ul[A]"N) = a(v][A]"~ "), from which it is immediate to obtain tha{[u]) = =([v]) according to the interpretation
of the plactic equivalence in terms of the column insertion proceSs.

Let us denote b§ themirror projectionof #(A)* onto A*, i.e. the anti-morphism defined by setting([P1)= p1 . .. p, for
every subseP = {p1 <--- < p,} of A. We are now in the position to show how the column insertion process acts with respect
to complementation of column words.

Corollary 4.9. Let[w] be a column word o#(A)* of length nlet T be the Young tableau obtained by applying the column
insertion process t&([w]) and let m be the number of columns of T. Then the Young tableau obtained by applying the column
insertion process t@([w]) is the Young tableau naturally associated with the non-decreasing columnAwfrd” [T'].

Proof. Observe firstthat one must haue< n due to the structure of the column insertion process. Our result follows immediately
from Theorem 4.6 applied to the two column wofdg and[7T][ ]*~™ and from the basic properties of the plactic equivalence
(cf. Section 2.3). O

Example 4.10. Let us takeA = {1, 2, 3} and[w] = [3][21][3]. Then we getr([w]) = 3213 andr([w]) = 3123. Applying the
column insertion process #([w]), we get the Young tableau

3]
2
1

7=[1]3]

Hence we have: =2 andn —m = 1. Observe thatw] =[21][3][21] and7([w]) = 12312. Applying the column bumping process
to 7([w]), we get the Young tableau

»—Amco|
[}

[Al[T] =

5. A bijective proof of Proposition 3.2

Proposition 3.2 gave us the numbegr of monomials involved irF (y, 0) in a purely analytic way. In particular, its proof did
not provide any insight, neither on the structurertf, 6), nor on the simplicity of the fact that one hag = 2V*=1 which
is indeed remarkable. This section will be devoted to the construction of a bijective proof that explains this result more deeply.
This bijection will also help us for studying a number of specializations of Barrett's formula of practical interest (see Section 6).
5.1. A more general combinatorial structure

Let us first introduce a natural generalization of the combinatorial structures that appeared in Section 3.3, that is to say the set
7 y of all square tableaux of shapa'"V) divided as in this last section into two complementary Young tableaux (but without

7 That is to say a mappirg satisfyingZ([P1]. .. [Pu]) = T([Pa]) ... %[ P1]) for every[P1]...[P,] € G(A)*.
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X6|X5|X4|X3[X2|X1 J6 | X5X4|X3|X2[X1
05 [X6[X5|X4|X2|X1 05 |X6|X5[X4|X2| X1
04 |05 |06 | X5 X2|X1 04|05 |06 | X4|X3| X2
030304 |X6|X2|X1 03|03 |05 |X5]X4|X3
52 52 52 52 X2[X1 52 52 53 (54 X41X3
51 (51 51 (51 (51 (51 61 (51 (52 (52 52 X4

Fig. 4. Two typical elements of g.

any constraint on them) filled by elements of the alphabetsdy, respectively. The two Young tableaux that form an element of
7 n will again be organized as already depicted in Section 3.3. The following picture shows two typical examples of elements
of 76 (Fig. 4).
As we will see in the sequel, itis in fact possible to construct a bijection betwegmnd the set/Z . v ({0, 1}) of all square
{0, 1}-matrices of sizeN, which implies that the cardinality of j is equal to 2. It follows then from this last result that
YN = 2V?~1 due to the fact that the number of elements/of whose first tableau has a first row of lengglis obviously (use
the symmetry with respect to the main diagonal of the squ&fé) and exchange the role of the alphabeends in order to
pass from one case to the other) equal to the number of elemefity afhose second tableau has a first row of lergtiwvhich
means equivalently that the first tableau has a first row of length strictly les®)han

5.2. Description of the bijection

We now present our bijection betweefiy « x ({0, 1}) and7 . Our construction is based on a slight variation of the well-
known Knuth correspondence (cf. Section 2.2) that has an interesting symmetry property which is used to derive some practically
important specializations of Barrett’s formula.

Let M be a matrix of.# y« n ({0, 1}). We apply first Knuth’s bijection (as described in Section 2.2\t order to get a
pair (P, Q) of Young tableaux of conjugate shapeand.~ We then associate wit a new Young tablea@ of shapel. (the
complementary partition of within the squaréN ")) which is defined as follows.

e We denote first the length dfby m (or equivalently the number of columns@j. We then decide (by abuse of terminology)
thatQ also has columns indexed by integers strictly greater tharich are all empty.

o We can now define a unique tablaitlof shapel by requiring that for every e [1, N theith column ofQ consists exactly of
all the letters of the alphabét, . . ., N}, sorted in increasing order from bottom-to-top, that do not appear iiMhei + 1)th
column ofQ.

Observe that the column word obtained by reading from left-to-right the colun@$aainsidered here as letters@f{1, ... N}))
is equal tof AN —""TQ]. It follows then immediately from Proposition 4.2 that the tabi@ids also a Young tableau.

Hence,? (M) = (P, Q) is a pair of complementary Young tableaux within the squja/ré(). To obtain from it an element of
Ty, it suffices to associate with each entryf P (resp.,Q) the letters; (resp.,y;) of the alphabeb (resp.,y). We denote by
@(M) the element o7  that corresponds in such a way to the initial mavixSince the mapping@ — Q is one to one¥
is clearly a bijection between” y . v ({0, 1}) and pairs of Young tableaux of complementary shapes over the alpliabét
while @ is a bijection betweet/ y» y ({0, 1}) and.7 y.

Example 5.1. Let us continue Example 2.2. Knuth'’s bijection applied to the maitixtroduced in this example gives a pair
(P, Q) of tableaux of conjugate shapés- (1, 1, 2) and/ "= (1, 3). The shapé = (2, 3), complementary to the shapavithin

the squarg33), provides the shape of the table@u Filling in its entries by taking (in the reverse order) the complements in
{1, 2, 3} of the entries of the columns &, we obtain the tableau

o=11]1]3]
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The elementb(M) of 7 3 associated witiV is then the following rewriting of the paiP, Q):

d3 [X2[X1
d2|X2|X1
M) = 41|63 |Xx3

5.3. Symmetry properties of the bijection

In this section, we present of a strong symmetry property of the bijeatiowe start by giving first a new method for
constructing the second Young table@uassociated by with a given{0, 1}-matrix M.

1. Construct the 2-row arragy which results by listing thev2 pairs (i, j) of [1, N] x [1, N] in lexicographic order with
respect to the second entry, i.e.

ol - N1 . N 1 ... N
N=\1 ... 1 2 ... 2 ... N ... N)°

2. Selectin this array all the entries corresponding to the &%.4f/e obtain then a word» (M) by reading the top components
of the selected entries. The result of the column insertion process applied ) is a Young tablea@’.

It turns out that the Young tablea®’ obtained in this way is exactly the second Young tabl@azonstructed by the bijection
¥, presented in Section 5.2, when applied to the matrix

Proposition 5.2. Let M be a matrix of# y « y ({0, 1}), let O be the second Young tableau constructed by the bijettiapplied
to M and letQ’ be the Young tableau constructed as above. Then on@hasQ.

Proof. LetM be a matrix of# y « x ({0, 1}) and let'M be its transpose matrix. LeTtN be the 2-row array associated whth
as defined in Section 2.2 and R{; be the 2-row array associated withas defined above. Let us then associate with these two
2-row arrays the two following column words(M)] and[v(M)] of lengthN defined by setting:

e [u(M)]=I[11]...[Iny]1wWherel; denotes the sequence (possibly empty) of the entries, written from right to left, of the second
row of ZN corresponding to the 1's of thith row of 'M;

o [v(M)]=[JnN]...[J1] whereJ; denotes the sequence (possibly empty) of the entries, written from right-to-left, of the first
row of By corresponding to the O’s of théh column ofM.

For instance, if we take the mati# of Example 2.2, we havier(M)]=[2][3][31] (cf. Example 2.4) anfb(M)]=[2][21][31]

(cf. Example 5.3 that follows).

The reader can now check that one always[hé¥ )] =[u(M)] (as can be observed in the previous example). Our proposition
follows then from Corollary 4.9 due to the fact ti@ats the result of the column insertion process appliedtoM ) =7 ([u(M)])
according to Theorem 2.3 and that is the result of the column insertion process applied$60M) = 7([v(M)]) according to
the construction presented above.l

Example 5.3. This example continues Examples 2.2 and 5.1. In this case, we have

B— (L 2B 0121 3 1[2] 3)
1] 2] [2] 2 3[3] 3

where we boxed the entries that correspond to the 0’s of the associatedivhatigxncews (M) =(1, 3, 1, 2, 2). Then the column
insertion process applied toy (M) gives the Young tableau

' 1212 -0.
Q 1[1]3] @

The following symmetry result is now an immediate consequence of the new intepretation of the bifetttairiollows from
the construction given above and Theorem 2.3.
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Corollary 5.4. Let M be a matrix of# v n ({0, 1}) and let(P, Q) be the result of the bijectio# applied to M. Then the
result of the bijectiort?” applied to the matrixo,l(tM) obtained by exchanging théstand the Is in the transpose matrby/
of M is equal to(Q’, P).

Example 5.5. Let us consider again the mattix of Example 2.2. Then one has
1 01
so.1(tM) = (1 1 0> .
010

The reader can then easily check t’aa(soyl(tM)) =(1,3,1,22 andwz(so’l(tM)) = (3, 1, 2, 3) from which it follows that
(taking here again all the notations of the previous examples)

3]
W(s01("M)) = 212 2] =@, pP).
1(1]3] [1]3]

)

6. Some specializations of Barrett's formula

In this section, we show how the bijection constructed in Section 5 can be effectively used to find explicit expressions for
several specializations of Barrett's formula.

6.1. Matrices involved in the combinatorial version of Barrett’s formula

Let us denote byl the set of all square matric&ésof .4y« n ({0, 1}) such that the length of the first row of the first Young
tableauP associated witivl by the bijection¥ (constructed in Section 5.2) is exactly equaNtd-urthermore, let(r) stand for
the monomial obtained by taking the product of all entries of an eletn&n# . According to the results of Section 3.3, the
symmetric polynomiaF (y, 6) defined by relation (5), i.e. the nominator of the combinatorial expression (4) of the probability
of error (1), can be expressed as

F(,0)= Y w@M)), ®)

Me NN

where@ stands for the second bijection constructed in Section 5.2.

In order to better understand the combinatorial version of Barrett's formula, we will explore the fine structuig.dfet
againM be a matrix of # . i ({0, 1}). Observe that the length of the first row of the Young tablRassociated by with M is
exactly the length of the longest non-increasing subsequeneg i) according to Greene’s theorem (gf] or [6, Chapter 3]
and to the construction & (cf. Section 2.2). Since a non-increasing subsequeneg () corresponds to a strictly increasing
subsequence, for the North—East ofélein the set of the entries ofl associated with 1's, we get the following characterization
of NN

Proposition 6.1. A matrix M € .y« N ({0, 1}) belongs ta/"p if and only if there exists a sequence & of length N in M
such that the corresponding entries form a strictly increasing sequ@fidength N in the North—East order

Example 6.2. Let us consider again the matrix of Example 5.5, denoted herd’by.e.

1 0 [1]
M=] 1[1] o
0[1] o

The entries associated with the three 1'spf boxed on the above picture correspond to the strictly increasing sequence
(3,2 <N E (2, 2<yE(1, 3) in the North—-East order. According to Proposition 6/, belongs therefore tof”3, which just

8We define the North—East ordery g over[1, N12 by setting(i, j)<n g (k, [) if and only ifi > k and j </.
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means that the length of the first row of the first tableau associatel toyM’ is equal to 3 as it can be directly checked in
Example 5.5.

Note 6.3. Let M be a matrix of # y « 5 ({0, 1}). Then for everyk € [1, N], let us consider:

o the largest numbekg(M, k) that can be realized as the sum of the lengthsdi$joint sequences (possibly empty) of 0's in
M such that the corresponding sequences of entries are strictly increasing for the South—Eadt order;
o the largest numbek 1 (M, k) that can be realized as the sum of the lengthsdi$joint sequences (possibly empty) of 1's in
M such that the corresponding sequences of entries are strictly increasing for the North—East order.
We also define by conventidig(M, 0) = L1(M, 0) = 0. Greene’s theorem (df7] or [6, Chapter 3Jused in connection with
the constructions of Sections 2.2 and 5.3 shows that

o Lo(M, k) — Lo(M, k — 1) is equal to the length of thieh column ofQ’,
e L1(M,k) — L1(M, k —1)is equal to the length of theh row of P,
foreveryk € [1, N], if we set?(M)= (P, Q’). Proposition 5.2 then implies that the following simple, but surprising, identity
always holds for every € [1, N]:

Lo(M,k) — Lo(M,k —1) + L1(M,N —k +1) — Ly(M, N — k) = N.

As an illustration of these results, let us again consider the mietok Example 2.2, i.e.

o] @[]
M= © [0
AN@ AN

Then one hat.o(M,1) =2, Lo(M,2) =4, Lo(M,3) =5, L1(M,1) =2, L1(M,2) =3, L1 (M, 3) = 4 (the corresponding
subsequences of 0’s and 1's are boxed, circled and triangled in the above picture) from which it is easy to check all the results
of this note.

Let M be a matrix of /" ;. According to Proposition 6.1 and to the definition of the North—East order, there exists a sequence
o of lengthN of 1's in M such that the corresponding sequence of entries has thesfoeni(N — k + 1, ji)) 1<k < v Where
(JK)1<k < v Stands for an increasing sequence of integeifd.,aV]. One can obviously encode such a sequence of 1's by the
pseudo-compositid? p(c) = (Pr)1<k <~ Of N defined by lettingp; to be the number (possibly equal to zero) of 1'ssof
that belong to théth column ofM.11 We denote by (M) the greatest (in the lexicographic orderidff ) pseudo-composition
that can be associated in such a way WithThe set/" can then be partitioned as

An=J Vo ©)

PEPN

where# denotes the set of all pseudo-compositions of lengibf N and where/", y stands for the set of all matrices
M e /"y whose associated pseudo-permutapoi) is equal top.

Let us now associate with every pseudo-composipien p1, ..., py) of Z the integen(p) defined as the smallest element
wof [1, N]such thatp + - - - + p, = N. The following result gives a fine characterization of the matrices of y .

Proposition 6.4. Letp = (p1. ..., py) be a pseudo-composition &fy . Furthermore let also(jx)1 < x < v denote the unique
increasing sequence of integers defined by demanding eveijLkif] to be repeateg; times. A matrix M belongs ta”,,
if and only if it satisfies the two following properties

e ConditionC1:for everyk € [1, N],the(N — k + 1, ji)-entry of M is equal td.;
e ConditionC2: for everyk € [1, u(p) — 1], the(N — (p1 + - - - + px), k)-entry of M is equal td.

9We define the South—East ordeg g over[1, N2 by setting(i, j)<gg (k,l) ifand only ifi <k andj <.

10 pseudo-composition of an integhlris a sequence of non-negative integers (including 0) whose sim is

11The sequencéjx)1« k< v that characterizes’ (or equivalentlys) as described above, is indeed the unique increasing sequehce of
elements of1, N] obtained by repeating each integet [1, N] exactly p; times.
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Proof. Condition C1is equivalent to the existencé\bfalues 1 inVl whose associated entries form a strictly increasing sequence
for the North—East order encoded by the pseudo-permutation the other hand, condition C2 expresses that no greater pseudo-
permutation can be associated with a strictly increasing (for the North—East order) sequeeceris corresponding to 1's of

M. O

Example 6.5. Let us consider the matrid € .#3«3({0, 1}) defined by setting

o @[]
M=| O[] 1
0 0

The sequences; anday of 1's of M given by the associated sequences of entries
a1 =(3 D=<Ne2,2)<yE(L,3) and 65 = (3, D=<yE(2 I=<NE(L 3)

are the unique sequences of length 3 of 1'dMinwhose corresponding sequences of entries are strictly increasing for the
North—East order. Since(s1) = (1, 1, 1) andp(a2) = (1, 0, 2), we getp(M) = (1, 1, 1). One can also check that Proposition
6.4 holds: we boxed (resp., circled) here the entrigd diat are constrained by Condition C1 (resp., C2) as expected.

6.2. Afirst specialization; = y andd; = o for every i

Let us consider the situation where glls are equal to some fixed valyeand alld;’s to some fixed valué. Then according
to relation (8), the symmetric polynomial(y, 6) defined by relation (5) reduces to the two variable polynomial

2 .
Fi(.0) =Y oz 1o (10)

wherey; denotes the number of matrices ¢fy withi 1's andNZ—i 0's (the above expression comes from the factdhat O
for every 0<i < N — 1 since every matrix off” has at leadi 1's). It now follows from relation (9) and from Proposition 6.4
that one has

Z Z (N —(N—I—,u 1)) (11)

n=1 pe?y
wp)=n

since havingi 1's in a matrix of./", y means placing — N 1's (N 1's are already constrained by condition C1) in the

— (N + u(p) — 1) positions not taken both by tié1's fixed by Condition C1 and by the(p) — 1 0’s fixed by Condition
C2. Now note that the number of pseudo-compositipas?y such thafu(p) = u is just the number of integer solutions of the
equationiy + - -- + i, = N with i, > 1 or equivalently of the equatio'ré +---+1i/, = N — 1 (without any constraint), which
is classically known to be equal to the binomial coefficient of o@ér— 1, N — 2 4 p) (cf. [2]). It follows then from relation
(11) that one has

“'_i N—-2+4+u NZ—N—u—I—l

L N-1 i—N ’
u=1

Substituting this last value in relation (10), we obtain

N2 (N
. -2 2_N-pu+1 .
Fl(X7()):Z(Z(NN__:|L',u><N il\iN/H- ))J{NZ isi

i=N

N-1 [ N°-N
N?-N - u NZNuléz N-1+u XH(SN
0 s i N-1
N N-—-1+ 2
=N < N_l'u)()(-i-é)N ~N—ityn
u=0
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from which the following simple formula for the specialization of the probability of error (12) that we are presently studying
can now easily be deduced:

AN R VN r \VHH
Pl(U<V)=<}> H;( Vo1 ><7x+5) . (12)

Note that Formula (12) was already obtaine@hby purely analytic methods.

6.3. Two other specializations

In order to illustrate the genericity of our bijective method, we now show how it can be applied in two special cases that can
also occur in practice (cf. Section 3.1). Our first example (cf. Section 6.3.1) was discussed asymptofi¢hy/éndeal below
with it in full generality. In our second example (cf. Section 6.3.2) we give an explicit formula (different from Barrett's formula)
for a specialization that has not been considered before.

6.3.1. Afirst situation §; = o for every i

Let us consider the situation whedgis equal to some fixed valugfor everyi € [1, N], but no restriction is imposed on
they;’s. According to relation (8) and to the results of Sections 5.2 and 5.3, the symmetric polyropia)) reduces to the
multivariable polynomial

) e L
Fo(f1s - IN»0) = Z [;l_lwiNXlll._.Xt/vaN (ix++in) | (13)

i1,0miy 20
0<iq+-+iy <N2—N

wheref;, ;. stands for the number of matrices.df y that have exactlyy 0's in theirkth row for everyk € [1, N]. Let us
now associate with eveny= (p1, ..., py) of 2 its complementary pseudo-compositige= (p1, . .., py) Which is defined
by settingpy to be equal to the number of indices [1, N] such thatpy + - -- + p; = N — k. It should be observed théj

is the number of 0’s that any matrix of ",  is forced to contain in it&th row because of Condition C2. It then follows from
relation (9) and from Proposition 6.1 that one has

N
N-—-1-—p;
b= 2 I ( i 5 ) (14)
p=(p1,....pN)EPN k=1
since having 0's in thekth row of a matrix of./",, y means placing — Pk O's (pr O’s are justified by condition C2) in the

N — 1— p; possible positions of thieh row not taken both by the unique 1 forced by condition C1 and bytheis forced by
Condition C2. A combination of relations (13) and (14) gives now immediately the formula

1 N-—-1-— pk i NZ_(' +iy)
PyU <V)= ——— > ]_[ ( P L G (15)
H,’:l (i + b)N PE/N
i1...0iy 20

0< i1+~~+iN <N2

for the current specialization of the probability of error (1) that we are studying here. From Formula (15), the reader can also
easily get the asymptotic evaluation obtaineféinthat corresponds to the situatién- 0.

6.3.2. A second situationy; =y andd; =d fori<m

Let us fixm € [1, N]. We now consider the situation where foK1<m the variabley; is equal to some fixed valyeand
the variablej; is equal to some fixed valug while form + 1<i <N bothy; andd; are equal to 1. Then, according to relation
(8) and to the results of Sections 5.2 and 5.3, the symmetric polyndtab) reduces to the two variable polynomial

mN
i,j=0
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wherey; ; denotes the number of matrices.¢fy with exactlyi 0’s in theirmfirst rows and 1's in their firstm columns. Let
p=(p1,..., pn) be an element of?y and letp = (p1, ..., pn) be its complementary pseudo-composition. Going back to
Proposition 6.1, one can easily check that the following properties hold for every mateix/” ), y:

e the number of 0's whose entries are enforced by Condition C2 to belong b, thé x [1, m] square is equal teg(m, p) =
minGm, p1+---+ py) — MG, pra1+ -+ py),

e the number of 1's whose entries are enforced by Condition C1 to belong b, thé x [1, m] square is equal tey (m, p) =
max©0, p1 + -+ 4+ pm — (N —m)),

o the number of 0’s whose entries are enforced by Condition C2 to belong feithel, N] x [1, m] rectangle is equal to
[;O(ma 17) = min(ﬁm+1 +--+ FNv m)a

e the number of 1's whose entries are enforced by Condition C1 to belong feithel, N1 x [1, m] rectangle is equal to
B1(m, p) =p1+ -+ pm —oa(m, p) =min(N —m, p1 + -+ + pm),

e the number of 0’s whose entries are enforced by Condition C2 to belong {d.thé x [m + 1, N] rectangle is equal to
yo(m, p) =p1+ -+ pm — co(m, p),

o the number of 1's whose entries are enforced by Condition C1 to belong fd.thé x [m + 1, N] rectangle is equal to
y10m, p) =m —ay(m, p) =min(m, N — (p1 +--- + pp))-

Due to the fact that havingl’s in the firstm columns and 0’s in the firstm rows ofM means that there exist exackiyl’s (for
somek € [0, j]) whose entries belong {d, m] x [1, m], j —k 1's whose entries belong fe: + 1, N] x [1, m] andi — (m2 —k)

0's whose entries belong fe: + 1, N] x [1, N], one can now easily check that from relation (9), from Proposition 6.1 and from
our last considerations it follows that one has

J 2
N Z Z m< — a(m, p) m(N —m) — f(m, p) m(N —m) —y(m, p)
/i, _pe"i’ k—O( k —ay(m, p) ) ( Jj—k— pq1(m, p) > (i - (m2 — k) —yo(m, p) > ’ an
PN K=

where we set(m, p) =ug(m, p)+ag(m, p), f(m, p)=Po(m, p)+Pp1(m, p) andy(m, p)=yo(m, p)+y1(m, p). Acombination

of relations (16) and (17) leads immediately to an explicit formula (that we will not write down) for the current specialization of
the probability of error (1) that we are studying here. We leave it as an exercise to the reader to deduce from this (non written)
formula the asymptotic evaluations of our probability of error corresponding to the two situatien8 andé — 0.
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