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Minimum Numbers of Circuits in Affine Sets 

JEAN-PAUL DOIGNON 

Motivated by a question due to J. Eckhoff, we look for the minimum of the number of circuits 
contained in a subset of s points in a d-dimensional affine space, with fixed sand d. 

In matroid theory (see e.g. [4]), a circuit is any minimal dependent set; for instance, 
a circuit in an affine space AG(d, K) of dimension d over the skew-field K consists of 
n + 2 points in general position in an n -dimensional subspace. In his stimulating survey 
paper on Radon's theorem, J. Eckhoff sets a question [2, Problem (2.8)] about primitive 
Radon partitions which is easily seen to be equivalent to the following extremal problem 
(see [1]): to minimize the number of circuits contained in a subset of s points of a 
d-dimensional real affine space. More generally, we want to determine the exact values 
of the following numbers, where c(X) denotes as in [4] the number of circuits contained 
inX: 

c(s, d, K) = min{c(X)IX c AG(d, K) and Ixi = s}, 

c(s, d) = min{c(M)IM matroid, rk(M) = d + 1, IMI = s} 

(of course one could also introduce corresponding numbers for projective or vector 
spaces). Notice that the similar maximum possible numbers of circuits are obtained for 
X in general position or when M is a uniform matroid [4, Chapter 16]. 

The precise value of c(s, d) will be given below. For c(s, d, K) we prove partial results 
and formulate a quite general conjecture. The main proofs rely on the Gale transform 
technique or its abstract setting, the Whitney duality (see [3] and its references, especially 
[4, Chapter 2] for duality). 

PROPOSITION 1. Assuming IKI~3, one has: 

f

o 
s-d-1 

c (s, d, K) = s _ d 

s-d+1 

Moreover, c(s, d, K»s -d +2 ifs >td +~. 

ifs ~d + 1, 

ifd +1 ~s ~t(d+ 1), 

ifs =td+2, 

ifs =td+~. 

PROOF. The independent sets are the only sets having no circuit; they have at most 
d + 1 points. Assuming now s ~ d + 1, we first remark that c(s, d, K) is obtained for at 
least one generating set (replacing one point of a non-generating set by a point not 
dependent on the set does not increase the number of circuits). We then take a finite 
generating family X = (Pi) of AG(d, K) and consider its Gale transform X = (p;) which 
is a family of vectors, with the same indices, having zero sum and generating a vector 
space V of dimension s - d - 1 over the same field. A subfamily Y in X is a circuit iff 
the corresponding complementary family X\ Y is induced on X by a unique hyperplan~. 
So we want to minimize the number h (X) of hyperplanes generated by vectors of X. 
By taking in X a basis of V, we see h (X) ~ s - d -1, with equality iff X is contained in 
the union of the rays generated by basis vectors. But in this case we have to put at least 
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three non-zero vectors of X on each of these rays (otherwise all vectors but two would 
be in a hyperplane, which means that there are coincident points in X; now we want to 
have 5 distinct points). The construction of X is thus always possible (eventually with 
coincident vectors), if we have 35 ~ s - d -1, that is s ~ ~(d + 1). 

For the following values of s as indicated in the statement, we know c (s, d) > s - d - 1. 
If s = ~d + 2, one constructs X with h (X) = s - d by taking five vectors in a plane with 
two pairs of proportional vectors, and three vectors on each of s - d - 3 rays independent 
together with the plane (notice 3(s - d - 3) = s - 5). 

If s = ~d + t then X can be taken with four vectors in a plane, no two of them 
proportional, and s - 4 vectors on s - d - 3 rays again independent with the plane. Thus, 
h (X) = s - d + 1 and one has to show that no X with h (X) = s - d exists. If B is a basis 
contained in such a X, take p in X depending on k basis vectors, with k > 1, k minimal. 

- 1 - -So k~2 and h(X)~(s-d+l)+2k(k-l). Hence h(X)=s-d iff all vectors of X are 
on basis rays and one supplementary ray in a basis plane. But to ensure that the points 
in X are distinct, this needs five vectors in the plane and thus more than ~d + ~ vectors. 

Finally, the last assertion is proved by the same technique: one uses the existence of 
at least one supplementary ray not in any basis plane or at least two supplementary rays 
in basis planes. 

REMARK 1. It is to be noticed that for \K\ ~ 3 and 5 ~ ~(d + 1) + 1, the value of 
c(s, d, K) is independent of K. This is not true for all s, since c(7, 2, K) is equal to 14 
or 17, the characteristic of K being 2 or not (with the exceptional values 0 and 17 for 
\K\ = 2, \K\ = 4 respectively). 

REMARK 2. The proof gives also the types of the sets having the minimum number 
of circuits. For d + 1 ~ s ~ ~(d + 1), one takes s - d -1 skew affine subspaces, each one 
provided with a maximum circuit, and eventually adds points together skew with these 
subspaces; here subspaces are said to be skew if the projective hull of anyone does not 
meet the projective hull of the union of the remaining ones. One can also describe the 
minimum sets if s = ~d +2 or s = ~d +~. 

REMARK 3. Another easy way of proving c(s, d, K) = s - d -1 is by first showing 
c(5+1,d,K)~c(5,d,K)+1 and then giving examples with at most s-d-l circuits. 
But this does not seem to lead to a complete classification of all the minimum sets. 

PROPOSITION 2. For matroids, one has c (s, d) = s - d -1. 

PROOF. Given a matroid M of rank d + 1 on s points, we consider its dual matroid 
M* of rank s - d - 1 on the same s points. As a circuit in M is the complement of a 
hyperplane in M*, we try to minimize the number h(M*) of hyperplanes in M*. If B 
is a basis of M*, the closures of B minus one of its elements give us 5 -d -1 hyperplanes, 
and it is easy to see that there are no more hyperplanes in M* iff M* is the union of 
the closures of the elements of B (that is, the simple matroid determined by M* is free 
[4, pp. 10,54]). 

REMARK 4. The matroids of rank d + 1 on s points minimizing the number cf 
circuits are those having disjoint circuits (possibly loops or pairs of parallel elements). 

We now turn to the plane affine case with base· field K. The circuits consist in either 
three collinear points or four points in general position; we call them respectively 3-circuits 
and 4-circuits. 
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PROPOSITION 3. If char K ¥- 2 and card K ~s - 2, one has for s ~4 and s ¥- 6: 

(
s-2) (S-3) 1 3 2 c(s,2,K)=1+ 3 + 2 =(;(s -6s +5s+18) 

and moreover c(6, 2, K) = 7 which is one less than the value given by the above formula. 
The minimum sets for s ~ 8 are of a unique type, consisting in s - 2 collinear points together 
with two more points collinear with one of those. For s :os; 7, the minimum sets are those 
pictured in [1]. 

PROOF. The number of circuits in a plane set X only depends on the numbers ni of 
lines that contain exactly i points of X; more precisely, 

c(X) = G) -iE n{ G) (s - i-I) + G)], 
Using a list of possible configurations, one easily establishes the thesis for s :os; 9. Assume 
now s ~ 10 and proceed by induction. If X has exactly i points on some line, with 

4:os; i:os; s - 3, it contains G) 3-circuits on this line, at least 

circuits outside the line (by the induction) and at least 

composite circuits (since two exterior points either form a 4-circuit with any two points 
of the line, or form a 3-circuit with one of them and a 4-circuit with any two of the 
remaining ones). We subtract from this total number of circuits the number appearing 
in the thesis, thus obtaining for a fixed i an excess polynomial P = P(s). Developing the 
binomial coefficients, one sees that P(s) is of degree 2 if i ¥- 4. From the values PU + 1) = 
i-I, PU+2)=1, PU+3)=tU-5)U-2), it is clear that P(s»O for the cases we 
consider, so a minimal set X cannot have exactly i points on a line with 4 < i :os; s - 3. 
To exclude now i = 4, we remark that any three non-collinear exterior points form a 
circuit with at least one point on the line; thus we add at least t(s - 4 )(s - 5)(s - 8) 
circuits and form a new excess polynomial which is easily seen to be positive for s ~ 10. 
We then show that a set X with at most three points on a line cannot be minimal. Since 

c(X) = G) -n3(s -4) 

and n3 :os;h(s -1) we see that c(X) exceeds the number in the thesis (recall s ~ 10). Thus 
we conclude that our minimum set X must have s - 2 points on a line, and the thesis 
easily follows. 

We cannot prove a general result for all sand d, but we have some reasons to think 
that the following statement is true. 

CONJECTURE. Assume IKI ~ s and char K ¥- 2. If s > ~d + ~ and d > 2, then any set 
X with c(X) minimum is of the following type. 

(i) For d odd, take t(d + 1) skew lines, and write s = t(d + l)n + m where n, mEN and 
m < t( d + 1); then X consists of n + 1 points on each of m of these lines and n points 
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on each of the remaining ones. Thus 

c(s, d, K) =!(d + l)G) + m(;). 

(ii) For d even, take !(d - 2) lines skew together with a plane, and define t to be the 
largest integer such that, after writing t = !(d - 2)n + m where n, mEN and m < !(d - 2), 
one has 

t+!J(9+4n(n -1)):0;;; s-t 

then X consists of n + 1 points on each of m + 1 of the lines, n points on the remaining 
ones and s - t -1 points forming a minimum set in the plane. Thus 

( n) (n) (S-t-3) (s-t-4) c(s,d,K)=~(d-2) 3 +(m+l) 2 + 3 + 2 +1. 

However, this number must be lowered by one unit when s - t -1 = 6, that is 2d + 2:0;;; S :0;;; 
~d + 1. Also, for some exceptional values of sand d, a second type of set X is obtained 
by moving a point from the plane to a line (more precisely, this can be done when the 
former X has seven points in the plane and exactly five points on some line). 

This statement is easily derived from the following conjectured lemma: if d > 2, any 
set X with the minimum number of circuits can be split into two subsets lying in skew 
subspaces. In fact, this implies that X lies on skew lines (and a plane if d is even). One 
checks that X must then be partitioned as equally as possible on these lines. 
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