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Abstract

This paper focuses on disruption management of Rapid Transit Rail Networks. We propose an integrated model for timetable
and rolling stock rescheduling in order to minimize the recovery time, the passenger inconvenience and the incurred system
costs. We introduce Origin-Destination demand formulation to the recovery problem in order to account for rerouting
possibilities for passengers through the network, considering the presence of different transport modes. The computations
presented are based on realistic problem instances of the Spanish rail operator RENFE. The tests have been accomplished
using data from Madrid's rapid transit network.
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1. Introduction

Disruption management is the process of determining whether an incident produces a disruption or not and
designing plans to recover from a disrupted situation. Such incidents may include infrastructure blockage, failing
rolling stock, crew shortage, etc. In case of incidents the railway operations are said to be disrupted. A disruption
imposes some new constraints to the railway operation (i.e.: canceling or delaying some trains).

The disruption management process includes the following major tasks: adapt the timetable according to the
restrictions imposed by the disruption; re-schedule the rolling stock to cover the disrupted timetable; re-schedule
the crew to serve the adapted rolling stock schedule; and re-schedule passenger.
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Defining recovery plans is a complex task since the presented resources have to be re-planned in near real-
time. A disruption is in most cases addressed by solving the problem in a sequential manner. However, this
approach will provide suboptimal allocation of resources, where the solution of one of the problems may restrict
the set of feasible solutions of the problems solved sequentially.

A complicating issue in a disrupted situation is the fact that the duration of the disruption is usually not known
exactly and that the status of the railway system is changing at the same time. That impact is generally in the form
of a change in the system settings, a change in resource availability, or both. The response to a change in resource
availability is to replan the current operations to apply only the available resources which may include giving up
some of the planned services. A disruption may also cause a change in the system settings. Closing a station (or
part thereof) temporarily is an example of a change in the system settings that affects the system's ability to
operate.

A further change in the system environment is a deviation in demand because the passengers are free to choose
their own itinerary in the network. In case of a disruption, some itineraries will not be available anymore and
others may become less attractive. Passengers react to disruptions in different ways: either they reroute (within
the network or with other modes of transport), or they wait for a train in their original itinerary, or they do not
travel at all.

1.1. State of art

Jespersen-Groth et al. (2009) describe the disruption management process and the roles of the different actors
involved in it. They discuss the three main subproblems in railway disruption management: timetable adjustment,
rolling stock and crew re-scheduling. De Almeida et al. (2003) propose an approach for dealing with large scale
disruptions where track capacity is greatly reduced. They propose a heuristic approach to re-building passenger
transportation plan in real time. Kroon and Huisman (2011) describe models and algorithms for real-time rolling
stock rescheduling and real-time crew rescheduling. Budai et al. (2010) state that in order to prevent expensive
deadheading trips, it is attractive to modify the rolling stock schedules such that the rolling stock is balanced
before the night. Nielsen (2011) formalizes the rolling stock rescheduling problem as the problem of adapting a
set of rolling stock duties to a modified situation. The reschedule of the rolling stock considers a balance between
the rescheduling effort and the service level. Almodovar and Garcia-Rédenas (2011) deal with a special case of
the vehicle re-scheduling problem for passenger railways in case of emergencies.

Sequential scheduling and re-scheduling have been common in the railway industry (see Cadarso and Marin
(2010) and (2011) for examples in sequential planning). Cadarso and Marin (2012) demonstrate the benefits of
integrated planning in timetable and rolling stock planning: the integrated approach leads to clearly superior
solutions with regard to their efficiency and their robustness, while the integrated model is still solvable in
reasonable time for real-life cases.

Cadarso et al. (2013) propose a two-step re-scheduling solution approach. First, they anticipate the passenger
demand pattern using a discrete choice model. Then, they use an integrated optimization model for timetable and
rolling stock recovery to minimize the recovery time, the passenger inconvenience and the incurred system costs.
They report their computational tests on realistic problem instances of the Spanish rail operator RENFE.

1.1. Contributions

We present a new approach to deal with disruptions in rapid transit networks, where resources and capacities
are limited and frequency values are high. For an undisturbed scenario we have full information on the timetable,
rolling stock assignment and passenger demand. Once the disruption has started, we know the infra-availability of
the network (with estimated time duration). We compute the expected passenger demand decisions according to a
logit model. Finally, we run an integrated timetable, rolling stock and passenger use optimization model to deal
with disruptions. Historically, disruption management has been addressed in a sequential manner. However, this
sequential approach may produce suboptimal or even infeasible schedules. Therefore, we develop an optimization
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model to be applied in case of disruption that simultaneously deals with timetabling and rolling stock scheduling
decisions.
The main contributions in this approach with respect the related literature are:
e We use itinerary based formulation instead of arc based formulation.
e Passengers make decisions about itineraries according to a logit model and then they try to board a train
serving that itinerary.
e [f passengers cannot travel with their first decision, they can change their mind and choose to travel in a
different way.
This paper is organized as follows. In section 2 the problem is described. In section 3 the mathematical model
is introduced. In section 4 is for computational experiments and section 5 is for conclusions.

2. Problem Description

First, the railway infrastructure is introduced. Next, we describe the timetable, train services and shunting in
rapid transit networks. Finally, we explain how we treat the passenger demand for disturbed scenarios.

2.1. Railway Infrastructure

The railway network is studied as a graph composed of nodes and directed arcs linking different stations. It
consists of tracks and two types of stations, namely passenger stations and depot stations. The first type is
characterized by train services that only attend to passenger demand. In depot stations shunting operations can
also be performed, that is, attached to the passenger station there is a depot where trains are driven to be parked or
shunted.

Between two stations, two different arcs exist, one for each direction of movement. Therefore, every arc is
defined by its departure and arrival station and by its length. The lines are defined in the network. Each line
contains some arcs in the rapid transit network. However, there may be different train services within the same
line. That is, a service may not attend all the arcs in the line in which is being operated.

As we are studying a real life problem, the railway infrastructure is not isolated from other modes of transport.
We will consider the existence of the metro network. This metro network has several stations in common with the
rapid transit railway network. Therefore, when a disruption occurs passengers may find an attractive itinerary
using both, the railway and metro networks.

The planning time is discretized into time periods. Due to the high train frequencies, the duration of one time
period is set to one minute. The existing physical network is replicated once for each time period existing in the
planning period (e.g., 20 hours).

2.2. Timetable

There are two types of train services: the planned train services and the emergency services. The former are the
trains scheduled for a regular situation and the latter are the trains inserted to the schedule during the disruption in
order to alleviate its negative effects in passengers. There may be different services within the same line, services
with different origins and destinations.

We mean by line a determined set of stations and tracks where services are performed. A planned train service
is a passenger train traveling from a depot station to another depot station stopping at a number of intermediate
stations. They are characterized by their departure depot station; their arrival depot station; every arc they travel
on and their departure time.

Planned services may be canceled due to some disruption. We will not consider the possibility of changing the
planned train services' departure times on a time window. In rapid transit networks the frequencies are on the
order of headway times, so it does not make sense try to change departure times because changing them will
mean to choose a departure time that already belongs to a different train service.
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For emergency services, the model will decide whether they are used or not. An emergency service represents
a feasible movement between depot stations, and it is defined by a departure station, an arrival station, every
intermediate arc and the departure time. We define a feasible movement as a physical movement in the network
once the disruption has started. For planned and emergency train services the headway must be maintained in
every infrastructure they come through.

Rapid transit networks are characterized by high frequencies and a lack of capacity in depot stations. These
facts make difficult to operate the network without empty movements. These are defined by an origin, a
destination and a departure time. Empty movements can help satisfy both capacity and rolling stock material
availability in depot stations.

2.3. Rolling Stock and Shunting

There are self-propelled train units of different type; they all have a driver seat at both ends. A composition of
train units is a sequence of trains of the same type. Shunting operations complicate rapid transit networks because
the performance time is on the order of the service frequency time. They are only performed in depot stations.

Train units of the same type can be aggregated or disaggregated to form different compositions. Although
composition changes enable the network operator to use smaller fleet sizes, it is always a complicating operation,
due to the necessity of human resources and the possibility of failure in the mechanical system governing the
process.

2.4. Passengers

Once the disruption has occurred, passengers will have to use the new network topology to reach their
destination. First, they will have to choose an itinerary in the modified network, wait for a train service and
finally board the train if enough capacity is available.

The demand is characterized by an origin, a destination and a departure time. This information may be
represented by passenger group w = (0; d; 1), where o is the departure station, d the arrival station, 7 the desired
departure time and we W the set of passenger groups. The size of each group represents the number of
passengers willing to travel.

The demand will be realized through available itineraries in the network. Each passenger group belonging to
each market w will be able to choose an itineraryi € I, where /, denotes the set of itineraries attending it.
Passengers within the same passenger group may travel by different itineraries, that is, passenger groups may be
split.

As we are working in a rapid transit system, where different modes of transportation exist, we also will include
itineraries containing these alternative modes. Moreover, we could also have itineraries composed of different
lines in the railway network.

2.5. Passengers' reaction to the disruption

Rolling stock scheduling naturally needs information about the demand for each trip. These demand figures
are, however, not available for a disrupted situation. To add to the complexity, the per-trip demand actually
depends both on the timetable and on the rolling stock schedule. In this paper we propose a way to anticipate
passenger demand's decisions before computing the schedules; these anticipated demand decisions are used to
obtain the recovery plan. The anticipated demand's decisions are based on the assumption of assuming that the
passengers choose their travel itinerary according to a multinomial logit model. If passengers are able to travel
with this first decision they are done. However, it may occur to be impossible to complete the trip for many
reasons. Consequently, we assume that passengers may change their initial decisions. Therefore, they may be
recaptured in different itineraries with the same origin and destination. If they cannot be recaptured, they will be
denied from the system.
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The multinomial logit model allows us to capture how individuals are making choices. We must define the
decision-maker and his/her characteristics, the alternatives as the possible options of the decision-maker, the
attributes of each potential alternative the decision-maker is accounting for, and the decision rules describing the
rules used by the decision-maker.

The utility of each alternative is a function of the attributes of the alternative itself and of the decision-maker.
The utility function for every itinerary is calculated as the weighted sum of different terms: the traveling time
(sum of the travel time of each of link of the itinerary), the transfer time and the waiting time:

v' = pot’ + pt’ + powt" Niel NweW,

where ot/ is the on-board time, 7t is the transfer time and wt" is the waiting time for each itinerary i
attending demand w. £, B3,, 5, represent the utility value of each of these different kinds of times. The
probability of choosing a given itinerary i among the set /,, by the demand w will be given as a logit distribution,
defined by the previous utility functions based on expected travel times for each itinerary.

3. Integrated Timetable, Rolling Stock and Passengers Rescheduling Model

The Integrated Timetable, Rolling Stock and Passengers Rescheduling Model (ITRSPRM) is a multiobjective
model. It aims at computing the timetable and the rolling stock schedule for a disrupted rapid transit network
accounting for passengers' decisions.

The ITRSPRM is based on the recoverability model proposed by Cadarso et al. (2013). They considered the
timetable and rolling stock rescheduling problem for rapid transit networks. Compared to this paper, the novelties
of the current paper are the following:

e Passenger demand is itinerary based: if a passenger is denied in any arc, he/she will be denied from the
entire trip.

e Passengers make decisions according to a logit model: this demand is associated to itineraries and the
timetable and rolling stock assignment are calculated at the same time.

e Passengers can make new decisions if their preferred decision is not available for any reason.

The most central decision variables are x, € {0,1}, defined for / € L,c € C. Their values indicate whether
composition ¢ € C is scheduled for service /€ L. h" € Z" are defined for we W,ie , to denote the
number of passengers in itinerary i from passenger group w. glwl € Z" are defined for weW,i,i' e I ,to
denote the number of disrupted passengers in itinerary i to itinerary i’ from passenger group w. v, €40,1} are
defined for /€L , to indicate whether service &L is canceled; yl‘;t €Z" are defined for
se€SC,teT,ceC, to denote the number of compositions ¢ in station s at ¢ period. dp, € Z " are defined
for weW,i el , to denote the number of denied passengers in each itinerary i attending passenger group w;
emis,, , €10,1} are defined for s, s'eSC,teT,c e C, to indicate whether an empty movement is performed at
¢ period from station s to s’ with composition ¢ ; finally, &, €{0,1} and S €{0,1} are defined for
7 € IT , to indicate which riding direction is opened in the line segment between two neighboring stations
affected by the disruption; /T is the set of time periods during which the incident is active. If «_ takes value I,
one of the riding direction is opened during 7 and the opposite one is closed. Similarly for /. .

3.1 Objective Function

The multiobjective function of the model reads as follows.
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min z = ZZOC km,x,  + Z ZZocckmS,S,ems‘"s,,t + anncé v, + Zdecwdpw

(eL ceC 5,5'eSC teT ceC vel? weWiElw
A c ~ c
+ Z Z z dpci,w (1 - ¢i,i’ ) i - xf,c + Zﬂt ‘ems,s',t - ems,s’,t
weWiel i'eRE. perP ceC s,s',teS,T ceC
w 1
The objective terms, in the given order, penalize the following quantities.
* Operating costs of planned and emergency services; here oc,_ is the operating cost per kilometer and

km, is the distance in kilometers of service /;

* Operating costs of empty movements; here kms)s, is the distance in kilometers from s to s';

« Cancelation of services; here canc, is the canceling cost for service / ;

* Denied passengers; here dpci,w is the cost per denied passenger in each arc a during time period 7 ;

* Recaptured passengers; here ¢” is the percentage of recaptured passengers. Therefore, (1—¢i,i,) is
the portion of denied passengers; RE, is the set of itineraries compatible with itinerary 7.

* Deviation from the schedule of commercial services; here x, is the penalty for changing the RS
assignment of a commercial service £, while )?[)C indicates the RS assignment on a normal day;

+ Deviation from the schedule of the empty movements; here 4, is the penalty for changing the RS

assignment of an empty movement, while éms’s,,t indicates the RS assignment on a normal day.

The last two terms of the objective attempt to minimize the length of the recovery period.

3.2 Passengers Constraints

h' = P(i | w) d, — Zglwl + Z(é,-/,fg;:i —dp,, VYweW,iel, (1)
i'eRE. i'eRE.

ZanpuxM > Z Z h' VaeAd )

fELa ceC weWielela

Constraints (1) are demand constraints. Each passenger group demand is distributed through the different and
available itineraries ( P(i | w) ). If there is no capacity for them in the desired itinerary, they may be recaptured in
a different one or denied from the system ( RE, ). Constraints (2) ensure that there will be enough capacity for
passengers in each arc a of the network. cap, is the passenger capacity in composition c. L, are the services
attending arc @ and [ the itineraries attending arc a.

3.3 Timetabling Constraints

The first set of timetabling constraints enforces the headway requirements.

Z Z Zx <1 VseS,teT (3)

lel tleLCS teeC
1=t zl<t+h

Constraints (3) say that any arc during any interval of length the headway time can accommodate at most one
service. LCS, | denotes the time period during which service ¢ comes through station s.
The second set of constraints deal with the riding direction on the disrupted link.

dx.<a Vrell,acINONA, (e, (4)
ceC
dx,. <P Vrell,aclSONA, leL, 5)

ceC
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o +p <ain., Vrell (6)

Constraints (4) and (5) make sure that services can use the disrupted arc only at those time periods when
the arc is open for their riding direction. Constraints (6) express the infrastructure limitation to one direction at a
time or to no traffic at all. The value ain_ indicates the infrastructure limitation in time period 7. INO, ISO are
the set of arcs which are affected by the disruption. The first set contains the arcs with a riding direction which is

the opposite one to the riding direction in the second set. A_ set of arcs which are active during time period 7 .

3.4 Rolling Stock Constraints

dx. +y, =1 Viel (7
ceC
dx,, <1 Veer ®)

ceC

Constraints (7) state that each planned service £ € L is either cancelled or it gets exactly one composition.
Constraints (8) express that emergency services £ € L’ get at most one composition.

yt:)t_I + Z X, + Zemf,,s),_my,s = ytf)t + Z X, + Zem:,s,’t VseSC,teT,ceC 9)
lel s'eSC o lel s'esC

1 -1

ai,s,t: a/,s,t:

Composition conservation constraints (9) ensure the train units’ flow balance. The schedule is given by «, ,

which takes the value 1(-1)((0)), if train service £ arrives (leaves)((stays)) in station s at period 7. ef_ is the
travel time between stations s and s .

Z Ztu(,yt; + Z Ztucﬂé’lx“ + z z Ztucés,’,wlemgx,’l, <y, YmeM,teT (10)

seSCceC leL ceC 5,5'eSCt'eT ceC
m m m

D, -yti, <cap,, VseSC,teT (a1

ceC
Fleet capacity constraints (10) ensure that the number of train units used is limited by the size of the fleet y, .
Cm is the set of compositions belonging to material type m. Depot capacity constraints (11) ensure that the total
capacity is not overpassed. fu, is the number of train units in composition c. Each train service time duration is

given by /3” , which takes value 1, if train service is rolling at period #; 0, otherwise. Similarly, & oo, gives
information about performance time of an empty train service, which departed from s during ¢ and is going to s .
Constraints denoting that the inventory during the initial and final period must be equal to the scheduled one

during those time periods are also included in the model formulation.
4. Computational Experiments

All of our experiments are based on realistic cases drawn from RENFE's regional network in Madrid, also
known as "Cercanias Madrid". This network is composed of 10 different lines with almost 100 stations. All data
are from the year 2008. Approximately one million passengers use "Cercanias Madrid" every day.

Our runs were performed on a Personal Computer with an Intel Core 2 Quad Q9950 CPU at 2.83 GHz and 8
GB of RAM, running under Windows 7 64Bit, and our programs were implemented in GAMS/Cplex 12.1.

We will study the case where we have a blockage in a track between two stations. Consequently, the rolling
stock can only go through one way between these stations. However, we must allow the rolling stock going
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through both ways in order to enable rolling stock in every depot station, that is, there is only one track available
that needs to be shared between both directions. The disruption will start at 8:00 a.m. It is supposed that the
duration of the disruption is known: 120 minutes.

Figure 1 shows the network topology after the disruption has started. A track is blocked in Line C5, so one
unique track is available between two different stations: VIAL and OR. The following stations belong to Line C5:
HU, FU, VIAL, OR, AT and MO. PA, VIAL, AT and CO to Line C4. Finally, AR and AT to Line C3.

The proposed model will decide depending on the different costs the schedule for the disruption period and the
forthcoming recovery plan. During these two different periods of time train service cancellations may occur.
However, there also exists the possibility of scheduling emergency services in order to maintain the offered
capacity in the non-disrupted areas. The operator must account for passengers' new trips in order to reschedule the
offered capacity in lines that were not originally affected by the disruption.

Line C3: AR-ATO 56.5 Km
Line C41: PA-VIAL-ATO-COL 582 Km
Line C42: PA-VIAL-ATO-ALC 47.4Km
Line C5: HU-FU-VIAL-OR-ATO-MO  43.6 Km

Fig. 1. Network topology while the blockage is active

Line C5 and Lines C3&C4 are independent in real life, that is, they do not share any rolling stock resources.
Therefore, they are solved independently for rolling stock purposes. However, Lines C3&C4 are affected by
passengers rerouting. Consequently, even though we have independent problems for rolling stock assignment, we
have that the passenger problem must be solved in an integrated way. This fact mandates us to include all the
lines (C5, C3&C4) in the same problem.

The total demand number in Line C5 for a day is 211985 for this study case. During the disruption period there
were 47000 passengers willing to initiate their trip. From those passengers, 26.2% of the demand in line C5
chooses to stay in line C5; 44.3% will go through a combination of lines C5 and lines C3, C4; finally, 29.5% of
the demand will go for a combination of line C5 and the Metro network.

The model formulation is based on itineraries. Consequently, if a passenger is denied in some arcs, he/she will
be denied from the entire trip, not only from those arcs. Then, this demand is associated to itineraries and the
timetable and rolling stock assignment is made at the same time. However, if passengers cannot reach their
destination, they can change their mind and choose any different itinerary to try to get to their destination.

In Table 1 some passengers’ re-routings are shown. In the first column we can see their origin station, in the
second one their destination station, in the third one their departure time, in the fourth one their original itinerary,
in the fifth one their alternative itinerary, in the sixth one the number of passengers that choose that alternative, in
the seventh one the total demand for that origin, destination and departure time, in the eighth one the original
travel time and in the last one the alternative travel time. For example, we can see how some passengers willing
to travel from station FU to station MO at 9:04 a.m. cannot do it with their first decision. Their initial decision
was to travel in itinerary i121. However, this itinerary is within Line C5 and contains the disrupted part of the
line. Consequently, they have to change their mind and to choose a different itinerary. Some of them will choose
the itinerary 119 and others the itinerary i80. These new itineraries contain different parts of the network. The first
one comes through Line C5, metro and again Line C5 and it takes eight minutes more than the original itinerary
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to reach destination. The second one comes through Line C5, Lines C3&C4 and Line C5 again and it takes
seventeen minutes more than the original itinerary to reach destination.

As we have explained above, passengers' decisions are modeled through the presented logit model. Once the
disruption has started, passengers will make a decision for traveling. However, some of them will have to make a
different decision because the first one is not feasible for reaching their destination. Consequently, 1550,94
passengers had to change their initial decision to be able to reach their destination. However, it is not always
possible for passengers to re-route. Therefore, some passengers will be denied from the system. In this study case
784.08 passengers were denied from the system.

Table 1. Passengers’ re-routings

Origin ~ Destination ~ Time Original ~ Alterative Passengers Total Original Alterative
Itinerary Itinerary Demand Travel Time Travel Time

HU OR 8:46 i77 i119 1.57 4 32 35

FU OR 8:06 18 122 22.02 42 16 52

FU OR 8:06 123 122 13.35 42 31 52

FU MO 9:04 121 19 18.5 33 28 36

FU MO 9:04 i121 i80 6.52 33 28 45

VI-AL OR 8:05 i21 46 6.28 9 17 37

AT FU 8:36 160 100 13.09 23 43 51

MO FU 8:21 156 43 10.23 16 42 68

Table 2. Passengers flows through the arcs directly affected by the disruption

Time Period  VI-AL > AS AS > OR OR > AS AS > VI-AL
8:00-8:10 713 - 1298 1473 - 1247 2870 - 394 2301 - 419
8:10-8:20 0-1336 0- 1346 0-237 956.57 - 283
8:20-8:30 833.06 - 1789 0-1737 0-290 0-290
8:30-8:40 673.11 - 1399 349.28 - 1934 0-451 0-280
8:40-8:50 672.22- 1282 564.93 - 1229 0-342 0-418
8:50-9:00 289.39 - 1059 1032.28 - 1439 995.23 - 308 0-357
9:00-9:10 0-693 0-597 1993 - 301 2605.18 - 289
9:10-9:20 0- 704 0-763 2045.35- 213 2096.73 - 210
9:20-9:30 0-599 0-770 335.72- 163 1006.44 - 209
9:30-9:40 313.04 - 693 320.6 - 726 0-162 0- 158
9:40-9:50 895.14 - 558 269.13 - 661 0- 145 0-153

9:50-10:00 489.53- 172 838.08 - 590 0-159 0-148

Although passengers can re-route to different itineraries, they will have to pay a price for it. This price is the
travel time. They will probably travel in itineraries with longer travel times. For example, we may take a look at
the average travel time per passenger. In the non-disrupted scenario this average travel time was of 12 minutes
per passenger. However, for the disrupted scenario this average travel time is increased: it takes the value of 15.3
minutes.

In Table 2 passengers flows through the arcs directly affected by the disruption are showed. In Figure 1 we
only can see that an arc is affected between two stations. However, in the real network there is an additional
station (AS) between them. The issue is that in AS is not possible to perform any shunting operation. Therefore,
the disruption affects two different arcs per riding direction. In the first column the time period during which the
disruption is active are shown. The rest of the columns are the arcs directly affected by the disruption. That is, the
arc going from station VI-AL to AS, the arc going from AS to OR, the arc going from OR to AS and the arc
going from AS to VI-AL. The first number in each of the elements of the table is the passenger flow for the
disrupted scenario. The second one is the passenger flow under normal conditions. For some cases, the disrupted
flow is greater than the normal flow. However, as capacity is reduced in the arcs the disrupted flow will be lower
than normal one.

5. Conclusions
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A railway recovery problem has been presented in this paper. When facing a disruption different possibilities
arise in order to fight against it. The operator wants to offer a good quality service while the system is being
recovered to the original planning. The proposed approach for the system recovery accounts for a wide variety of
operations during the disruption and the recovery period: planned train services, emergency train services, empty
movements, adequate allocation of train units in the depots, etc. All of them must be taken into account in order
to provide a feasible recovery plan.

The disruption and the recovery actions will surely change the network topology, and some passengers will
have to face the fact that they are not able to reach their destination traveling with their planned itinerary for a
common day. They will have to change their mind to choose a new itinerary for the disrupted scenario. In order to
model the expected demand under the new topology a logit model is used. This model will represent the new
demand mainly based on the expected travel times under the new situation. However, some passengers will not be
able to travel due to train cancellations, lack of capacity, etc.

We show in the computational results a summary of how passengers re-route under the disrupted scenario in
Line C5. These re-routings depend on the logit model’s parameters provided by the operator. Many of them are
done using the metro and the Lines C3&C4. This fact has an additional cost for passengers measured in travel
time. As passengers re-route, passengers flows change compared to the undisturbed scenario and the rolling stock
capacity is adjusted accordingly.
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