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In this study, a simple and highly accurate semi-analytical method called the Differential
Transformation Method (DTM) is used for solving the nonlinear temperature distribution
equation in a longitudinal fin with temperature dependent internal heat generation and
thermal conductivity. The problem is solved for two main cases. In the first case, heat
generation is assumed variable by fin temperature and in the second case, both thermal
conductivity and heat generation vary with temperature. Results are presented for the
temperature distribution for a range of values of parameters appeared in the mathematical
formulation (e.g. N, εG, and G). Results reveal that DTM is very effective and convenient. Also, it
is found that this method can achieve more suitable results compared to numerical methods.
& 2014 The Authors. Published by Elsevier Ltd. This is an open access article under the CC BY-

NC-ND license (http://creativecommons.org/licenses/by-nc-nd/3.0/).
1. Introduction

Fins are the most effective instrument for increasing the rate of heat transfer. As we know, they increase the area of heat
transfer and cause an increase in the transferred heat amount. A complete review on this topic is presented by Krause et al.
[1]. Fins are widely used in many industrial applications such as air conditioning, refrigeration, automobile, chemical
processing equipment and electrical chips. Although there are various types of the fins, but the rectangular fin is widely
used among them, probably, due to simplicity of its design and its easy manufacturing process. For ordinary fins problem,
the thermal conductivity assumes to be constant, but when temperature difference between the tip and base of the fin is
large, the effect of the temperature on thermal conductivity must be considered. Also, it is very realistic that to consider the
heat generation in the fin (due to electric current or etc.) as a function of temperature.

Aziz and Bouaziz [2] used the least squares method for predicting the performance of a longitudinal fin with
temperature-dependent internal heat generation and thermal conductivity and they compared their results by Homotopy
Perturbation Method (HPM), Variational Iteration Method (VIM) and double series regular perturbation method and found
that the least squares method is simpler than other applied methods. Razani and Ahmadi [3] considered circular fins with an
arbitrary heat source distribution and a nonlinear temperature-dependent thermal conductivity and obtained the results for
the optimum fin design. Unal [4] conducted an analytical study of a rectangular and longitudinal fin with temperature-
dependent internal heat generation and temperature-dependent heat transfer coefficient. Another study about this issue
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(convective fin with both temperature dependent thermal conductivity and internal heat generation) was performed by
Shouman [5]. Kundu [6] had solved a problem about thermal analysis and optimization of longitudinal and pin fins of
uniform thickness subject to fully wet, partially wet and fully dry surface conditions. Domairry and Fazeli [7] solved the
nonlinear straight fin differential equation by the Homotopy Analysis Method (HAM) to evaluate the temperature
distribution and fin efficiency. Also, temperature distribution for annual fins with temperature-dependent thermal
conductivity was studied by Ganji et al. [8] using HPM. The effects of temperature-dependent thermal conductivity of a
moving fin with considering the radiation losses have been studied by Aziz and Khani [9]. Furthermore, Bouaziz and Aziz
introduced a double optimal linearization method (DOLM) to get a simple and accurate solution for the temperature
distribution in a straight rectangular convective–radiative fin with temperature-dependent thermal conductivity [10].

Mustafa Inc [11] used HAM to obtain the efficiency of straight fin with temperature dependent thermal conductivity.
The concept of Differential Transformation Method (DTM) was firstly introduced by Zhou [12] in 1986 which was used to
solve both linear and nonlinear initial value problems in electric circuit analysis. This method can be applied directly for
linear and nonlinear differential equations without requiring linearization, discretization or perturbation and this is the
main benefit of this method. Ghafoori et al. [13] used the DTM for solving the nonlinear oscillation equation. Abdel-Halim
Hassan [14] applied DTM for different systems of differential equations and he discussed the convergence of this method in
several examples of linear and nonlinear systems of differential equations. Abazari and Abazari [15] applied the DTM and
reduced differential transformation method (RDTM) for solving the generalized Hirota–Satsuma coupled KdV equation. They
compared the results with the exact solution and they found that RDTM is more accurate than the classical DTM. Rashidi
et al. [16] solved the problem of mixed convection about an inclined flat plate embedded in a porous medium by DTM; they
applied the Pade approximation to increase the convergence of the solution. Abbasov et al. [17] employed DTM to obtain
approximate solutions of the linear and nonlinear equations related to engineering problems and they showed that the
numerical results are in good agreement with the analytical solutions. Balkaya et al. [18] applied the DTM to analyze the
vibration of an elastic beam supported on elastic soil. Borhanifar et al. [19] employed the DTM on some PDEs and their
coupled versions. Moradi and Ahmadikia [20] applied the DTM to solve the energy equation for a temperature-dependent
thermal conductivity fin with three different profiles. Moradi [21] applied the DTM for thermal characteristics of straight
rectangular fin for all types of heat transfer (convection and radiation) and compared its results by the numerical method
with fourth order Runge–Kutta method using shooting method. Kundu et al. [22] applied the DTM for predicting fin
performance of triangular and fully wet fins and they noticed that the fin performance of wet fins is almost independent on
the relative humidity. Recently, Hatami and Ganji [23–26] and Hatami et al. [27] used analytical methods for solving the heat
transfer through the porous fins with different geometries.

In the present letter, analytical solution of fin temperature distribution with temperature-dependent heat generation and
thermal conductivity has been studied by the Differential Transformation Method. For this purpose, after a brief
introduction for DTM and description of the problem, DTM is applied to find the approximate solution. Obtaining the
analytical solution of the model and comparing with numerical results reveals the capability, effectiveness, simplicity and
high accuracy of the presented method.

2. Differential transformation method principles

In this section the fundamental basic of the Differential Transformation Method is introduced. For understanding the
method's concept, suppose that x(t) is an analytic function in domain D, and t¼ti represents any point in the domain.
The function x(t) is then represented by a one power series whose center is located at ti. The Taylor series expansion function
of x(t) is in form of

xðtÞ ¼ ∑
1

k ¼ 0

ðt�tiÞk
k!

dkxðtÞ
dtk

" #
t ¼ ti

8tAD ð1Þ

The Maclaurin series of x(t) can be obtained by taking ti¼0 in Eq. (1) expressed as

xðtÞ ¼ ∑
1

k ¼ 0

tk

k!
dkxðtÞ
dtk

" #
t ¼ 0

8 tAD ð2Þ

As explained in [12], the differential transformation of the function x(t) is defined as follows:

XðkÞ ¼ ∑
1

k ¼ 0

Hk

k!
dkxðtÞ
dtk

" #
t ¼ 0

ð3Þ

where X(k) represents the transformed function and x(t) is the original function. The differential spectrum of X(k) is confined
within the interval tA ½0;H�, where H is a constant value. The differential inverse transform of X(k) is defined as follows:

xðtÞ ¼ ∑
1

k ¼ 0

t
H

� �k

XðkÞ ð4Þ
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It is clear that the concept of differential transformation is based upon the Taylor series expansion. The values of function X
(k) at values of argument k are referred to as discrete, i.e. X(0) is known as the zero discrete, X(1) as the first discrete, etc.
The more discrete available, the more precise it is possible to restore the unknown function. The function x(t) consists of the
T-function X(k), and its value is given by the sum of the T-function with (t/H)k as its coefficient. In real applications, at the
right choice of constant H, the larger values of argument k the discrete of spectrum reduces rapidly. The function x(t) is
expressed by a finite series and Eq. (4) can be written as

xðtÞ ¼ ∑
n

k ¼ 0

t
H

� �k

XðkÞ ð5Þ

Some important mathematical operations performed by the Differential Transform Method are listed in Table 1.

3. Description of the problem

Consider a longitudinal fin with a constant rectangular profile, section area A, length L, perimeter P, thermal conductivity
k, and heat generation qn. Fin is attached to a surface with constant temperature Tb and losses heat to the surrounding
medium with temperature T1 through a constant convective heat transfer coefficient h. In the problem we assume that the
temperature variation in the transfer direction is negligible, so heat conduction occurs only in the longitudinal direction
(x direction). A schematic of the geometry of described fin and other properties is shown in Fig. 1. For this problem, the
governing differential equation and boundary condition can be written as [2]

d2T
dx2

�hP
kA

ðT�T1Þþqn

k
¼ 0 ð6Þ

x¼ 0;
dT
dx

¼ 0 ð7Þ
Table 1
Some fundamental operations of the differential transform method.

Origin function Transformed function

xðtÞ ¼ αf ðxÞ7βgðtÞ XðkÞ ¼ αFðkÞ7βGðkÞ
xðtÞ ¼ dmf ðtÞ

dtm
XðkÞ ¼ ðkþmÞ!FðkþmÞ

k!

xðtÞ ¼ f ðtÞgðtÞ XðkÞ ¼∑k
l ¼ 0FðlÞGðk� lÞ

xðtÞ ¼ tm
XðkÞ ¼ δðk�mÞ ¼

1; ifk ¼ m;

0; ifkam:

(

xðtÞ ¼ expðtÞ XðkÞ ¼ 1
k!

xðtÞ ¼ sin ðωtþαÞ XðkÞ ¼ ωk

k! sin kπ
2 þα

� �
xðtÞ ¼ cos ðωtþαÞ XðkÞ ¼ ωk

k! cos kπ
2 þα

� �

Fig. 1. Schematic of the fin geometry with the heat generation source.
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x¼ L; T ¼ Tb ð8Þ
This problem is solved in two main cases using the DTM. In the following subsections, the governing equations for these two
cases are introduced.

3.1. Fin with temperature dependent internal heat generation and constant thermal conductivity

In the first case, we assume that heat generation in the fin varies with temperature as Eq. (9) and the thermal
conductivity is constant k0

qn ¼ qn

1ð1þεðT�T1ÞÞ ð9Þ
where qn

1 is the internal heat generation at temperature T1. With the introduction of the following dimensionless
quantities:

θ¼ ðT�T1Þ
ðTb�T1Þ; X ¼ x

L
; N2 ¼ hPL2

k0A

G¼ qn
1A

hPðTb�T1Þ; εG ¼ εðTb�T1Þ ð10Þ

Eqs. (6)–(8) can be rewritten as

d2θ

dX2�N2θþN2Gð1þεGθÞ ¼ 0 ð11Þ

X ¼ 0;
dθ
dX

¼ 0 ð12Þ

X ¼ 1; θ¼ 1 ð13Þ
Now we apply DTM from Table 1 into Eq. (11) to find θðxÞ.

ðkþ1Þðkþ2ÞΘðkþ2Þ�N2ΘðkÞþN2GðδðkÞþεGΘðkÞÞ ¼ 0 ð14Þ
Rearranging Eq. (14), a simple recurrence relation is obtained as follows:

Θðkþ2Þ ¼N2ΘðkÞ�N2GðδðkÞþεGΘðkÞÞ
ðkþ1Þðkþ2Þ ð15Þ

where

δðkÞ ¼ 1 ifk¼ 0
0 ifka0

(
ð16Þ

Similarly, the transformed form of boundary conditions can be written as

Θð0Þ ¼ a; Θð1Þ ¼ 0 ð17Þ
By solving Eq. (15) and using boundary conditions (Eq. (17)), the DTM terms are obtained as

Θð2Þ ¼ 1
2
N2Θð0Þ�1

2
N2Gð1þεGΘð0ÞÞ

Θð3Þ ¼ 1
6
N2Θð1Þ�1

6
N2Gð1þεGΘð1ÞÞ

Θð4Þ ¼ 1
12

N2Θð2Þ� 1
12

N2Gð1þεGΘð2ÞÞ

Θð5Þ ¼ 1
20

N2Θð1Þ� 1
20

N2Gð1þεGΘð1ÞÞ ð18Þ

Now by applying Eq. (4) into Eq. (18), a polynomial function will be obtained for a temperature whose coefficients are
related to “a” due to Eq. (17). By applying the Eq. (13) as a boundary condition to this polynomial function, the constant
parameter “a” will be obtained, so the temperature distribution equation will be estimated.

3.2. Fin with temperature dependent internal heat generation and temperature dependent thermal conductivity

In the second case, it is assumed that the thermal conductivity of fin is temperature-dependent as well as internal heat
generation. If we consider it to vary linearly with temperature we have

k¼ k0½1þβðT�T1Þ� ð19Þ
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The dimensionless form of Eq. (19) is

k
k0

¼ 1þεcθ½ � ð20Þ

where

εc ¼ βðTb�T1Þ ð21Þ
Eq. (11) for this condition becomes

d
dX

ð1þεcθÞ
dθ
dX

� �
�N2θþN2Gð1þεGθÞ ¼ 0 ð22Þ

whose boundary conditions are given by Eqs. (12) and (13).
Now we must apply the DTM to this governing equation. By using Table 1 we have

ðkþ2Þðkþ1ÞΘðkþ2ÞþεC ∑
k

m ¼ 0
fðkþ1�mÞΘðkþ1�mÞðmþ1ÞΘðmþ1Þg

þεC ∑
k

m ¼ 0
fðk�mÞΘðk�mÞðmþ2ÞΘðmþ2Þ�N2ΘðkÞ

þN2GðδðkÞþεGΘðkÞÞg ¼ 0 ð23Þ
Rearranging Eq. (22), a simple relation is obtained as follows:

Θðkþ2Þ ¼ �1
ðkþ2Þðkþ1ÞεC ∑

k

m ¼ 0
fðkþ1�mÞΘðkþ1�mÞðmþ1ÞΘðmþ1Þg

þεC ∑
k

m ¼ 0
fðk�mÞΘðk�mÞðmþ2ÞΘðmþ2Þ�N2ΘðkÞþN2GðδðkÞþεGΘðkÞÞg ð24Þ

the boundary condition of this case is the same as the previous case Eq. (17). By solving Eq. (24) and using boundary
conditions Eq. (17), the DTM terms for this case can be obtained as

Θð2Þ ¼N2Θð0Þ�N2GεGΘð0Þ�N2G
2ð1þεCΘð0ÞÞ

Θð3Þ ¼ εCΘð2ÞΘð1Þþ
1
6
N2Θð1Þ�1

6
N2GεGΘð1Þ

Θð4Þ ¼ � 1
12

N2GεGΘð2Þ�
3
4
εCΘð3ÞΘð1Þ�

2
3
εCΘ

2ð2Þþ 1
12

N2Θð2Þ ð25Þ
Fig. 2. Temperature distribution in the fin with temperature dependent internal heat generation and constant thermal conductivity for N¼1.
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Finally, by applying Eq. (4) into Eq. (25), a polynomial function will be obtained for a temperature whose coefficients are
related to “a” due to Eq. (17). By applying Eq. (13) as a boundary condition to this polynomial function, the constant
parameter “a” will be obtained, so the temperature distribution equation will be estimated.

4. Results and discussion

4.1. Case1: Fin with temperature dependent internal heat generation and constant thermal conductivity

Temperature distribution in case 1 (temperature dependent heat generation and constant thermal conductivity) is
shown in Figs. 2–5. It is common that in fin design the N parameter is considered to be 1. Fig. 2 shows temperature
distribution for this state and εG¼G¼0.2, εG¼G¼0.4 and εG¼G¼0.6. This choice of parameters represents a fin with
moderate temperature dependent heat generation and the thermal conductivity variation of 20% between the base and the
Fig. 3. Temperature distribution in the fin with temperature dependent internal heat generation and constant thermal conductivity for N¼0.5.

Fig. 4. Temperature distribution in the fin with temperature dependent internal heat generation and temperature dependent thermal conductivity for
N¼1, G¼0.4, and εG¼0.4.



Fig. 5. Error of DTM in comparison by the numerical method for case 2 and N¼1.

Fig. 6. Temperature distribution in the fin with temperature dependent internal heat generation and temperature dependent thermal conductivity for
N¼0.5, G¼0.4, and εG¼0.4.
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surrounding coolant temperatures that is often used in nuclear rods. As we see in the figure by increasing in εG and G
temperature of the fin increased because of increasing in heat generation. By comparing the results with the numerical
method, it was observed that the DTM has a good efficiency and accuracy. Fig. 3 shows a comparison result which pertain to
N¼0.5 (this choice is used in compact heat exchanger fin design), this figure illustrates that fin temperature in this condition
is greater than N¼1 state. The range of the calculated errors reveals that the DTM has a good agreement with numerical
results.

4.2. Case 2: Fin with temperature dependent internal heat generation and temperature dependent thermal conductivity

Figs. 4–7 show the temperature distribution in case 2. As already mentioned, in case 2, thermal conductivity and heat
generation are temperature dependent. Fig. 4 illustrates the temperature distribution with N¼1, εG¼G¼0.4 and εC increased
from 0 to 0.6 with intervals 0.2. As seen in Fig. 4, when εC increases, the local fin temperature increases because the ability of
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the fin to conduct heat increases. Fig. 5 shows the error of the DTM in comparison to the numerical method for N¼1,
εG¼G¼0.4 and a low maximum error in this figure emphasise on accuracy and efficiency of the Differential Transformation
Method. As seen in this figure, maximum error for calculating the fin temperature is occurred at the fin tip as the base
temperature is taken as a constant boundary value. In Fig. 6 the N parameter is decreased to 0.5 and temperature
distribution is depicted when G¼εG¼0.4.

Finally, by a comparative assessment of figures introduced for this case and pervious case, it can be found that the local
fin temperature increases as the parameters G, εG, and εC increase. The increase in parameter εG implies that the heat
generation is increased and hence it causes to produce a higher temperature in the fin. An increase in εC means the thermal
conductivity of the fin is increased and it makes more heat conducting through the fin and local temperature will increase.

5. Conclusion

In this paper, the Differential Transformation Method is applied to analyze the temperature distribution in a fin with
temperature-dependent heat generation and thermal conductivity. The problem is solved for two main cases. In the first
case just heat generation varies with temperature, and in the second case both heat generation and thermal conductivity are
variable. In the problem, constants are chosen from real and industrial fins and DTM results are depicted and compared with
the numerical one. Despite DTM simplicity, the solutions match with the numerical results within a maximum error of
0.05%. Obtaining the analytical DTM solution of the problem and comparing with numerical results reveals the facility,
effectiveness, and high accuracy of this method.
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