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Abstract Photodynamic therapy (PDT) is an emerging, non-invasive therapeutic strategy that involves
photosensitizer (PS) drugs and external light for the treatment of diseases. Despite the great progress in
PS-mediated PDT, their clinical applications are still hampered by poor water solubility and tissue/cell
specificity of conventional PS drugs. Therefore, great efforts have been made towards the development of
nanomaterials that can tackle fundamental challenges in conventional PS drug–mediated PDT for cancer
treatment. This review highlights recent advances in the development of nano-platforms, in which various
functionalized organic and inorganic nanomaterials are integrated with PS drugs, for significantly
enhanced efficacy and tumor-selectivity of PDT.
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1. Introduction

Photodynamic therapy (PDT) is a treatment option in which
activation of photosensitizer (PS) drugs with specific wavelengths
of light leads to energy transfer to oxygen molecules or other
substrates in the surrounding areas, generating cytotoxic reactive
oxygen species (ROS) which can trigger apoptotic and necrotic
cell death1,2. In the absence of external photo-activating light, the
PS drugs are minimally toxic. Therefore, PDT provides a safe and
effective way to selectively eradicate target cells/tissues such as
cancerous cells while avoiding systemic toxicity and side effects
on healthy tissues3. Compared to traditional chemotherapy and
radiotherapy, PDT-based cancer treatment significantly reduces
side effects and improves target specificity because only the lesion
under light irradiation is treated1,4. Moreover, PDT-based cancer
therapy is more beneficial to patients in which location or size of
lesions limits the acceptability of conventional therapy5.

Despite the many positive features of PDT on cancer therapy,
PDT is still not fully adapted in the clinical settings because of
some inherent properties of PS drugs. Most existing PS drugs are
hydrophobic with poor solubility in water6. Therefore, they are
easily aggregated under physiological conditions, drastically lowe-
ring the quantum yields of ROS production7. Even in the case of
some modified PS drugs for increased water solubility, their
accumulation selectivity at target tissues/cells remains insufficient
for successful clinical use. In this regard, development of effective
delivery systems that incorporate PS drugs and transfer them into
target tissues/cells, addressing critical biological barriers for the
conventional PS delivery, is indispensable.

Recently, nanomaterials in combination with PS drugs find
considerable attention in PDT because they can overcome critical
limitations of conventional PS drugs8,9. Nanomaterials can sig-
nificantly enhance the solubility of PS drugs in water through
hydrophilic properties and thus increase their cellular uptake.
When formulated as nanoparticles with nanomaterials, PS drugs
can achieve passive targeting to tumor by the enhanced perme-
ability and retention (EPR) effect10, which is attributed to the leaky
tumor vasculature and poor lymphatic drainage of tumor tissues.
Moreover, cell-specificity of PS drugs can be significantly
increased by surface modification of the nanoparticles to bind
active targeting moieties, such as antibodies, peptides, and
aptamers11,12. This also improves bioavailability of PS drugs and
reduces undesirable side effects of PS drugs to surrounding health
tissues.

To date, numerous nano-platforms using a variety of organic
and inorganic nanomaterials have been investigated for efficient
and targeted PS delivery6,13. Organic nanomaterials for PDT, such
as liposomes and polymeric nanoparticles, have achieved safe and
controlled delivery of PS drugs by using biodegradable/biocom-
patible materials and tailoring chemical compositions of the
materials14,15. Flexibility for versatile formulations is another
benefit of using organic nanomaterials. Inorganic nanomaterials
hold high potential for PDT due to tunable optoelectronic proper-
ties by tailoring their shape and size16,17. Therefore, they can offer
additional functionalities to PS drugs such as diagnosis and
imaging. In addition to the benefits of each material, they both
provide an effective solution to overcome the drawbacks of current
PS drugs associated with stability in physiological conditions and
selective delivery to the target sites by further surface functiona-
lization. PS drugs have been generally combined with organic/
inorganic nanocarriers via both physical methods using hydro-
phobic or electrostatic interactions between PS and the
nanocarriers and chemical methods using various conjugation
reactions. Here, we introduce various combinations of nanomater-
ials and PS drugs that have demonstrated effective PDT both
in vitro and pre-clinical animal studies. We mainly concentrate on
innovative formulations, molecular designs, and modifications that
have been utilized for targeted and effective PDT while categoriz-
ing them into organic and inorganic nanomaterials.
2. Mechanism of PDT using PS

Mechanism of PDT using PS has been elucidated in several
studies1,18,19. Briefly, PS in the ground state absorbs a photon and
is activated to an excited singlet state upon irradiation with suitable
light. The excited singlet state can convert into the triplet state via
intersystem crossing caused by a change in the spin of electrons.
The PS in the triplet state interacts with surrounding molecules and
thus produces ROS through Type I and Type II reactions. The
Type I reaction involves the transfer of either hydrogen atom or an
electron between the excited PS and the substrates, leading to the
generation of free radicals. These radicals then react with oxygen,
resulting in the production of ROS such as superoxide and
hydroxyl radicals. The Type II reaction involves the energy
transfer between the excited PS and the molecular oxygen in the
ground state (3O2), resulting in the formation of highly reactive
state of oxygen known as singlet oxygen (1O2). The resulting ROS
can cause irreversible damage to target tissues/cells.
3. Functionalized nanomaterials for effective and targeted
PDT

For effective and targeted PDT, functionalized nanomaterials are
required to efficiently incorporate and deliver hydrophobic PS
drugs only into target tissues/cells and to activate them to produce
ROS. In addition, functionalized nanomaterials need to be
biocompatible and to have sufficient PS-loading capacity. They
may need active targeting moieties to enhance the accumulation
selectivity of PS drugs in the target tissue/cells. To achieve these
requirements, various functionalized organic/inorganic nanomater-
ials have been developed, which will be reviewed in the following
sections.

3.1. Organic nanomaterials for PDT

To improve the water solubility of PS drugs and their specific
accumulation at the target site, a general strategy is encapsulation
of the PS drugs to polymeric or lipid-based nanocarriers. In this
respect, liposomes, polymeric micelles, and polymeric nanoparti-
cles have been extensively explored for serving as PS carriers
in PDT.

3.1.1. Liposomes
Liposomes are one of the first nano-platforms to be applied in drug
delivery systems20. Their unique ability to contain hydrophilic
drugs in their aqueous core and hydrophobic agents within their
lipid bilayers renders them excellent delivery vehicles. 5-
Aminolevulinic acid (ALA) prodrugs for PDT were encapsulated
in dipalmitoyl-phosphatidyl choline–based liposomes21. ALA was
used as a precursor of phototoxic protoporphyrin IX (PpIX) for
PDT22. The chemical structure and molar extinction coefficient of
PpIX are represented in Table 123 In vitro experiments
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demonstrated that the ALA-loaded liposomes significantly
increased the uptake efficiency into human cholangiocarcinoma
HuCC-T1 cells compared to ALA itself. As a result, the photo-
cytotoxic effect of the liposomes was substantially higher than the
effect of the ALA alone because of their higher intracellular
generation of PpIX.

Light-activatable PDT was achieved by NIR light-absorbing
dye/PS-loaded liposomes28. To develop the NIR light-activatable
PDT, chlorin e6 (Ce6)24 as a PS (Table 1) was encapsulated into
lecithin-based liposomes with indocyanine green (ICG), an NIR
light-absorbing agent approved by Food and Drug Administration
(FDA) (Fig. 1). Upon irradiation at 660 nm, singlet oxygen
generation by Ce6 was effectively inhibited because Ce6 is located
near the ICG. Interestingly, the phototoxicity of Ce6 was
recovered when the ICG was degraded upon exposure to NIR
light (808 nm). In addition, ICG could generate heat upon NIR
irradiation to eradicate cancer cells, serving as a photothermal
agent. In vitro work demonstrated that the liposomes containing
Table 1 Chemical structures, activation wavelengths, and molar ext

Photosensitizer Chemical structure Activation

Protoporphyrin IX (PpIX) 408

Chlorin e6 (Ce6) 667

Zinc phthalocyanine (ZnPc) 674

Pyropheophorbide a (PPa) 669

Pheophorbide a (PhA) 667
Ce6 and ICG significantly increased the phototoxicity in cancer
cells under photo-irradiation.

Magnetoliposomes (MLs) loaded with zinc phthalocyanine
(ZnPc)/cucurbituril (CB) complexes (CB:ZnPc-MLs) were synthe-
sized for combined PDT and magnetohyperthermia in malignant
melanoma cells29. The chemical structure and molar extinction
coefficient of ZnPc are represented in Table 125 Significant reduction
in cell viability was observed with melanoma cells treated with CB:
ZnPc-MLs after application of both 670 nm light and AC magnetic
field. The combined PDT and magnetohyperthermia by CB:ZnPc-
MLs was much more effective than each therapy alone.
3.1.2. Polymeric nanoparticles/micelles
Usually, hydrophobic PS drugs can be efficiently entrapped into
nanoparticles by interaction between PS and hydrophobic poly-
mers. Biodegradable polymers such as poly(lactide-co-glycolide)
(PLGA) have been popularly employed as matrix materials for PS
inction coefficients of various photosensitizers.

wavelength (nm) Molar extinction coefficient (M�1 cm�1) Ref.

275,000 23

55,000 24

281,800 25

45,000 26

44,500 27



Figure 1 Schematic illustration of ICG/Ce6-loaded liposomes as
NIR light-activatable PDT agents. Phototoxicity of Ce6 was effec-
tively inactivated by ICG upon irradiation at 660 nm. However, upon
irradiation at 808 nm, degradation of ICG makes Ce6 recover its
capacity to generate singlet oxygen for PDT. Reproduced with
permission from Ref. 28. Copyright 2015, Royal Society of Chemistry.
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encapsulation30. PLGA was utilized to achieve topical photody-
namic therapy using ALA prodrugs31. ALA was efficiently
encapsulated in PLGA nanoparticles by the double emulsion
solvent evaporation method, resulting in ca. 66% encapsulation
efficiency. ALA-loaded amorphous PLGA nanoparticles were
effectively internalized by squamous cell carcinoma cells and
mediated photocytotoxicity, which was more efficient than free
ALA of the same concentration.

An effective tumor-targeted PS delivery system for PDT was
accomplished by folic acid (FA)-conjugated amphiphilic block
copolymers of polyethylene glycol (PEG) and poly-b-benzyl-L-
aspartate (PBLA)32. The PS drug, 2,4-diacetyl deuteroporphyrin
IX dimethyl ether (DD-PpIX), was linked to the copolymers through
pH-sensitive hydrazone bonds. FA- and PS-conjugated amphiphilic
copolymeric nanoparticles [FA-PEG-P(Asp-Hyd)-DD-PpIX] were
formed to micellar structures with diameters in the range of 105–
298 nm, depending on copolymer compositions. The nanoparticles
revealed pH-dependent release of PS. In vitro studies using HeLa
cells demonstrated that FA-PEG-P(Asp-Hyd)-DD-PpIX nanoparti-
cles induced efficient photocytotoxicity after laser irradiation at
670 nm due to high cellular uptake in HeLa cells. Importantly, the
nanoparticles showed more efficient photocytotoxicity effects under
mildly acidic conditions compared with the effects at physiological
pH due to pH-responsive release of DD-PpIX.

Graft copolymers, (poly(N-vinyl caprolactam)-g-poly(D,L-lactide)
[P(VCL)-g-PLA] and poly(N-vinyl caprolactam-co-N-vinyl imida-
zole)-g-poly(D,L-lactide) [P(VCL-co-VIM)-g-PLA], were synthesized
for PpIX-mediated PDT33. PpIX was encapsulated by the graft
copolymers-based micelles. These graft copolymers-based micelles
showed efficient cytoplasmic localization of PpIX in lung cancer
A549 cells. Therefore, the PpIX-loaded micelles exhibited substantial
phototoxicity in A549 cells upon irradiation with light (400–700 nm).
In vivo studies showed that the micelles were efficiently localized in
tumors and then generated cytotoxic ROS that inhibited the tumor
growth upon laser irradiation 24 h after administration of the micelles.

Fluorescent polymeric nanoparticles using 4-arm PEG functiona-
lized with a targeting unit biotin and a coumarin fluorophore have
been synthesized for site-specific and image guided PDT34.
Chlorambucil, an anticancer drug, was also linked to the 4-arm
PEG to achieve synergistic treatment of tumors via combined PDT
and chemotherapy. The prepared globular nanoparticles exhibited a
moderate singlet oxygen quantum yield of 0.37 and released almost
80% of the chlorambucil after being exposed to UV/Vis light. The
nanoparticles demonstrated selective accumulation in HeLa cells
than in noncancerous L929 cells. The polymeric nanoparticles with
a coumarin fluorophore and chlorambucil showed higher cytotoxi-
city in HeLa cells compared to polymeric nanoparticles without the
chlorambucil, demonstrating the synergistic effect of PDT and
chemotherapy.

Effective tumor-targeting PDT using Ce6-loaded hyaluronic acid
(HA) nanoparticles (Ce6-HANPs) was investigated as described in
Fig. 235 The resulting Ce6-HANPs showed stable structural integrity
in aqueous condition and rapid cellular uptake into cancer cells.
Moreover, rapid biodegradation of Ce6-HANPs by hyaluronidases
abundant in cytosol of cancer cells was documented, implying
efficient intracellular release of Ce6 at the tumor tissues. Intrave-
nously injected Ce6-HANPs into tumor-bearing mice efficiently
targeted the tumor tissue via the EPR effect and readily entered
tumor cells through HA receptor–mediated endocytosis. It was
observed that Ce6 released from the HANPs could generate singlet
oxygen inside tumor cells under 671 nm light irradiation for PDT,
simultaneously generating fluorescence for in vivo imaging.

Lipopolymer hybrid-based, dual-stimuli-responsive nanoparticles
encapsulating Ce6 were utilized for targeted PDT36. Lipopolymer
hybrids comprised of soybean lecithin-derived phosphatidylcholine,
phosphatidylethanolamine-poly(L-histidine) [PE-p(His)], and FA-
conjugated phosphatidylethanolamine-poly(N-isopropylacrylamide)
[PE-p(NIPAM)-FA]. p(His) block and p(NIPAM) showed pH and
temperature responsiveness, respectively, resulting in dual-stimuli-
responsive Ce6 release. The positively charged Ce6-loaded nano-
particles exhibited higher phototoxicity against KB tumor cells
compared to free Ce6. In addition, the FA-conjugated, lipopolymer
hybrid-based nanoparticles showed more efficient cancer-targeted
PDT compared to free Ce6.
3.1.3. Carbon nanomaterials
Carbon nanomaterials with unique structures have a great potential
as PDT agents by attaching PS drugs on the functionalized carbon
nanomaterials via either covalent or non-covalent manner. Bio-
compatibility and water-solubility of the carbon nanomaterials are
also achieved by conjugation with various functional polymers37.
Most commonly utilized carbon nanomaterials for PDT include
fullerene, carbon nanotube, and graphene37–39.

Fullerene cages such as C60 have found their use in PDT
because they can act as efficient PS drugs participating in the
cascade of energy transfer that triggers the generation of ROS due
to their abundant pi-bond electrons40. Water soluble, cationic C60

fullerene cages functionalized with quaternary alkylammonium
multi-salts were synthesized for effective PDT41. The cationic C60

fullerene cages rapidly bound to bacterial cell walls and retained
high water-solubility, resulting in efficient antimicrobial effects.

N-methylpyrrolidinium-fullerene in micelles composed of Cre-
mophor EL was developed to treat intraperitoneally disseminated
colorectal cancer in a mouse model42. Intraperitoneal injection of
the micelles combined with white-light illumination led to
significant photocytotoxicty in the mouse colon carcinoma model,
destroying intraperitoneal tumors. As a result, the tumor-bearing
mice subjected to white light irradiation after administration of the
micelles maintained a higher survival rate compared with control
mice that received Cremophor only.

Carbon nanotubes can also act as either photosensitizers
themselves43 or carriers for exogenous photosensitizers44. Single-
walled carbon nanotubes (SWNTs) covalently functionalized with



Figure 2 Schematic illustration of Ce6-loaded HANPs for combined fluorescent imaging and targeted photodynamic therapy. Reproduced with
permission from Ref. 35. Copyright 2012, Elsevier Ltd.
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polyethylenimine (SWNT–PEI) and non-covalently functionalized
with polyvinylpyrrolidone (SWNT–PVP) were developed for PDT
agents45. They showed the photocytotoxic effect against mice
melanoma B16F10 cells under visible light illumination. SWNT–
PEI showed stronger photocytotoxic effect compared to SWNT–
PVP in vitro and in vivo, indicating that the photodynamic effect is
dependent on the modification method of SWNT.

By taking advantage of the ultrahigh loading of molecules through
π–π stacking, nano-sized graphene oxide (GO) has been used to deliver
photosensitizers in vitro at high concentrations46. Branched PEG-
functionalized GO (GO-PEG) loaded with PS drugs was developed for
PDT. Ce6, a PS drug, was loaded on the GO-PEG via π–π stacking47.
The resulting GO-PEG-Ce6 complex shows high water solubility and
is able to generate cytotoxic singlet oxygen under light excitation
(660 nm or 808 nm) for PDT. In addition, GO under NIR irradiation
(808 nm) at a low power density could trigger local heating, enhancing
the cellular uptake of GO-PEG-Ce6 by approximately 2-fold. As a
result, GO-PEG-Ce6 complex achieved remarkable destruction of
tumor under NIR irradiation compared to free Ce6. These results
show the promise of using nano-sized GO in combined photothermal
and photodynamic cancer therapy with synergistic effects.

Antibody-conjugated GO was synthesized for subcellular tar-
geting PDT48. GO was modified with integrin αvβ3 monoclonal
antibody (mAb), and pyropheophorbide a (PPa)26 (Table 1) as a
PS was incorporated into the GO, resulting in PPa-GO-mAb. PPa-
GO-mAb was able to effectively target αvβ3-positive tumor cells
due to receptor recognition by the antibody. It was observed that
PPa-GO-mAb was localized into mitochondria after endocytosis
due to an electronic reaction between the mitochondria membrane
potential and the polarized GO. The mitochondria targeting of
PPa-NGO-mAb significantly enhanced mitochondria-mediated
apoptosis of PDT after irradiation with 633 nm light.

Functionalized graphene/C60 nanohybrid with targeting moi-
eties was developed for targeted PDT and photothermal therapy
(PTT) (Fig. 3)49. GO was used as a photothermal agent that
induces hyperthermia under exposure to NIR light (808 nm). FA
(i.e., cancer targeting moiety) and C60 (i.e., PS) were conjugated
onto PEGylated graphene oxide (FA-GO-PEG/C60) for enhanced
cellular uptake of C60 in cancer cells. The hybridization process
increased the light absorption properties and inhibited the aggrega-
tion of C60, thus increasing the PDT efficacy of C60 against cancer
cells. FA-GO-PEG/C60 nanohybrid under light irradiation (808
and 532 nm wavelength) showed higher cell apoptosis and death
compared with PDT or PTT alone, demonstrating a synergistic
effect of combined PDT and PTT

3.2. Inorganic nanomaterials

Inorganic nanoparticles, covalently or non-covalently linked with
photosensitizers, hold several advantages over organic nanoparti-
cles, including high stability, and precise control over size and
shape, and tunable optical properties50,51. Moreover, the surface of
the inorganic nanoparticles can be easily functionalized for high
biocompatibility and selective targeting52.

3.2.1. Gold nanoparticles
Gold nanoparticles possess high surface areas and biocompatibility
and enable facile surface functionalization through gold-thiol
chemistry53. Moreover, since gold nanoparticles show tunable
optical scattering and absorption, they have been extensively
explored for diagnostic applications54,55. Maximum absorption
and scattering wavelengths of gold nanoparticles can vary based
on their size and shape. Particular structures of gold nanoparticles
such as gold nanorods and nanoshells have been extensively
utilized for PTT due to their strong absorption in the NIR
region56,57. Because of their high biocompatibility and facile
surface functionalization, gold nanoparticles have recently gained
attention as suitable drug delivery vehicles both in diagnostics,
bioimaging, and cancer therapy58,59. Gold nanoparticles have also
been utilized to deliver PS drugs to the target region, both
passively and actively60,61.

Heparin-coated gold nanoparticles (AuNPs) as glutathione
(GSH)-responsive PS drug carriers were developed for efficient
PDT. Heparin was used for increasing gold nanoparticles’ water-
solubility, biocompatibility, and colloidal stability62. Pheophorbide a



Figure 3 Schematic illustration showing the mechanism of FA-GO-PEG/C60 hybrid for synergistic combined PTT and PDT. Reproduced with
permission from Ref. 49. Copyright 2015, Royal Society of Chemistry.
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(PhA)27 was used as a PS drug (Table 1). The hybrid gold
nanoparticles were formulated by incorporation of PhA-conjugated
heparins via gold–thiol interaction. The hybrid PhA/AuNPs made
PhA nonfluorescent and photo-inactive because efficient energy
transfer from PhA to AuNP occurs on the surface. However,
photoactivity of PhA was recovered under GSH-rich intracellular
environments via cleavage of gold–thiol linkage, generating singlet
oxygen species following 670 nm light treatment. The hybrid PhA/
AuNPs showed high phototoxicity and internalization efficiency in
A549 cells in comparison with free PhA. The PhA/AuNPs also
indicated prolonged blood circulation and increased tumor specificity
in tumor-bearing mice, thus resulting in improved PDT efficacy
compared with free PhA. This study demonstrated that GSH-
responsive PhA/AuNPs are activatable and efficient PDT agents
for cancer treatment due to their enhanced tumor specificity and
phototoxicity.

Aptamer-conjugated gold nanorods (AuNRs)/Ce6 complex was
developed for targeted cancer therapy63. Aptamer Sgc8, which
specifically targets leukemia T cells, was conjugated to an AuNR
by a thiol–Au covalent bond. Then Ce6-labeled short DNA
sequences were hybridized with the aptamer on the AuNR surface,
resulting in fluorescence quenching due to close proximity of the
Ce6 to the gold surface. When the aptamer binds to target cancer
cells, Ce6 is released due to disruption of double-stranded DNA
structure of the aptamer and serves as PDT agents upon irradiation
with NIR light (812 nm). Furthermore, aptamer–AuNR conjugates
killed the cancer cells dramatically by combined PDT and PTT
upon NIR irradiation, demonstrating their feasibility for targeted
multimodal cancer therapy.

PS-conjugated AuNRs, in which PS was linked to the surface of
AuNRs via a matrix metalloproteinase-2–cleavable peptide linker
(MMP2P), were prepared for cancer-targeted PDT64. PPa was used
as a PS, and its fluorescence and phototoxicity were suppressed
when it was bound to the surface of the AuNRs. However, when
MMP2P–AuNRs incorporating PPa were incubated with human
fibrosarcoma cells (HT1080) over-expressing MMP2 and then
irradiated with 670 nm light, PPa was efficiently liberated from the
nanorods due to the degradation of MMP2P. As a result, the
released PPa recovered its phototoxicity and fluorescence. This
light-activatable MMP2P-AuNRs achieved MMP2-mediated,
cancer-specific fluorescence imaging and subsequent PDT.

A multi-therapy based on gene silencing with PPT was
attempted using lipid-coated gold nanoechinus (Au NEs)
(Fig. 4)65. Au NEs possess ultra-high molar extinction coefficients
and are able to sensitize the formation of singlet oxygen in the NIR
windows II (1000–1350 nm). siRNA that silences superoxide
dismutase 1 (SOD1), one of the effective anti-apoptotic and self-
defending genes that can destroy the free radicals or reactive
oxygen species in the body66, was complexed with the cationic
lipid-coated AuNEs (Fig. 4). When HeLa cells were treated with
siRNA-lipid–coated Au NEs, ultra-high gene silencing efficiency
(~86%) of SOD1 was achieved. In addition, significantly higher
phototoxicity was observed with the cells treated with the siRNA–
lipid-coated Au NEs under NIR (1064 nm) irradiation, as com-
pared to the cells treated with lipid-coated Au NEs alone. In vivo
studies also demonstrated that the combination of gene silencing
and Au NEs–mediated PDT was able to destruct the deep tissue-
buried melanoma tumors more efficiently than the Au NEs–
mediated PDT alone under ultra-low doses of NIR light irradia-
tion. This study demonstrated for the first time that complete
destruction of deep tissue-buried tumors can be accomplished by
combination of Au NEs–mediated PDT and gene silencing under
exposure to ultra-low doses of NIR light.

Trimodality fluorescence/thermal/photoacoustic (PA) imaging–
guided synergistic PTT/PDT cancer treatment was achieved by
using multifunctional photosensitizer Ce6-loaded plasmonic gold
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vesicles (GVs) (Fig. 5)67. The GVs consisting of mono-layered,
assembled gold nanoparticles exhibit a strong absorbance in the
NIR region. The NIR irradiation (671 nm) simultaneously excited
both GVs and Ce6 to produce heat and singlet oxygen for
combined PTT and PDT, destroying cancer cells (Fig. 5). The
GV–Ce6 showed high loading efficiency of Ce6 in the hollow
interior of GVs. The heating effect upon NIR irradiation dis-
sociated the GVs and thus released the encapsulated Ce6,
enhancing the delivery of Ce6 into cells. A feasibility of using
GV–Ce6 for trimodality fluorescence/thermal/PA imaging-guided
synergistic PTT/PDT was evaluated in vivo. Tumor tissues were
clearly visualized by the fluorescence, thermal, and PA signals
simultaneously. Taken together, synergistic PTT/PDT treatment
with improved efficacy was observed under NIR irradiation, as
compared to either individual PTT or PDT alone.
Figure 4 Schematic illustration of combined PDT and gene silencing for e
siRNA/lipid-coated Au NEs. Reproduced with permission from Ref. 65. C

Figure 5 Schematic illustration of trimodality fluorescence/thermal/photoa
therapy using photosensitizer (Ce6)-encapsulated plasmonic gold vesicles
American Chemical Society.
3.2.2. Silica nanoparticles
Organically modified silica (ORMOSIL) nanoparticles have recently
emerged as an attractive candidate for delivery of PS drugs due to
efficient loading of hydrophobic PS drugs68. ORMOSIL nanoparticles
can be loaded with either hydrophilic or hydrophobic drugs, protecting
them against extracellular barriers. ORMOSIL nanoparticles covalently
linked to PS drugs were developed for effective PDT while preventing
the premature release of PS drugs during blood circulation, which is a
critical obstacle in physical encapsulation of PS drugs69. The
ORMOSIL nanoparticles were synthesized by alkaline hydrolysis
and polycondensation of the iodobenzyl-pyro-silane, a precursor for
ORMOSIL incorporating photosensitizer iodobenzylpyropheophorbide.
Size of the prepared nanoparticles was ultralow (~20 nm), and they
were greatly monodispersed and stable in aqueous solution. In vitro
study confirmed that the prepared nanoparticles were efficiently taken
ffective destruction of deep tissue buried tumors using SOD1-silencing
opyright 2015, Elsevier Ltd.

coustic imaging-guided synergistic photothermal/photodynamic cancer
(GVs). Reproduced with permission from Ref. 67. Copyright 2013,
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up by cancer cells and showed phototoxicity to colon carcinoma cells
under exposure to 514 nm light.

PDT activity and two-photon fluorescence imaging using
ORMOSIL nanoparticles encapsulating PpIX and NIR fluoro-
phores IR-820 has been demonstrated (Fig. 6)70. PpIX-doped
ORMOSIL nanoparticles were efficiently internalized by cancer
cells, confirmed by two-photon fluorescence imaging. Additiona-
lly, two-photon-excited PpIX after internalization induced photo-
cytotoxicity against cancer cells. In vivo NIR fluorescence imaging
documented microinjected IR-820-doped ORMOSIL nanoparticles
localized beneath 4-mm depth in the brain of a mouse after
microinjection. Moreover, sentinel lymph node (SLN) mapping of
mice was achieved using intradermally injected IR-820-doped
ORMOSIL nanoparticles. NIR fluorescence imaging also con-
firmed that IR-820-doped ORMOSIL nanoparticles were also
selectively accumulated in tumors after intravenous injection into
mice bearing xenografted tumors. This study clearly demonstrated
the high potential of NIR fluorophore-doped, PS-loaded ORMO-
SIL nanoparticles for effective PDT and bioimaging in the clinic.

Mesoporous silica nanoparticles (MSNs) have been widely
employed as a promising carrier for PDT due to large surface area,
easily tunable pore size and volume, and chemical stability71,72.
Utilization of PEG- and PEI-functionalized, ZnPc-loaded MSNs
(PEG-PEI-MSNs/ZnPc) for PDT has been reported73. PEI played a
role in facilitating endosomal escape of MSNs after endocytosis
through a “proton sponge effect”74. As a result, phototoxicity of the
nanoparticles against cancer cells was highly enhanced compared
with MSNs/ZnPc. In vivo study demonstrated that PEG-PEI-MSNs/
ZnPc could be selectively accumulated in the tumor due to the EPR
effect. Moreover, effective tumor destruction was achieved in tumor-
bearing mice upon intravenous injection of PEG-PEI-MSNs/ZnPc
and the subsequent exposure to 680 nm light.

FA-conjugated, ALA-loaded hollow MSNs (FA-ALA-hMSNs)
were employed to transfer ALA into skin cancer cells for PDT75.
FA-ALA-hMSNs showed efficient accumulation of ALA and
PpIX in skin cancer cells through folate receptor–meditated
endocytosis. Upon irradiation with light at 635 nm, FA-ALA-
hMSNs efficiently killed the skin cancer cells due to generation of
phototoxic PpIX.

A feasibility of using multifunctionalized MSNs for combined
drug delivery and PDT was investigated76. The MSNs were
equipped with PS drugs (i.e., porphyrin) and chemotherapy agents
(i.e., camptothecin) for synergistic anticancer effects. The MSNs
were also anchored with galactose to achieve enhanced cellular
Figure 6 Synthetic scheme of (A) PpIX-doped ORMOSIL nanoparticles f
820-doped ORMOSIL nanoparticles for in vivo NIR fluorescence ima
Elsevier Ltd.
uptake in colorectal cancer cells via galactose receptor–mediated
endocytosis. The multifunctionalized MSNs indicated a significant
synergistic effect for killing cancer cells under light at 650 nm due
to combined anticancer drug delivery and PDT.

MSNs with phosphorescent reagents were utilized as oxygen
sensing PDT agents77. Phosphorescent Pd-meso-tetra(4-carboxy-
phenyl) porphyrin (PdTPP) that can detect oxygen in tissues via
oxygen-dependent quenching of phosphorescence was used as a
PS. When PdTPP-entrapped MSNs are internalized by MDA-MB
231 breast cancer cells and irradiated with 532 nm light, they
induced photocytotoxic cell death. Simultaneously, PdTPP-loaded
MSNs could act as imaging probes detecting the generation of
singlet oxygen upon photo-irradiation.
3.2.3. Quantum dots (QDs)
QDs have been intensively utilized for multifunctional nanocar-
riers for PDT due to high emission quantum yield, tunable optical
properties, and facile surface modification78–80. QDs can also be
used as excellent donors in the fluorescence resonance energy
transfer (FRET) process81. Biocompatible, porphyrin-conjugated
CdSe QDs were developed for PDT via two-photon excitation82.
Efficient energy transfer between the QDs and the porphyrin was
confirmed by employing FRET process. A feasibility of using
QD–porphyrin conjugate for effective photosensitizing agent
under two-photon excitation was clearly demonstrated82. Singlet
oxygen generation by QD–porphyrin conjugate under two-photon
excitation was greatly higher than that by the porphyrin
solution alone.

Stable water-soluble complexes of Ce6 and ZnSe/ZnS QDs
were prepared for PDT in cancer cells. Efficient photoexcitation
energy transfer between Ce6 and ZnSe/ZnS QDs was confirmed83.
PDT efficacy of Ce6 was significantly enhanced due to increased
cellular uptake of the Ce6 using ZnSe/ZnS QDs. Efficient PDT in
cancer cells was also achieved by sulfonated aluminum phthalo-
cyanines (AlPcSs)-conjugated QDs84. AlPcSs were used as PS
drugs. Since AlPcS–siRNA-lipid coated QDs conjugates were
positively charged, they were able to efficiently penetrate into
human nasopharyngeal carcinoma cells in contrast to negatively
charged, free AlPcSs. With 532 nm light irradiation, combination
of direct and indirect FRET excitations for AlPcS–siRNA-lipid
coated QDs conjugates exhibited remarkable PDT effect to
cancer cells.
or two-photon fluorescence imaging and PDT and (B) PEG-coated, IR-
ging. Reproduced with permission from Ref. 70. Copyright 2012,



Figure 7 Schematic illustration of QD–RLuc8 conjugates for BRET-mediated PDT. The bioluminescent QD–RLuc8 conjugates emit 655 nm
photons after coelenterazine addition, which can activate PS-loaded micelles for PDT. Reproduced with permission from Ref. 86. Copyright 2012,
Elsevier Ltd.
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Utilization of desirable external photoexcitation to activate PS
drugs in deep tissues is crucial for successful clinical application of
PDT. Recently, a novel QD conjugate incorporating light-emitting
Renilla luciferase 8 (RLuc8) was developed to generate biolumi-
nescence as an external light source for activating PS drugs in
PDT85,86. When the QD conjugates are treated with coelenterazine,
a substrate of RLuc8, energy is transferred from the substrate to
the QD conjugates via bioluminescence resonance energy transfer
(BRET), thereby emitting 655 nm photons and activating meta-
tetra-hydroxyphenyl-chlorin (m-THPC, Foscans) PS for ROS
generation (Fig. 7)86. A549 cells treated with QDs–siRNA-lipid
coatedRLuc8, Foscans-loaded micelles, and coelenterazine were
effectively killed by Foscans-mediated PDT. BRET-mediated
PDT by QD–RLuc8 combined with Foscan-loaded micelles plus
coelenterazine significantly delayed the tumor growth in a mouse
model while decreasing proliferation factor (i.e., proliferating cell
nuclear antigen) and microvessel densities. This study demon-
strated that BRET-mediated PDT can overcome light penetration
issues of current PDT.
4. Conclusions and perspectives

A variety of organic and inorganic nanomaterials combined with
PS drugs have been developed for targeted and effective delivery
of PS drugs. It has been shown that nanomaterials can offer
solutions to address crucial limitations of conventional PS drugs.
Nanomaterials combined with PS drugs increase the water
solubility of hydrophobic PS drugs. They also improve the
target-specificity of PS drugs via passive targeting to tumor tissues
though the EPR effect. Surface modification of PS-loaded nano-
particles with active targeting ligands further enhances the
selective accumulation of PS drugs into tumors.

Despite impressive progress in developing nanomaterials for
PDT, a number of challenges still remain toward clinical applica-
tions of the nanomaterial-mediated PDT. For example, develop-
ment of PS drugs with strong absorbance at long wavelengths and
high chemical- and photo-stability must be accompanied in
parallel with the development of nanomaterials. Systemic toxicity,
long-term toxicity, and dose-dependent toxicity of nanomaterials
are still problems to be addressed. The use of biocompatible
nanomaterials (e.g., lipids, polypeptides, and natural polymers)
and biocompatible surface coatings is crucial to reduce the long-
term toxicity and dose-dependent toxicity of the nanomaterials. In
addition, utilization of stimuli-responsive nanomaterials that can
achieve controlled release of PS drugs responding to biochemical
stimuli in target tissues/cells is indispensable to reduce the
systemic toxicity and dose-dependent toxicity of the nanomaterials
by achieving target-specificity and biodegradation. Several studies
in this review have demonstrated the advantages of using stimuli-
responsive nanomaterials for efficient, safe, and cancer-targeted
PDT32,36. In addition to the development of biocompatible
nanomaterials, their biosafety evaluations such as systemic clear-
ance and biological effects must be conducted prior to their clinical
uses for PDT. These efforts will facilitate the successful translation
of nanomaterial-mediated PDT into clinical settings.
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