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Abstract PsbU is a subunit of the extrinsic complex attached to
the core of photosystem II. A PsbU-mutant of Synechococcus
PCC 7942 was isolated based on its elevated resistance to exter-
nally applied oxidative stress. PsbU-mutant exhibits fast rates of
degradation of the photosystem II core protein, D1, under sub-
saturating as well as high-light conditions. While forward
electron transfer is not affected, back electron flow is severely
impaired in the mutant. We suggest that impairment of psbU re-
sults in production of reactive-oxygen-species, which trigger
antioxidative mechanisms even under standard growth condi-
tions. Accordingly, when challenged with external oxidative
stress, these cells are more resistant than wild type cells.
� 2006 Federation of European Biochemical Societies. Published
by Elsevier B.V. All rights reserved.
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1. Introduction

Cyanobacteria are photosynthetic prokaryotes which, simi-

larly to green algae and higher plants, perform oxygenic pho-

tosynthesis; namely, H2O serves as an electron donor and

water breakdown yields protons and molecular oxygen. Water

oxidation is a unique feature of the multisubunit protein–pig-

ment complex, photosystem II (PSII) [1–3]. This process neces-

sitates the production of strong oxidants within PSII and these

active species may directly damage the photosynthetic reaction

center [4] or lead to the production of reactive oxygen species

(ROS) [5,6]. Therefore, the process of oxygenic photosynthesis

dictated the development of various mechanisms allowing cells

to minimize the production of ROS [7] and cope with oxidative

stress, once it has occurred [8,9].

Previous studies have contributed to our understanding of

the mechanisms allowing photosynthetic organisms to cope

with oxidative stress [10–14]. To gain further comprehension

of the cellular processes involved in ROS production and their
Abbreviations: chl, chlorophyll; DCMU, 3-(3,4-dichlorophenyl)-1,1-
dimethylurea; MV, methyl viologen; PSII, photosystem II; QA and QB,
primary and secondary (respectively) electron acceptor quinones of
PSII; Rubisco, ribulose bisphosphate carboxylase/oxygenase; ROS,
reactive oxygen species; TL, thermoluminescence
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detoxification, we selected mutants of Synechococcus PCC 7942

(also termed Synechococcus elongatus, hereafter Synechococ-

cus), which exhibited higher resistance to oxidative stress com-

pared with the wild type strain. One of these mutants was

shown to possess inactivated psbU. This gene encodes a subunit

of the lumenal complex, which contributes to the stabilization

of the oxygen evolving center, a cluster of Mn, Ca and Cl ions

within PSII, which is involved directly in water oxidation [15].

The subunit composition of the lumenal extrinsic complex of

PSII is quite diverged between various photosynthetic organ-

isms. PsbO, the larger subunit, is common to all organisms per-

forming oxygenic photosynthesis. In addition to PsbO, plant

complexes for example, include PsbP and PsbQ; cyanobacteria

possess PsbU,V,P and Q subunits and red algal complexes pos-

sess a unique PsbQ-like subunit (PsbQ 0) [15–17]. Studies of dele-

tion mutants as well as reconstitution experiments of PSII

complexes demonstrated the significance of these proteins in sta-

bilizing the Mn cluster [18–21]. The interactions between indi-

vidual subunits and their contribution to the function of the

‘donor side’ were studied extensively in recent years [16,22–30].

While great progress has been made in the understanding of

the function of the water splitting apparatus, the role of the smal-

ler subunits is still not well defined. This study reveals novel fea-

tures of cells impaired in psbU and suggests a crucial role for this

subunit in prevention of photodamage to PSII.
2. Materials and methods

2.1. Strains, culture conditions and isolation of mutants resistant to

oxidative stress
Synechococcus sp. PCC 7942 and all strains resulting from molecular

manipulations of this wild type were cultured as previously described
[31]. Incandescent light (20 lmol photons m�2 s�1) is referred to as
the standard light intensity.

Synechococcus cells were mutagenized by transformation with a
transposon-based inactivation library. The library was obtained by
in vitro transposition of a genomic library using EZ;TN� KAN-2
insertion kit (Epicentre, Madison, Wisconsin). Following growth of
transformants in liquid growth medium in the presence of 25 lg/mL
kanamycin, the cultures were plated on solid growth medium to yield
a cell lawn. Drops of 10 lL of either H2O2 (10–50 mM) or methyl viol-
ogen (MV, superoxide producing agent, 5–50 lM) were spotted onto
the mutants’ cell lawn. Application of these oxidative stress-inducing
agents resulted in cell-bleaching and a clear area was formed on the
lawn. Such high concentrations of H2O2 and MV were required as Syn-
echococcus cells exhibits high resistance to oxidative stress when plated
at high cell density. Examination of the cleared areas under binoculars
revealed the presence of single colonies. One of the mutants, which
showed elevated resistance to oxidative stress, mutant 60, was chosen
blished by Elsevier B.V. All rights reserved.
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Fig. 1. Viability of Synechococcus (WT) and its PsbU-mutant (M)
following treatment with H2O2 (A) or MV (B). Liquid cultures were
treated with the indicated concentrations of the oxidative-stress
inducing agents. Aliquots of 5 lL were spotted on solid growth
medium.
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for further analysis. Additional analysis of the oxidative stress-resistant
phenotype of this mutant was done by assessing viability following
application of H2O2 or MV in liquid culture as described previously
[14]. The katG-mutant and the double mutant impaired in psbU and
katG were produced using the construct described earlier [14].

2.2. Cloning of the genomic fragment bearing the transposon
Identification of the transposon insertion site in mutant 60 was done

essentially as described earlier [32]. Briefly, genomic DNA was digested
with PstI and ligated to Bluescript KS. Transformants of Escherichia
coli (DH5a) were selected in the presence of kanamycin; only the de-
sired clones were resistant to the antibiotic due to nptII included in
the transposon. The sequence of the genomic regions neighboring
the transposon was determined using the transposon-specific primers
provided with the EZ;TN� insertion kit. The transposon was found
to be inserted into the 5th codon of psbU.

2.3. Insertional inactivation of the gene impaired in mutant 60, psbU
A DNA fragment containing psbU was obtained by PCR on genomic

DNA of Synechococcus using the primers 5 0 AGGCAGAGACCGG-
TGTAGAGGC 3 0 and 5 0 ATTCAAGACGCGCTGATCGAAGGG
3 0. This fragment was cloned into pGEM� T Easy vector (Promega)
and a spectinomycin-resistance cassette was inserted immediately after
the 35th codon using the NheI site. The resulting construct was trans-
formed into Synechococcus, and clones resistant to spectinomycin were
selected. PCR on genomic DNA of several transformants confirmed
double homologous recombination and complete chromosome segrega-
tion (not shown). One of these clones, PsbUX, was selected for further
analysis.

2.4. Western analysis and measurements of PSII function
Cells were broken by agitation in a bead-beater (Glen Mills, New

Jersey, USA), in 10 mM Tris buffer (pH 8.0) containing protease inhib-
itor cocktail (Sigma–Aldrich) and fractionated by centrifugation
(18000 · g, 20 min). The pellet was resuspended in 0.1 M dithiothrei-
tol, 0.1 M Na2CO3. Samples were separated by SDS–PAGE on a
10% gel (see legend to Fig. 4 for details). Proteins were transferred
to an Immuno-Blot polyvinylidene difluoride membrane (Bio-Rad lab-
oratories, California, USA), and probed with antibodies raised against
either D1 or RbcL (AgriSera, Vännäs, Sweden). The anti-D1 antibod-
ies detect both form 1 and 2 of the protein [33]. Horse radish peroxi-
dase conjugated rabbit anti-chicken IgY or goat anti-rabbit IgG
(Sigma–Aldrich) were used as secondary antibodies for D1, and RbcL,
respectively. Super-Signal West Pico Chemiluminescent Substrate
(Pierce) was used for detection of the secondary antibodies.

Oxygen evolution in vivo was measured using a Clark type electrode
with 40 lM 2,6-dimethoxy-1,4-benzoquinone (DMBQ) and 250 lM
potassium ferricyanide as electron acceptors. Fluorescence was mea-
sured by an FL200 fluorometer (PSI, Brno, Czech Republic) [34]. Q��A
decay measurement data was fitted to a third order exponential decay.
Thermoluminescence (TL) measurements were performed on cells pre-
pared as described in Carpenter et al. [35], using a home made appara-
tus [36]. Samples containing 20 lgr chl were dark adapted for 3 min at
room temperature. Following dark adaptation, the temperature was
dropped to �80 �C and 10 saturating flashes were applied. The TL sig-
nal was measured during constant heating from �80 to 60 �C.

Photoinhibition was performed on 40 mL cultures (containing 5 lg
chl mL�1) at a constant temperature of 30 �C. Illumination at 500
lmol photons m�2 s�1 was provided using a heat- and UV-filter. At
the indicated times, samples were removed for O2 evolution, and Fv/Fm

measurements as well as D1 analysis. Fv/Fm measurements were per-
formed using apparatus PAM101/102/103 (Walz, Effeltrich, Germany).

Data shown in this study represent one of at least three independent
experiments except for data presented in Figs. 3A and 5A, which show
averages of measurements on three independent cultures.
3. Results

3.1. Inactivation of psbU results in elevated resistance to

exogenously applied oxidative stress

Synechococcus mutants raised by random transposon inser-

tion were selected for their ability to survive H2O2 concentra-
tions deleterious to the wild type strain (see Section 2 for

details). Molecular analysis of one of these mutants revealed

that the transposon was inserted into the coding region of psbU,

encoding a subunit of the lumenal complex of PSII. Directed

inactivation of psbU resulted in a strain designated PsbUX,

which also exhibited resistance to oxidative stress. Similarly

to psbU mutants of various organisms [22,24], Synechococcus

PsbUX also exhibited slower growth rate when limited for

Ca2+ or Cl� (not shown). Fig. 1 shows assessment of viability

of the wild type strain and PsbUX following treatment with oxi-

dative stress-inducing agents. The mutant exhibits increased

resistance to H2O2 (Fig. 1A) as well as to the superoxide pro-

ducing agent, MV (Fig. 1B), compared to the wild type strain.

It is noteworthy that cell density affected the H2O2 and MV

concentrations the strains could tolerate; at higher densities

cells survived higher concentrations of the toxic compounds.

Nevertheless, the relative differences between the wild type

and PsbUX were observed at all cell densities.

It has been previously shown that the ability of cyanobacte-

rial cells to survive high concentrations of externally applied

H2O2 relies on the activity of KatG [14,37], an enzyme belong-

ing to the group of prokaryotic catalase-peroxidases. To test if

the resistance to oxidative stress exhibited by PsbUX stems

from elevated KatG activity, we compared the ability of the

mutant and the wild type strains to detoxify added H2O2.

PsbUX hydrolyzed 6 mM (Fig. 2A) and 10 mM (not shown)

H2O2 faster than the wild type strain.

katG-mutants of Synechococcus are devoid of catalase activ-

ity [14]; presumably, this is the only catalase expressed under

the growth conditions used in our studies. As KatG provides

the dominant activity for detoxification of externally added

H2O2, katG-inactivated strains allow assessment of H2O2

detoxification by cellular peroxidases. When a katG-mutant

and the double mutant impaired in psbU and katG were ex-

posed to 30 lM H2O2, a faster rate of detoxification was ob-

served in the case of the double mutant (Fig. 2B). Taken

together, the detoxification analyses of the various strains im-

ply that inactivation of psbU resulted in elevated activity of

KatG as well as higher activity of cellular peroxidase(s).
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Fig. 3. Q��A relaxation fluorescence kinetics (A) and TL (B) of wild
type (WT) cultures and PsbUX (UX). 5 lM DCMU was added where
indicated in (A); dashed lines in (B) indicate the presence of DCMU.
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Fig. 2. Detoxification of added H2O2 by wild type (WT) and PsbUX
(A) and their cognate catalase mutants, KatGX and KatGX-PsbUX
(B). 6 mM and 30 lM H2O2 were added at time zero in (A) and (B),
respectively.
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3.2. Effect of inactivation of psbU on PSII function

The Synechococcus PsbUX mutant exhibits maximal PSII

oxygen evolution rates that are practically identical to those

of wild type (330 ± 37 and 334 ± 42 lmol O2 mg chl�1 h�1,

respectively, n = 3). The PSII yield parameter, Fv/Fm [38], is

0.68 ± 0.02 and 0.60 ± 0.01 for wild type and mutant cultures,

respectively (n = 3). Both parameters indicate normal forward

electron transfer capacity of PSII under standard growth con-

ditions.

While forward electron transfer in PSII was virtually similar

between the wild type and the PsbUX strains, a marked differ-

ence in the rate of back electron transfer was observed in the

mutant. The fluorescence kinetics data presented in Fig. 3A

track the reduction state of QA following a saturating light

pulse given at time zero. Subsequent weak measuring pulses

were used to probe the reduction state of QA in the PSII pop-

ulation in the sample as affected by electron transfer. In the ab-

sence of 3-(3,4-dichlorophenyl)-1,1-dimethylurea (DCMU)

electrons can flow forward to the QB site, or through back elec-

tron transfer to Mn clusters in the S2,3 states. In the presence of

DCMU, only back electron transfer reactions occur. The rates
of Q��A re-oxidation in the absence of DCMU are similar in

wild type and PsbUX cultures. In the presence of DCMU,

however, the rate of Q��A re-oxidation is slowed down signifi-

cantly in mutant cultures. The time constant of the exponential

decay fit is 1.2 ± 0.02 s for wild type cultures and 6.1 ± 0.84 for

PsbUX cultures (n = 3).

In order to look into the energetics of back electron transfer

reactions in further detail, TL analysis was performed

(Fig. 3B). To ensure maximal trapping efficiency of charge sep-

arated donor/acceptor pairs, excitation was provided at

�80 �C. The typical Q��B =S2;3 peak at 44.5 �C (in the absence

of DCMU) and Q��A =S2 peak at 23.6 �C (in the presence of

DCMU) [39], were observed in wild type cultures. In PsbUX
cultures, TL signal was undetectable in the absence of DCMU.

In the presence of DCMU, the signal intensity was only 12% of

the wild type signal. In addition, the peak position was shifted

by +10.4 �C, indicating higher activation energy for the back

electron transfer reactions giving rise to the TL glow curves

[40].

3.3. Inactivation of psbU results in rapid degradation of the

central PSII protein, D1

It is well established that the PSII reaction center protein,

D1, is constantly damaged, degraded and replaced with a
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newly synthesized protein [4]. Therefore, addition of chloram-

phenicol, a protein synthesis inhibitor, allows for the examina-

tion of the degradation rate of the D1 protein.

D1 specific antibodies were used to follow the amount of the

protein in the different strains grown under standard condi-

tions (20 lmol photons m�2 s�1). In the presence of chloram-

phenicol, PsbUX exhibits a substantially faster decrease in

the amount of D1 as compared to wild type cells (Fig. 4A

and B, see figure legend for experimental details). In the ab-

sence of the inhibitor, however, PsbUX and the wild type

strain contain comparable levels of D1, indicating that the re-

pair process in the mutant is capable of maintaining a normal

steady state level of D1. The use of antibodies against the large

subunit of ribulose bisphosphate carboxylase/oxygenase

(Rubisco) reveals a constant level of the protein (Fig. 4C), indi-

cating that the observed fast degradation of D1 in PsbUX does

not reflect a general problem of protein stability.

3.4. Inactivation of psbU renders PSII more susceptible to

photodamage

The fast degradation rate of the D1 protein in PsbUX under

relatively low light conditions, deduced from the inhibition

studies using chloramphenicol, encouraged us to examine PSII

function in the mutant under high light intensity. When illumi-

nated with 500 lmol photons m�2 s�1 wild type cells exhibit a

gradual decrease in Fv/Fm throughout the duration of the

experiment (from 0.68 to 0.42 following 60 min of the high

light treatment). PsbUX exposed to the same light conditions

exhibits a dramatic decrease with time in Fv/Fm values (from

0.60 to 0.20, Fig. 5A).

Examination of D1 in the course of the high-light illumination

indicated decrease in D1 level in the wild type as well as PsbUX.

The mutant, however, exhibits a much faster decrease in D1 level

as compared to the wild type strain; in fact, the D1 protein was

barely detectable following 60 min of the high light treatment in

the absence of chloramphenicol (Fig. 5B). It may therefore be

suggested that in the case of the mutant, the rate of damage to

PSII, and the consequent degradation of D1, exceeds the capac-

ity of the repair machinery under these light conditions.

Oxygen evolution rates of low light grown wild type and mu-

tant cells are comparable (see above). Following 15 min of

high light treatment oxygen evolution from mutant cells could

no longer be detected while wild type cells exhibited 70% of the

initial rate of oxygen evolution. Thereafter, oxygen evolution
A

B

C
Wild Type PsbUΩ

+Cm (h)+Cm (h)
2 4 8 2 4 8

-Cm -Cm

Fig. 4. Western analysis of cellular extracts of wild type and PsbUX
using antibodies to the PSII-core protein, D1 (A and B) and to the
large subunit of Rubisco (C). The anti-D1 antibodies detect both form
1 and 2 of the protein [33]. Where indicated, chloramphenicol (Cm,
250 lg/mL) was added for the indicated time (h). Panels A and B show
analyses of pelletable fractions (1 and 0.2 lg chl per lane, respectively)
whereas in C soluble fractions were analyzed (5 lg protein per lane).
from wild type cells gradually degreased to 50% and 20% of

the initial rate following 30 and 60 min of the high light treat-

ment, respectively.
4. Discussion

The role of PsbU, a subunit of the lumenal complex which

contributes to the stabilization of the Mn, Ca and Cl cluster

of ions, was studied in several organisms. It has been shown

that PsbU optimizes the availability of Ca2+ and Cl� cofactors

required for PSII function [22,24,25]. Additionally, PsbU con-

tributes to the thermostability of PSII [28,41].

This study reveals a novel phenotype associated with inacti-

vation of PsbU; the Synechococcus PsbU-mutant originated

from a screen for mutants exhibiting elevated resistance to

externally applied oxidative stress (Fig. 1) and accordingly,

the mutant is characterized by increased activity of catalase

(Fig. 2A). Furthermore, comparison of catalase inactivated

strain, KatGX, and the double mutant KatGX-PsbUX indi-

cated that inactivation of PsbU resulted in elevated activity

of cellular peroxidase(s) (Fig. 2B).

Evaluation of PSII forward electron transfer reaction by

measuring Fv/Fm and maximal oxygen evolution rate does

not indicate any major difference between wild type and mu-

tant cultures. Analysis of Synechocystis PCC 6803 PsbU-mu-

tant, however, indicated slightly lower oxygen evolution rate

as well as Fv/Fm ratios, as compared to its cognate wild type

[24]. Nevertheless, the overall effect of the absence of the PsbU
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protein on photosynthetic activity was minor as compared to

the effect of the major donor side component PsbO [23].

In contrast to PSII function associated with forward elec-

tron transfer, measurements that reflect back electron transfer

(Q��A re-oxidation as well as TL data) were found to be sub-

stantially different in the case of Synechococcus and its

PsbU-mutant (Fig. 3). Q��A re-oxidation rates were about 5-

fold slower in the mutant (Fig. 3A). TL signal could not be de-

tected in the mutant unless DCMU was present (Fig. 3B). This

signal intensity was, however, 10-fold lower and the peak tem-

perature was up-shifted by 10 �C, compared to wild type cells

(Fig. 3B). Different results were reported for Synechocystis

PCC 6803 in which substantial TL signal was observed in

the absence of DCMU. Furthermore, signal intensity was sim-

ilar to that of the wild type and the peak-temperature was

shifted by only +4 �C [22]. It should be considered that inser-

tional inactivation of psbU may result in further loss of sub-

units of the donor side of PSII. For example, isolated PSII

complexes of Synechocystis PCC 6803 PsbU mutant contain

reduced amounts of psbO, Q, and V [24]. Therefore, one

should not exclude the possibility that, in this study, the ob-

served phenotype of PsbU-mutants results from loss of multi-

ple donor side subunits.

Importantly, our study reveals a new feature of impairment

of psbU; the mutant is characterized by an accelerated rate of

D1 degradation under high light illumination as well as during

growth at sub-saturating light conditions. D1 degradation

serves to eliminate damaged protein from PSII reaction center

[4]. The faster D1 degradation in the mutant (Figs. 4 and 5)

may therefore suggest a higher rate of damage to the reaction

center core of PsbUX. Furthermore, PSII activity under high

photon flux decreases in the mutant at a much faster rate than

the wild type cells exposed to the same experimental condi-

tions. Hence, it may be speculated that the unusual back elec-

tron transfer in the Synechococcus PsbU-mutant (Fig. 3)

results in the increased light sensitivity. While interpreting

the TL data one should bear in mind that a number of addi-

tional recombination pathways have been suggested for PSII,

and that only charge recombination events occurring through

the P680+/Pheo� pathway are reflected in the TL measurement

[42,43]. In the case of the mutant, in the absence of DCMU we

do not measure any TL signal (Fig. 3B). Since energy trapped

in the charge-separated state has to dissipate, one has to as-

sume that the routes for energy dissipation in this case do

not yield a TL signal. It may be suggested that these modes

of charge recombination are associated with elevated levels

of damage to the PSII reaction center (as indicated by D1 deg-

radation under relatively low – as well as high-light intensity;

Figs. 4 and 5, respectively). Though speculative, it is possible

that due to the slow kinetics of charge recombination observed

in PsbUX (Fig. 3A) long lived cation radicals such as P680+

and Yz+ may cause damage to PSII.

A noteworthy recent study has shown light sensitivity of a

PsbU-mutant of Synechocystis PCC 6803 [24]. It will be inter-

esting to examine D1 degradation as well as resistance to oxi-

dative stress in this mutant.

In vitro studies have documented the production of H2O2 by

PSII centers depleted of the extrinsic lumenal protein complex

[44]. The elevated rate of D1 degradation in Synechococcus

PsbUX reported here indicates a higher rate of photodamage

even under moderate light intensity (20 lmol photons m�2 s�1,

Fig. 4). Possibly, the higher rate of damage to D1 in PsbUX
stems from modifications of the protein structure around the

Mn cluster of the water-oxidizing complex, which result in oxi-

dative damage. Taken together, it may be suggested that

impairment of psbU results in the production of ROS, which

trigger antioxidative mechanisms under standard growth con-

dition. Accordingly, when challenged with external oxidative

stress, these cells are already equipped with defense mecha-

nisms and therefore are more resistant than wild type cells

(Figs. 1 and 2). Nevertheless, these elevated antioxidative

activities cannot protect PSII of the mutant. By contrast, inac-

tivation of psbU renders PSII more susceptible to damage

compared to the wild type, as reflected by photoinhibition

experiments and the higher rate of D1 degradation.
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