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In this paper we prove a result of the Trotter–Kato type in the weak topology. Let {Aε}ε>0
be a family of quasi m-accretive linear operators on a Hilbert space X and let us denote
by Jελ the resolvent of Aε . Under certain conditions, the result states that if for any x ∈ X
and k = 1,2, . . . , the sequence ( Jελ)kx converges weakly to ( Jλ)kx as ε → 0, where Jλ is
the resolvent of a linear quasi m-accretive operator A on X , then the sequence of the
semigroups generated by −Aε tends weakly to the semigroup generated by −A, uniformly
with respect to t on compact intervals. The result is different from other results of the same
type (see e.g., Yosida (1980) [9, p. 269]) and gives an answer to an open problem put in
Eisner and Serény (2010) [3]. It is finally applied to compare the asymptotic behavior of a
singular perturbation problem associated to a first order hyperbolic problem with diffusion.

© 2011 Elsevier Inc. All rights reserved.

1. Introduction

In a Hilbert space X, with the scalar product and norm denoted by (·,·) and ‖ · ‖ respectively, let Aε : D(Aε) ⊂ X → X
be a family of linear quasi m-accretive operators and let A : D(A) ⊂ X → X be a quasi m-accretive operator, such that the
sequence of the resolvents of Aε tends weakly to the resolvent of the operator A. We are concerned with the proof of the
weakly convergence of the sequence of semigroups generated by −Aε to the semigroup generated by −A. We recall that the
Trotter–Kato theorem (see [9, p. 272]) amounts to saying that the strong convergence of the sequence of resolvents of Aε to
the resolvent of A ensures the strong semigroup convergence, i.e., e−t Aε

x → e−t A x as ε → 0, for any x ∈ X, uniformly with
respect to t on compact intervals. We also mention that a Trotter–Kato type convergence theorem in a weak topology of a
Banach space follows by a general result given in [9] (see p. 269) requiring the equi-continuity of the family of operators
{Aε}ε>0 in locally convex Banach spaces. The validity of Trotter–Kato theorem in the weak topology is also discussed in [3]
for C0-semigroups in Banach spaces and it is shown that the direct analogue (i.e., by replacing the strong convergence of
the resolvent sequence by the weak convergence) fails.

We prove here a different weak version of this theorem in the context of quasi m-accretive operators in Hilbert spaces,
specifying that as far as we know the result presented is new. Its necessity arises in the numerical study of concrete
problems and this type of result constitutes a good tool for these applications. Moreover, we think that it may be interesting
by itself because it gives an answer to the open problem put in the paper [3].

This result sets a functional framework for the study of the asymptotic behavior of parabolic boundary value problems
with a small parameter intervening in the diffusion part (see examples in [7,6]) in the case when the (strong version of)
Trotter–Kato theorem cannot be used. In such situations the strong convergence of the resolvents cannot be proved due to
the absence of some estimates necessary for the compactness. The general result established in this paper is illustrated for
a hyperbolic equation with diffusion and shows that the singular perturbed equation obtained by completing the deficient
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diffusion operator approximates in a certain sense the hyperbolic equation. This is of benefit especially in the perspective
of numerical computations since the numerical solutions to the perturbed equation (which is of parabolic type) are more
stable than those computed in the limit case.

2. Main results

We recall that a linear operator A on a Hilbert space is called quasi m-accretive if there exists ω > 0 such that I + λA is
positive semidefinite and surjective on X , for any λ, 0 < λ < ω.

For any λ > 0 we denote by Jλ = (I + λA)−1 and Aλ = 1
λ
(I − Jλ) the resolvent and the Yosida approximation of A,

respectively. Similarly, we set J ελ = (I + λAε)−1 and Aε
λ = (Aε)λ the resolvent and the Yosida approximation of Aε.

The main result of this paper resides in Theorem 2.1 below. We indicate the weak limit by ⇀ or by w-lim and by (·,·)
and ‖ · ‖ the scalar product and norm in X, respectively.

Theorem 2.1. Let {Aε}ε>0 be a family of linear operators in a Hilbert space X such that (I + λAε) is m-accretive for 0 < λ < λ0 with
λ0 independent of ε and

w- lim
ε→0

(
I + λAε

)−k
x = (I + λA)−kx, k = 1,2,3, . . . (2.1)

for any x ∈ X . Assume further that the space

X =
{

x ∈
⋂

0<ε�1

D
(

Aε
); sup

0<ε�1

∥∥Aεx
∥∥ < ∞

}
(2.2)

is dense in X . Then,

w- lim
ε→0

e−t Aε
x = e−t A x, (2.3)

for all x ∈ X, uniformly on any interval [0, T ], T < ∞.

We note that the hypothesis X = X is in particular satisfied if there is a linear closed and densely defined operator G
such that D(G) ⊂ D(Aε) for any ε ∈ (0,1], that is ‖Aεx‖ � C‖Gx‖ for all x ∈ D(G), where C is a positive constant. For
instance this may happen if Aε = A0 + εA1 where A0 and A1 are quasi m-accretive operators and ‖A1x‖ � C‖A0x‖ for all
x ∈ D(A0).

In Section 3 we give another example which is relevant for the parabolic regularization approach to a hyperbolic equation
with diffusion arising in population dynamics.

Proof of Theorem 2.1. We shall prove the result in two steps and begin by setting x ∈ X .

For any t � 0 and x ∈ X, in particular for x ∈ X , we can write∣∣(e−t Aε
x − e−t A x,ϕ

)∣∣ �
∣∣(e−t Aε

x − e−t Aε
λ x,ϕ

)∣∣ + ∣∣(e−t Aε
λ x − e−t Aλ x,ϕ

)∣∣ + ∣∣(e−t Aλ x − e−t A x,ϕ
)∣∣, (2.4)

for each ϕ ∈ X .
We have, by Hille–Yosida’s theorem (see [8]) that for any x ∈ X, in particular for x ∈ X , we have

lim
λ→0

∥∥e−t Aλ x − e−t A x
∥∥ = 0, (2.5)

uniformly with respect to t on compact intervals. Therefore,

lim
λ→0

∣∣(e−t Aλ x − e−t A x,ϕ
)∣∣ = 0, uniformly on [0, T ], for any x ∈ X and ϕ ∈ X .

Also, we have for any ε > 0

lim
λ→0

(
e−t Aε

x − e−t Aε
λ x,ϕ

) = 0, uniformly on [0, T ], for any x ∈ X and ϕ ∈ X . (2.6)

Let us show that (2.6) holds uniformly with respect to ε, for each x ∈ X . Indeed, let

yε,λ(t) = e−t Aε
λ x, yε(t) = e−t Aε

x

be the orbits of the semigroups generated by −Aε
λ and −Aε , respectively. Then yε,λ is the strong solution to

dyε,λ

dt
(t) + Aε

λ yε,λ(t) = 0, t ∈ [0, T ],
yε,λ(0) = x, (2.7)
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with the properties

∥∥yε,λ(t)
∥∥ � e

t
λ0−λ ‖x‖,

∥∥∥∥dyε,λ(t)

dt

∥∥∥∥ = ∥∥Aε
λ yε,λ(t)

∥∥ � e
t

λ0−λ
∥∥Aε

λx
∥∥ (2.8)

for any t ∈ [0, T ], given by the proof of Hille–Yosida’s theorem.
Also, we have yε,λ → yε in C([0, T ]; X) as λ → 0, as specified before.
We note down the following properties of the resolvent and the Yosida approximation,

∥∥ Jελx
∥∥ � ‖x‖

1 − λ
λ0

,
(

Aε
λx, x

)
� − ‖x‖2

λ0(1 − λ
λ0

)
, ∀x ∈ X,

∥∥Aε
λx

∥∥ = ∥∥ Jελ Aεx
∥∥ � 1

1 − λ
λ0

∥∥Aεx
∥∥, ∀x ∈ D

(
Aε

)
. (2.9)

Subtracting the two equations in (2.7) corresponding to yε,λ and yε,μ , multiplying the difference by (yε,λ(t) − yε,μ(t))
and performing some computation we successively have

1

2

d

dt

∥∥yε,λ(t) − yε,μ(t)
∥∥2 = −(

Aε
λ yε,λ(t) − Aε

μ yε,μ(t), yε,λ(t) − yε,μ(t)
)

= −(
Aε

λ yε,λ(t) − Aε
μ yε,μ(t), yε,λ(t) − Jελ yε,λ(t)

+ Jελ yε,λ(t) − Jεμ yε,μ(t) + Jεμ yε,μ(t) − yε,μ(t)
)

= −(
Aε

λ yε,λ(t) − Aε
μ yε,μ(t), λAε

λ yε,λ(t) − μAε
μ yε,μ(t)

)
− (

Aε
λ yε,λ(t) − Aε

μ yε,μ(t), Jελ yε,λ(t) − Jεμ yε,μ(t)
)

= −(
Aε

λ yε,λ(t) − Aε
μ yε,μ(t), λAε

λ yε,λ(t) − μAε
μ yε,μ(t)

)
− (

Aε
(

Jελ yε,λ(t)
) − Aε

(
Jεμ yε,μ(t)

)
, Jελ yε,λ(t) − Jεμ yε,μ(t)

)
.

Since Aε is quasi m-accretive we obtain by (2.8)

1

2

d

dt

∥∥yε,λ(t) − yε,μ(t)
∥∥2 �

(∥∥Aε
λ yε,λ(t)

∥∥ + ∥∥Aε
μ yε,μ(t)

∥∥)(
λ
∥∥Aε

λ yε,λ(t)
∥∥ + μ

∥∥Aε
μ yε,μ(t)

∥∥)
+ λ−1

0

∥∥ Jελ yε,λ(t) − Jεμ yε,μ(t)
∥∥2

�
(
e

T
λ0−λ

∥∥Aε
λx

∥∥ + e
T

λ0−μ
∥∥Aε

μx
∥∥)(

λe
T

λ0−λ
∥∥Aε

λx
∥∥ + μe

T
λ0−μ

∥∥Aε
μx

∥∥)
+ λ−1

0

∥∥ Jελ yε,λ(t) − Jεμ yε,μ(t)
∥∥2

(2.10)

for all t ∈ [0, T ].
Now we estimate the last term on the right-hand side in (2.10).
Let zε,λ, zε,μ ∈ X and denote Jελzε,λ = Yε,λ, Jεμzε,μ = Yε,μ.

We subtract the equations

Yε,λ + λAεYε,λ = zε,λ,

Yε,μ + λAεYε,μ = zε,μ

and multiply the difference by (Yε,λ − Yε,μ). We get

‖Yε,λ − Yε,μ‖2 − λ

λ0
‖Yε,λ − Yε,μ‖2 � |λ − μ|∥∥AεYε,μ

∥∥‖Yε,λ − Yε,μ‖ + ‖zε,λ − zε,μ‖‖Yε,λ − Yε,μ‖.
But ‖AεYε,μ‖ = ‖Aε Jεμzε,μ‖ = ‖Aε

μzε,μ‖ and so

∥∥ Jελzε,λ − Jεμzε,μ

∥∥ � 1

1 − λ
λ0

|λ − μ|∥∥Aε
μzε,μ

∥∥ + 1

1 − λ
λ0

‖zε,λ − zε,μ‖.

We go back to (2.10) and write

1

2

d

dt

∥∥yε,λ(t) − yε,μ(t)
∥∥2 �

(
e

T
λ0−λ

∥∥Aε
λx

∥∥ + e
T

λ0−μ
∥∥Aε

μx
∥∥)(

λe
T

λ0−λ
∥∥Aε

λx
∥∥ + μe

T
λ0−μ

∥∥Aε
μx

∥∥)
+ 2

λ0

{
1

(1 − λ )2
|λ − μ|2∥∥Aε

μ yε,μ(t)
∥∥2 + 1

(1 − λ )2

∥∥yε,λ(t) − yε,μ(t)
∥∥2

}
.

λ0 λ0
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Using (2.8) and (2.9) and integrating with respect to t we obtain

∥∥yε,λ(t) − yε,μ(t)
∥∥2 � 2

∥∥Aεx
∥∥2

(
e

T
λ0−λ

1 − λ
λ0

+ e
T

λ0−μ

1 − μ
λ0

)(
λe

T
λ0−λ

1 − λ
λ0

+ μe
T

λ0−μ

1 − μ
λ0

)
t

+ 4

λ0

1

(1 − λ
λ0

)2
|λ − μ|2 e

2T
λ0−μ

(1 − μ
λ0

)2

∥∥Aεx
∥∥2

t

+ 4

λ0

1

(1 − λ
λ0

)2

t∫
0

∥∥yε,λ(τ ) − yε,μ(τ )
∥∥2

dτ .

By Gronwall’s lemma we deduce that

∥∥yε,λ(t) − yε,μ(t)
∥∥2 � 2

∥∥Aεx
∥∥2

{(
e

T
λ0−λ

1 − λ
λ0

+ e
T

λ0−μ

1 − μ
λ0

)(
λe

T
λ0−λ

1 − λ
λ0

+ μe
T

λ0−μ

1 − μ
λ0

)

+ 2

λ0

1

(1 − λ
λ0

)2
|λ − μ|2 e

2T
λ0−μ

(1 − μ
λ0

)2

}
T exp

(
4

λ0

1

(1 − λ
λ0

)2
t

)
.

We pass to the limit as μ → 0 and recall that x ∈ X , i.e., supε∈(0,1] ‖Aεx‖ < ∞. We obtain

∥∥yε,λ(t) − yε(t)
∥∥2 � 2

(
sup

ε∈(0,1]
∥∥Aεx

∥∥)2
λ

{(
e

T
λ0−λ

1 − λ
λ0

+ e
T
λ0

)
e

T
λ0−λ

1 − λ
λ0

+ 2

λ0

λe
2T

λ0−μ

(1 − λ
λ0

)2

}
T

× exp

(
4

λ0

1

(1 − λ
λ0

)2
t

)
.

Passing to the limit as λ → 0 we finally deduce that

lim
λ→0

∥∥yε,λ(t) − yε(t)
∥∥ = 0

uniformly with respect to ε. This implies that (2.6) takes place uniformly with respect to ε, as claimed.
Taking into account the convergences (2.5) and (2.6) we can fix λ = λ∗ , sufficiently small such that

∣∣(e−t Aλ∗ x − e−t A x,ϕ
)∣∣ � δ

3
(2.11)

and ∣∣(e−t Aε
λ∗ x − e−t Aε

x,ϕ
)∣∣ � δ

3
(2.12)

with δ arbitrary but fixed and independent of ε ∈ (0,1].
Resuming (2.4) with λ = λ∗ it remains to estimate |(e−t Aε

λ∗ x − e−t Aλ∗ x,ϕ)|.
Using the representation formula of the semigroup we can write

e−t Aε
λ∗ x =

∞∑
k=0

(−1)k

k!
(

Aε
λ∗

)k
x (2.13)

and we prove that(
Aε

λ∗
)k

x ⇀ Ak
λ∗ x as ε → 0. (2.14)

Indeed, taking into account (2.1) we have that

((
Aε

λ∗
)k

x,ϕ
) =

(
1

λk∗

(
I − Jελ∗

)k
x,ϕ

)
→

(
1

λk∗
(I − Jλ∗)

kx,ϕ

)
= (

Ak
λ∗ x,ϕ

)
,

as ε → 0, for any ϕ ∈ X .
By (2.13) we get for each x ∈ X that

lim
(
e−t Aε

λ∗ x − e−t Aλ∗ x,ϕ
) = 0 (2.15)
ε→0
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and therefore we can write∣∣(e−t Aε
λ∗ x − e−t Aλ∗ x,ϕ

)∣∣ � δ

3
,

for ε sufficiently small. Resuming (2.4) with λ = λ∗ and taking into account (2.11)–(2.12) and (2.15) we get that∣∣(e−t Aε
x − e−t A x,ϕ

)∣∣ � δ,

for ε sufficiently small. Since δ is arbitrary we obtain (2.3) for x ∈ X .
Now, let us assume that x ∈ X . Since X is dense in X we can take a sequence xn ∈ X such that

xn → x in X, as n → ∞.

Let us denote

yε
n(t) = e−t Aε

xn, yε(t) = e−t Aε
x, y(t) = e−t A x.

We need to prove that

yε(t) ⇀ y(t) in X, uniformly with respect to t ∈ [0, T ]. (2.16)

We compute(
yε(t) − y(t),ϕ

) = (
e−t Aε

x − e−t A x,ϕ
)

= (
e−t Aε

x − e−t Aε
xn,ϕ

) + (
e−t Aε

xn − e−t A xn,ϕ
) + (

e−t A xn − e−t A x,ϕ
)
.

We have∣∣(e−t A xn − e−t A x,ϕ
)∣∣ �

∥∥e−t A
∥∥‖xn − x‖‖ϕ‖ � δ

3
, for n = n0

sufficiently large. (Here ‖e−t A‖ is the operatorial norm of e−t A in X .) Then, for n = n0∣∣(e−t Aε
xn0 − e−t A xn0 ,ϕ

)∣∣ = ∣∣((e−t Aε − e−t A)
xn0 ,ϕ

)∣∣
converges to zero due to the results at the 1st step, because xn0 ∈ X and so we can write

∣∣(e−t Aε
xn0 − e−t A xn0 ,ϕ

)∣∣ � δ

3
,

for ε sufficiently small. Finally,

∣∣(e−t Aε
x − e−t Aε

xn,ϕ
)∣∣ �

∥∥e−t Aε∥∥‖xn − x‖‖ϕ‖ � δ

3
for n = n0, t ∈ [0, T ].

Summing up these three results we get (2.16) as claimed and end the proof. �
Theorem 2.1 applies as well to the nonhomogeneous Cauchy problem

dy

dt
(t) + Ay(t) = f (t) a.e. t ∈ (0, T ),

y(0) = x ∈ X, (2.17)

with A a quasi m-accretive operator.

Corollary 2.2. Let f ∈ L1(0, T ; X) and let {Aε}ε>0 be a family of linear quasi m-accretive operators in a Hilbert space X satisfying the
hypotheses of Theorem 2.1. Then,

yε(t) ⇀ y(t) in X, as ε → 0, uniformly on [0, T ], (2.18)

where yε is the mild solution to

dyε

dt
(t) + Aε yε(t) = f (t), t ∈ (0, T ),

yε(0) = x. (2.19)
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Proof. If (2.1) is fulfilled, the study of the convergence of the solution to (2.19) to the solution to (2.17) reduces to the
convergence of

yε(t) = e−t Aε
x +

t∫
0

e−(t−s)Aε
f (s)ds.

We have

∣∣(yε(t) − y(t),ϕ
)∣∣ �

∣∣(e−t Aε
x − e−t A x,ϕ

)∣∣ +
t∫

0

∣∣(e−(t−s)Aε
f (s) − e−(t−s)A f (s),ϕ

)∣∣ds.

Since e−sAε
f (s) − e−sA f (s) ⇀ 0 for any s, by Theorem 2.1 and∣∣(e−(t−s)Aε

f (s) − e−(t−s)A f (s),ϕ
)∣∣ � 2eλ−1

0 t
∥∥ f (s)

∥∥‖ϕ‖ a.e. s ∈ (0, T ),

we have by the Lebesgue dominated convergence theorem that the integral converges to zero and so

yε(t) ⇀ y(t) as ε → 0 for any t ∈ [0, T ].
This ends the proof. �
Remark 2.3. We remark that by the inspection of the proof, it is sufficient to formulate condition (2.1) for a sequence
(λ j) ⊂ (0,∞) with λ j → 0 instead of the interval (0, λ0).

3. Example: a singular perturbed equation

Let Ω = (0, L) × Ω1, where Ω1 is an open bounded subset of R
N−1 with the boundary ∂Ω1 smooth enough. Let us

denote x = (x1, x2, . . . , xN ) and x′ = (x2, . . . , xN ). We consider the problem

∂ y

∂t
+ ∂ y

∂x1
−

N∑
i=2

∂

∂xi

(
ai(x)

∂ y

∂xi

)
= f in Q = (0, T ) × Ω, (3.1)

y(0, x) = y0(x) in Ω, (3.2)

y
(
t,

(
0, x′)) = (

B y(t)
)(

x′) on Σ0 = (0, T ) × Ω1, (3.3)

y(t, x) = 0 on Σ1 = (0, T ) × (0, L) × ∂Ω1. (3.4)

Here B ∈ L(L2(Ω), L2(Ω1)), and let BM = ‖B‖L(L2(Ω),L2(Ω1)) . We assume that f ∈ L1(0, T ; L2(Ω)) and

ai ∈ L∞(Ω), ai � a0 > 0 a.e. in Ω, i = 2, . . . , N.

Such a problem arises for instance in population dynamics with age-structure and diffusion in space, where x1 stands
for the age and Ω1 is the space habitat. In this case (3.3) reads

y
(
t,

(
0, x′)) = (

B y(t)
)(

x′) =
L∫

0

β
(
x1, x′)y

(
t,

(
x1, x′))dx1, (3.5)

with β a known function which describes the demographic process (see [1,2]). Further we shall use this form of B, assuming
that

β ∈ C2(Ω), β
(
x1, x′) ∈ [0, βM ], ∀(

x1, x′) ∈ Ω.

We intend to show the existence of the solution to (3.1)–(3.4) in a constructive manner by applying the result previously
given.

To this end we consider the perturbed problem for ε > 0,

∂ yε

∂t
+ ∂ yε

∂x1
− ε

∂2 yε

∂x2
1

−
N∑

i=2

∂

∂xi

(
ai(x)

∂ yε

∂xi

)
= f in Q = (0, T ) × Ω, (3.6)

yε(0, x) = y0(x) in Ω, (3.7)(
yε − ε

∂ yε
)(

t,
(
0, x′)) = (

B yε(t)
)(

x′) on Σ0 = (0, T ) × Ω1, (3.8)

∂x1
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yε(t, x) = 0 on Σ1 = (0, T ) × (0, L) × ∂Ω1, (3.9)

∂ yε

∂x1

(
t,

(
L, x′)) = 0 on Σ0 = (0, T ) × Ω1, (3.10)

obtained by completing the operator acting in (3.1) up to a parabolic operator and assigning appropriate boundary con-
ditions. We shall prove that this perturbed problem approximates in a weak sense (3.1)–(3.4). Moreover, if the aim is
the numerical computation of the solution to (3.1)–(3.4), this can be fulfilled by computing the more stable solution to
(3.6)–(3.10).

We denote X = L2(Ω), by V the Sobolev space

H1
0(Ω1) =

{
u ∈ L2(Ω1); ∂u

∂xi
∈ L2(Ω1), ∀i = 2, . . . , N, u|∂Ω1 = 0

}

and by V ′ = H−1(Ω1) the dual of V . The notation u|∂Ω1 means the trace of u on ∂Ω1. We also denote W = L2(0, L; V ),

W ′ = L2(0, L; V ′) and define the duality between W ′ and W by

〈v,ψ〉W ′,W =
L∫

0

〈
v(x1),ψ(x1)

〉
V ′,V dx1, for any v ∈ W ′, ψ ∈ W .

We write (3.1)–(3.4) in the abstract form

dy

dt
(t) + Ay(t) = f (t) a.e. t ∈ (0, T ),

y(0) = y0 (3.11)

where the operator A is defined below in two steps. First we introduce

A0 : D(A0) ⊂ W → W ′, D(A0) =
{

v ∈ W ; ∂v

∂x1
∈ W ′, v

(
0, x′) = (B v)

(
x′)},

〈A0 v,ψ〉W ′,W =
〈

∂v

∂x1
,ψ

〉
W ′,W

+
N∑

i=2

∫
Ω

ai
∂v

∂xi

∂ψ

∂xi
dx, for any v ∈ W , ψ ∈ W .

Then we define

A : D(A) ⊂ L2(Ω) → L2(Ω), D(A) = {
v ∈ D(A0); A0 v ∈ L2(Ω)

}
,

Av = A0 v = ∂v

∂x1
−

N∑
i=2

∂

∂xi

(
ai(x)

∂v

∂xi

)
for any v ∈ D(A).

The singular perturbed problem is written as an abstract Cauchy problem

dyε

dt
(t) + Aε yε(t) = f (t) a.e. t ∈ (0, T ),

yε(0) = y0 (3.12)

by introducing

Aε : D
(

Aε
) ⊂ L2(Ω) → L2(Ω),

D
(

Aε
) =

{
v ∈ H2(Ω); v(x1, x′) = 0 on (0, L) × ∂Ω1,

(v − ε ∂v
∂x1

)(0, x′) = (B v)(x′) in Ω1,
∂v
∂x1

(L, x′) = 0 in Ω1

}
,

Aε v = ∂v

∂x1
− ε

∂2 v

∂x2
1

−
N∑

i=2

∂

∂xi

(
ai(x)

∂v

∂xi

)
for any v ∈ D

(
Aε

)
.

In the sequel we shall show that Corollary 2.2 applies.
First we show that Aε is quasi m-accretive on L2(Ω). This means that I + λAε is positive semidefinite for 0 < λ < λ0

and that the equation (I + λAε)v = g has a solution v ∈ D(A) for any g ∈ L2(Ω).
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For simplicity we denote the norm and scalar product in L2(Ω) without subscript. Let us compute

(
Aε v, v

) =
L∫

0

∫
Ω1

∂

∂x1

(
v − ε

∂v

∂x1

)
v dx1 dx′ +

N∑
i=2

∫
Ω

ai

(
∂v

∂xi

)2

dx

=
∫
Ω1

(
v − ε

∂v

∂x1

)
v|L

0 dx′ −
∫
Ω

(
v − ε

∂v

∂x1

)
∂v

∂x1
dx +

N∑
i=2

∫
Ω

ai

(
∂v

∂xi

)2

dx

= ∥∥v(L)
∥∥2

L2(Ω1)
−

∫
Ω1

(B v)v(0)dx′ − 1

2

∥∥v(L)
∥∥2

L2(Ω1)
+ 1

2

∥∥v(0)
∥∥2

L2(Ω1)

+
N∑

i=2

∫
Ω

ai

(
∂v

∂xi

)2

dx + ε

∥∥∥∥ ∂v

∂x1

∥∥∥∥
2

� 1

2

∥∥v(L)
∥∥2

L2(Ω1)
− 1

2
B2

M‖v‖2 + ε

∥∥∥∥ ∂v

∂x1

∥∥∥∥
2

+ a0

N∑
i=2

∥∥∥∥ ∂v

∂xi

∥∥∥∥
2

with BM = βM
√

L, which shows that (I + λAε v, v) � 0 if 0 < λ � λ0 = 2
B2

M
, λ0 being independent of ε.

For the quasi m-accretivity we consider the elliptic problem

∂vε

∂x1
− ε

∂2 vε

∂x2
1

−
N∑

i=2

∂

∂xi

(
ai(x)

∂vε

∂xi

)
+ vε

λ
= g

λ
in Ω, (3.13)

(
vε − ε

∂vε

∂x1

)(
0, x′) = B vε(x), x′ ∈ Ω1, (3.14)

vε(x) = 0 on (0, L) × ∂Ω1, (3.15)
∂vε

∂x1

(
L, x′) = 0, x′ ∈ Ω1, (3.16)

with g ∈ L2(Ω). Applying a fixed point theorem we shall show that this problem has a unique solution vε ∈ H2(Ω). To this
end we fix ω ∈ H1(Ω) and replace the boundary condition at x1 = 0 by(

vε − ε
∂vε

∂x1

)(
0, x′) = (Bω)

(
x′), x′ ∈ Ω1. (3.17)

Problem (3.13), (3.15)–(3.17) has a unique solution ensured by the general theory of elliptic equations (see [4]). Thus, if
ω ∈ L2(Ω) it follows that vε ∈ H1(Ω) and if ω ∈ H1(Ω) we get vε ∈ H2(Ω).

Then we can define a mapping Φ : L2(Ω) → L2(Ω), Φω = vε (the solution to (3.13), (3.15)–(3.17)) which is a contraction
for λ ∈ (0, λ0). This follows by a few computations leading to the estimate

‖vε − vε‖2 � λ

2
B2

M‖ω − ω‖2.

Since λ
2 B2

M < 1 for λ < λ0 we deduce that Φ has a fixed point which turns out to be the unique solution to (3.13)–(3.16).
Next we have to show that(

I + λAε
)−1

g ⇀ (I + λA)−1 g as ε → 0, for any g ∈ L2(Ω). (3.18)

By multiplying (3.13) by vε and integrating over Ω we get the estimate

(
1 − λ

λ0

)
‖vε‖2 + λ

(
1

2

∥∥vε(L)
∥∥2

L2(Ω1)
+ ε

∥∥∥∥∂vε

∂x1

∥∥∥∥
2

+ a0

N∑
i=2

∥∥∥∥∂vε

∂xi

∥∥∥∥
2
)

� ‖g‖‖vε‖, (3.19)

whence

‖vε‖ � 1

1 − λ
λ0

‖g‖. (3.20)

We deduce that
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vε ⇀ v in L2(Ω) as ε → 0,

∂vε

∂xi
⇀

∂v

∂xi
in L2(Ω) as ε → 0, i = 2, . . . , N.

Moreover, still by (3.19) there exists ξ ∈ L2(Ω) such that

√
ε
∂vε

∂x1
⇀ ξ in L2(Ω) as ε → 0.

Combining these results we can write that

vε ⇀ v in L2(0, L; V ) as ε → 0,

ε
∂vε

∂x1
⇀ 0 in L2(Ω) as ε → 0,

vε − ε
∂vε

∂x1
⇀ v in L2(Ω) as ε → 0.

On the other hand by (3.13) we compute∥∥∥∥ ∂

∂x1

(
vε − ε

∂vε

∂x1

)∥∥∥∥
L2(0,L;V ′)

= sup
ψ∈L2(0,L;V )

‖ψ‖L2(0,L;V )
�1

∫
Ω

(
N∑

i=2

ai(x)
∂vε

∂xi

∂ψ

∂xi
− vε

λ
ψ + g

λ
ψ

)
dx

which is bounded independently of ε. Therefore

∂

∂x1

(
vε − ε

∂vε

∂x1

)
⇀

∂v

∂x1
in L2(0, L; V ′) as ε → 0.

Writing now that

(
vε − ε

∂vε

∂x1

)(
x1, x′) −

(
vε − ε

∂vε

∂x1

)(
0, x′) =

x1∫
0

∂

∂x1

(
vε − ε

∂vε

∂x1

)(
x1, x′)dx1

we deduce that {(vε − ε ∂vε
∂x1

)(0)}ε>0 is bounded in V ′ and so there exists l ∈ V ′ such that(
vε − ε

∂vε

∂x1

)
(0) ⇀ l in V ′ as ε → 0.

By passing to the weak limit in the previous equality we get

v
(
x1, x′) − l =

x1∫
0

∂v

∂x1

(
x1, x′)dx1,

whence we see that l = v(0, x′).
On the other hand by passing to the limit in (3.14) we get that

v
(
0, x′) =

L∫
0

β
(
x1, x′)v

(
x1, x′)dx1.

In conclusion, putting together all properties of the limit v we get that v ∈ D(A).

Passing now to the limit in the weak form of (3.13)–(3.16), i.e.,

λ

L∫
0

∫
Ω1

∂

∂x1

(
vε − ε

∂vε

∂x1

)
φ dx1 dx′ +

∫
Ω

(
λ

N∑
i=2

ai
∂vε

∂xi

∂φ

∂xi
+ vεφ

)
dx =

∫
Ω

gφ dx for any φ ∈ L2(0, L; V ),

we obtain on the basis of the previous convergences that

λ

L∫ 〈
∂v

∂x1
(x1),φ(x1)

〉
V ′,V

dx1 +
∫ (

λ

N∑
i=2

ai
∂v

∂xi

∂φ

∂xi
+ vφ

)
dx =

∫
gφ dx
0 Ω Ω
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which is the weak form of the problem (I + λA)−1 g = v, equivalently to

λ
∂v

∂x1
− λ

N∑
i=2

∂

∂xi

(
ai(x)

∂v

∂xi

)
+ v = g in Ω, (3.21)

v
(
0, x′) = (B v)

(
x′), x′ ∈ Ω1, (3.22)

v(x) = 0 on (0, L) × ∂Ω1. (3.23)

We have proved in fact (3.18).
Analyzing the previous proof we remark that due to the lack of compactness in L2(Ω) the family of operators {Aε}ε>0

is not strongly convergent in resolvents and so the classical Trotter–Kato theorem is not applicable. Here, the result given in
Section 2 plays its role.

Relation (3.18) also implies that A is quasi m-accretive. Indeed, by (3.20), (3.18) and the lower semicontinuity property
of the norm we have that∥∥(I + λA)−1 g

∥∥ � lim inf
ε→0

∥∥(
I + λAε

)−1
g
∥∥ � 1

1 − λ
λ0

‖g‖

which shows that A is quasi m-accretive.
Next we show that for k = 2,3, . . . we have(

I + λAε
)−k

g ⇀ (I + λA)−k g as ε → 0, for any g ∈ L2(Ω). (3.24)

Again we denote(
I + λAε

)−1
g = vε, (I + λA)−1 g = v

and we have to prove first that(
I + λAε

)−2
g = (

I + λAε
)−1

vε ⇀ (I + λA)−1 v = (I + λA)−2 g as ε → 0, (3.25)

knowing by (3.18) that vε ⇀ v in L2(Ω). We have to study the solution to the equation

zε + λAεzε = vε.

We proceed exactly in the same way as for the problem (3.13)–(3.16) and take into account that the function g in (3.13) is
replaced here by vε which tends weakly to v in L2(Ω). We deduce that

zε ⇀ z in L2(0, L; V ), as ε → 0,

∂zε

∂x1
⇀

∂z

∂x1
in L2(0, L; V ′), as ε → 0,

where z is the solution to the equation z + λAz = v. This means that (3.25) is verified. For the next powers k = 3,4, . . . we
proceed by induction.

Finally we have to check (2.2). Let x ∈ X . Then there exists a sequence xn ∈ C∞
0 ((0, L) × Ω1) such that

xn → x as n → ∞.

Let zn ∈ C∞([0, L]) have the properties

zn(0) = 1, zn(L) = 0, z′
n(0) = 0, z′

n(L) = 0

and

zn → 0 as n → ∞.

Arguing as in [5] we consider the sequence

un
(
x1, x′) = kn

(
x′)zn(x1) + xn

(
x1, x′) (3.26)

where kn is computed such that un satisfies the boundary condition at x1 = 0, i.e., un(0, x′) = ∫ L
0 β(x1, x′)un(x1, x′)dx1.

We get

kn
(
x′) =

∫ L
0 β(x1, x′)xn(x1, x′)dx1

1 − ∫ L
0 β(x1, x′)zn(x1)dx1

and we remark that for n large the denominator does not vanish since zn → 0.
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Also we note that un ∈ D(Aε) for all ε > 0. Moreover, we easily check that

sup
ε∈(0,1]

∥∥Aεun
∥∥ < ∞ for each n � 1,

i.e., un ∈ X defined in (2.2) for all n � 1. Since by (3.26)

un → x in X, as n → ∞
we deduce that X = X .

Hence the hypothesis of Corollary 2.2 being verified we conclude that yε(t) the solution to (3.6)–(3.10) converges to y(t)
the solution to (3.1)–(3.4),

yε(t) ⇀ y(t) in L2(Ω) uniformly on [0, T ].
In this way the sequence of solutions yε(t) serves as an approximating solution to y(t).
The technique can be used if for instance one has to study the asymptotic behavior of the solution to the problem (3.6)–

(3.10) depending on the small parameter ε, when ε → 0. Thus it can be proved that the solution behaves at limit as the
solution to (3.1)–(3.4).
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