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SUMMARY

Metastases are themajor cause ofmelanoma-related
mortality. Previous studies implicating aberrant AKT
signaling in human melanoma metastases led us to
evaluate the effect of activated AKT1 expression in
non-metastatic BRAFV600E/Cdkn2aNull mouse mela-
nomas in vivo. Expression of activated AKT1 resulted
in highly metastatic melanomas with lung and brain
metastases in 67% and 17% of our mice, respec-
tively. Silencing of PTEN in BRAFV600E/Cdkn2aNull

melanomas cooperated with activated AKT1, result-
ing in decreased tumor latency and the development
of lung and brain metastases in nearly 80% of tumor-
bearing mice. These data demonstrate that AKT1
activation is sufficient to elicit lung and brain metas-
tases in this context and reveal that activation of
AKT1 is distinct from PTEN silencing in metastatic
melanoma progression. These findings advance our
knowledge of the mechanisms driving melanoma
metastasis andmayprovide valuable insights for clin-
ical management of this disease.

INTRODUCTION

Recent approvals of more efficacious therapies have signifi-

cantly shifted the treatment paradigm for melanoma and have

provided much needed breakthroughs in this disease (Girotti

et al., 2014). Despite these recent therapeutic advances, thema-

jority of melanoma deaths continue to be due to metastasis,

which demands further investigation into the molecular mecha-

nisms driving distant dissemination of this disease.

Members of the phosphatidylinositol 3-kinase (PI3K)/AKT

pathway have been implicated in melanoma initiation, progres-

sion, invasion, and metastasis. Activation of AKT in this disease

occurs most commonly through silencing of the tumor suppres-
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sor PTEN (reviewed in Madhunapantula and Robertson, 2011).

PTEN is a phosphatase with activity against both lipid and pro-

tein substrates (Chalhoub and Baker, 2009). Its major substrate

is phosphatidylinositol-3,4,5-triphosphate (PIP3), which recruits

AKT to the membrane, where it is activated by phosphorylation.

PTEN specifically dephosphorylates the 30 position of PIP3 to

create phosphatidylinositol-4,5-bisphosphate (PIP2) and thereby

suppressesmembrane recruitment and downstream signaling of

AKT. Loss of PTEN results in increased levels of PIP3 and subse-

quent AKT activation.

We have previously demonstrated that PTEN silencing com-

binedwith expression of BRAFV600E inmousemelanocytes in vivo

results in melanoma formation (Dankort et al., 2009). Our current

study builds on these findings and demonstrates that ectopic

expression of activated AKT1 strongly potentiates metastasis in

the context of mutant BRAFV600E and silencing of INK4A and

ARF. Additionally, PTEN silencing cooperates with active AKT1

to accelerate both tumor formation and metastasis. This model

providesa valuable tool to further define themechanisms thatpro-

mote melanoma metastases and a powerful platform to advance

the development of anti-melanoma therapies.

RESULTS

BRAFV600E/Cdkn2aNull Melanomas Are Not Metastatic
To evaluate melanoma metastasis in the context of specific ge-

netic alterations, we utilized an established melanoma mouse

model based on the RCAS/TVA system that allows for targeted

delivery of specific genes to post-natal melanocytes (Van-

Brocklin et al., 2010). This system utilizes a viral vector,

RCASBP(A), hereafter referred to as RCAS, and its receptor,

TVA. Transgenic mice that express TVA under the control of

the dopachrome tautomerase (DCT) promoter allow targeting

of the virus, and expression of the genes it contains, specifically

to melanocytes. To assess metastasis using this model in the

context of mutationally activated BRAFV600E, we compound

generated Dct::TVA;BRafCA;Cdkn2alox/lox mice (VanBrocklin

et al., 2010) carrying a conditional Cre-activated allele of Braf.
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Figure 1. Kaplan-Meier Percent Survival Curves for BRAF-Induced

Tumors

(A)LossofPtenorexpressionofmyrAKT1significantly increases tumor incidence

and reduces tumor latency. Dct::TVA;Braf CA;Cdkn2alox/lox mice (PtenWT) were

injected at birth with viruses containing either Cre (small dashed line, n = 34) or

myrAkt1 and Cre (wide dashed line, n = 27) as indicated. Dct::TVA;Braf CA;

Cdkn2alox/lox;Ptenlox/lox mice (Ptenlox/lox) were injected with viruses encoding

Cre (solid black line, n = 24). TVA-negative BrafCA;Cdkn2alox/lox and BrafCA;

Cdkn2alox/lox;Ptenlox/loxmice injectedwithCre-containing viruses (narrowdashed

line, n = 40) and PtenWTmice injectedwithmyrAkt1-containing viruses (off-width

dashed line, n = 21) yielded no tumors and are shown as negative controls. A

significantdifferencewas observedbetween the survival ofPtenWTmice injected

with Cre-containing viruses and PtenWT mice injected with myrAkt1- and Cre-

containing viruses (p = 2.3 3 10�9). A significant difference was also observed

between the survival of PtenWT mice injected with Cre- and myrAkt1-containing

viruses and Ptenlox/lox mice injected with Cre-containing viruses (p = 0.045).

(B) Loss of Pten cooperates with AKT1 activation to accelerate tumor forma-

tion. Comparison of the mice whose tumors were found to express myrAKT1

Ce
The BrafCA allele expresses wild-type BRAF prior to Cre-medi-

ated recombination after which BRAFV600E is expressed from

the normal chromosomal locus (Dankort et al., 2007). The

Cdkn2alox allele expresses normal INK4A and ARF prior to

Cre-mediated recombination after which expression of both

p16INK4A and p19ARF is extinguished (Aguirre et al., 2003).

Newborn Dct::TVA;Braf CA;Cdkn2alox/lox mice were injected

subcutaneously with an RCAS virus encoding Cre to induce

BRAFV600E expression with concomitant silencing of INK4A

and ARF in melanocytes. WhileBrafCA;Cdkn2alox/loxmice lacking

Dct::TVA injected with RCAS:Cre remained tumor free for the

duration of the study (150 days, n = 40), 47% (16/34) of the

Dct::TVA;Braf CA;Cdkn2alox/lox mice infected with the RCAS:Cre

virus developed tumors at the site of injection (Table S1). The

mean survival for tumor-bearing mice in this cohort was 88.9 ±

8.6 days (Figure 1A). All major organs were examined at eutha-

nasia, but no melanoma metastases were observed in any of

the tumor-bearing mice.

PTEN Silencing Increases Tumor Incidence and
Reduces Tumor Latency but Does Not Significantly
Enhance Metastasis to Distant Organs
Because BRAFV600E cooperates with PTEN silencing to induce

metastatic melanoma (Dankort et al., 2009), we generated

Dct::TVA;BrafCA;Cdkn2alox/lox;Ptenlox/lox (Ptenlox/lox) mice. The

Ptenlox allele used here expresses normal PTEN prior to Cre-

mediated recombination after which deletion of the exon 5

sequence generates a Pten null allele (Zheng et al., 2008).

Newborn Dct::TVA;BrafCA;Cdkn2alox/lox;Ptenlox/lox mice were in-

jected subcutaneously with RCAS:Cre to induce BRAFV600E

with concomitant silencing of INK4A, ARF, and PTEN in melano-

cytes. Importantly, control mice, BrafCA;Cdkn2alox/lox;Ptenlox/lox

lacking Dct::TVA infected with RCAS:Cre remained tumor free

for the duration of the study (150 days, n = 40). Tumors devel-

oped at the site of injection in all of the Dct::TVA-positive BrafCA;

Cdkn2alox/lox;Ptenlox/loxmice infected with RCAS:Cre viruses (n =

24). The mean survival was 57.8 ± 3.4 days in this cohort (Fig-

ure 1A; Table S1). Expression of Cre was assessed by RT-PCR

(Figure S1A), and recombination of Ptenlox was confirmed by

PCR in all of the tumors that developed (Figure S1B). In these

mice, lung metastases were detected in 8.3% (2/24) of the

mice whose melanomas had PTEN silencing. However, using a

Fisher’s exact test, we determined that this difference was not

statistically significant when compared with mice whose tumors

expressed PTEN (p = 0.5).

Expression of Activated AKT1 Promotes Melanoma
Formation and Distant Metastasis
Several studies have shown that PTEN silencing confers a

different phenotype than AKT activation (Majumder et al.,

2003; Wang et al., 2003). Therefore, we evaluated the effect of
(wide dashed line, n = 18) and mice whose tumors lacked Pten revealed no

significant difference (p = 0.994) (solid black line, n = 24). However, the survival

ofPtenlox/loxmice injectedwithmyrAkt1- andCre-containing viruses (solid gray

line, n = 14) differed significantly from the survival of Ptenlox/lox mice injected

with Cre-containing viruses (p = 0.0009) and PtenWT mice injected with myr-

Akt1- and Cre-containing viruses (p = 0.0002).
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mutationally activated AKT1 on melanoma formation and

progression in vivo. Newborn Dct::TVA;BrafCA;Cdkn2alox/lox

(PtenWT) mice were injected subcutaneously with RCAS viruses

encoding myristoylated (myr) Akt1 alone or in combination with

viruses encoding Cre. Virally delivered myrAkt1 contains a hem-

agglutinin (HA) epitope tag to discern expression from endoge-

nous AKT1. While Dct::TVA;BrafCA;Cdkn2alox/lox mice injected

with viruses encoding myrAkt1 alone remained tumor free for

the duration of the study (150 days, n = 21), 88% (24/27) of the

mice injected with both myrAkt1- and Cre-encoding viruses

developed tumors at the site of injection (Figure 1A; Table S1).

The mean survival of the tumor-bearing mice in this cohort was

65.3 ± 4.7 days (Figure 1A). It is important to note that AKT1

expression is not required for tumor formation in the context of

BRAFV600E/INK4A-ARF silencing; tumors develop in nearly half

of Dct::TVA;Braf CA;Cdkn2alox/lox mice infected with viruses

encoding Cre only (Figure 1A). Of the 24 mice that developed

tumors when injected with myrAkt1 and Cre viruses, AKT1

expression was detected in 18 of the tumors by IHC for the HA

epitope tag on myrAKT1 (Figure S2). The mean survival was

58.9 ± 3.5 in this myrAKT1-confirmed cohort (Figure 1B; Table

S1). A significant difference in survival was observed between

mice whose tumors expressed myrAKT1 and those without

myrAKT1 (p = 2.3 3 10�9). A significant difference in survival

was also observed between the Ptenlox/lox cohort injected with

viruses encoding Cre only when compared with all of the mice

in the PtenWT cohort injected with two separate viruses encoding

Cre and myrAkt1 (p = 0.045) (Figure 1A; Table S1). However,

comparison between the mice whose tumors were found to ex-

pressmyrAKT1 by immunohistochemistry (IHC) (18/24) andmice

whose tumors lacked PTEN revealed no significant difference

in survival (p = 0.994; Figure 1B). All major organswere examined

in tumor-bearing mice. Interestingly, lung metastases were

observed in 67% (12/18) and brain metastases were observed

in 17% (3/18) of the mice whose tumors expressed myrAKT1.

This difference was statistically significant when compared

with both the PtenWT and the Ptenlox/lox cohorts injected with

RCAS:Cre viruses (p < 0.0001).

PTEN Silencing Cooperates with Activated AKT1 to
Accelerate Melanomagenesis and to Promote Distant
Metastasis
Our data revealed differences in the development of distant me-

tastases between cohorts of mice whose tumors lacked PTEN

compared with mice whose tumors expressed myrAKT1. There-

fore, we assessed whether PTEN silencing could cooperate with

myrAKT1 activation to promote melanoma formation and pro-

gression. To test this, newborn Dct::TVA; BrafCA;Cdkn2alox/lox;

Ptenlox/lox mice were injected subcutaneously with viruses

encoding myrAkt1 and Cre. Tumors developed at the site of in-

jection in all of the mice in this cohort (n = 14), and myrAKT1

expression was detected in all of these tumors by anti-HA IHC

(Figure S3). Expression of Cre was assessed by RT-PCR (Fig-

ure S1C), and recombination of Pten was confirmed by PCR in

all of the tumors that developed (Figure S1D). Interestingly,

melanomas with concomitant PTEN silencing and myrAKT1

expression had significantly reduced survival compared with

mice whose tumors only had PTEN silencing (p = 0.0009) or ex-
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pressed myrAKT1 in the presence of PTEN (p = 0.0002). The

mean survival in this cohort was 42.1 ± 2.8 days (Figure 1B; Table

S1). All major organs were examined, and lung and brain metas-

taseswere observed in 71% (10/14) and 79% (11/14) of themice,

respectively. A comparison of the sites of metastases revealed

no significant difference in lung metastases (p = 1.0), but there

was a statistically significant difference in brain metastases be-

tween tumors driven by myrAKT1 in the presence or absence

of PTEN (p = 0.0009).

Histological Characterization of the Mouse Melanomas
Reveals Features Similar to the Human Disease
Melanomas arising in Dct::TVA;BrafCA;Cdkn2alox/lox mice in-

fectedwith both RCAS:Cre andRCAS:myrAkt1 encoding viruses

consisted primarily of short spindle cells, occasional epithelioid

cells, and with high-grade nuclear features, including prominent

nucleoli. Intratumoral hemorrhage, coagulative tumor necrosis,

and non-brisk inflammation (tumor infiltrating lymphocytes)

were variably noted (Figure 2A). Mitotic figures were abundant

and the majority of the cells expressed the Ki67 proliferation

marker (Figure 2B). The activity of BRAFV600E was assessed by

IHC for pERK as a surrogate (Figure 2C). The melanocytic origin

of these tumors was established by their immunoreactivity for a

pan-melanoma cocktail consisting of antibodies to HMB-45, a

pre-melanosomal glycoprotein gp100, and melanoma antigen

recognized by T cells-1 (MART-1) (Figure 2D). The combination

of positivity for both HMB-45 and MART-1 is highly supportive

of a melanoma diagnosis (Ohsie et al., 2008). Upon gross exam-

ination, lesionswere visible on the surface of the lungs (Figure 2E)

and microscopic examination confirmed the morphologic fea-

tures of malignancy (Figures 2F and 2G). AKT1 expression was

detected in the metastases by IHC for the HA epitope tag on

myrAKT1 (Figure 2H). Brain metastases were also observed in

Dct::TVA;Braf CA;Cdkn2alox/lox mice infected with both Cre and

myrAkt1 containing viruses (Figure 2I). Expression of myrAKT1

was confirmed in the brain metastases by IHC for the HA tag

on virally delivered myrAKT1 (Figure 2J).

Primary tumors from each of the cohorts described above

were assessed for the presence of phosphorylated AKT

(pS473) by IHC and compared with BRAFV600E/INK4A-ARFNull

melanomas (Figures 3A and 3B). As expected, active pS473-

AKT was detected in tumors lacking PTEN, expressing

myrAKT1, or both (Figures 3C–3H). The levels of pS473-AKT

were also assessed by immunoblot analysis of lysates generated

from fragments of tumors with wild-type PTEN, lacking PTEN,

expressing myrAKT1, or lacking PTEN and expressing myrAKT1

(Figure 4A). In agreement with the IHC data, PTENNull mela-

nomas displayed higher levels of pS473-AKT (Figure 4B).

Expression of myrAKT1 was confirmed by immunoblotting for

the HA epitope tag on myrAKT1 (Figure 4A) and quantified (Fig-

ure 4B). Cre-mediated expression of mutationally activated

BRAF was assessed using an antibody specific for BRAFV600E.

Activity of theMAPK pathway was assessed by analysis of phos-

phorylated ERK expression. Total levels of ERK were similar be-

tween the samples. As expected, the levels of total AKT were

higher in the melanomas engineered to express myrAKT1 and

awider band representing the largermolecular mass ofmyrAKT1

was detected on the total AKT blot (Figure 4A).



Figure 2. Histological Analysis of BRAFV600E and myrAKT1-Induced

Tumors

(A–D) Tumors were induced in Dct::TVA;Braf CA;Cdkn2alox/lox mice (PtenWT) by

subcutaneous injection of newborn mice with viruses containing myrAkt1 and

Cre. (A_ Representative tumor H&E. (B) Ki67 IHC. (C) P-ERK IHC. (D) IHC for

HMB-45, gp100, and MART-1 (pan-MEL). Scale bars represent 200 mm.

(E–H) Metastases to the lung were observed in PtenWT mice injected with

myrAkt1- and Cre-containing viruses. (E) Representative gross lung with

multiple metastatic lesions. (F) Low-magnification H&E of a lung with multiple

melanomametastases. (G) Higher-magnification H&E of a lung metastasis. (H)

HA IHC confirmed expression of myrAKT1. Scale bar represents 6 mm.

(I and J) Brain metastases were observed in PtenWT mice injected with

myrAkt1- and Cre-containing viruses. (I) H&E of representative melanoma

brain metastasis. (J) HA IHC confirmed expression of myrAKT1. Scale bar

represents 5 mm.

Figure 3. Comparison of AKT Activity in Mutant BRAF Melanomas

The left panel (A, C, E, and G) shows a representative H&E of the primary tumor,

and the right panel (B, D, F, and H) shows phosphorylated AKT (p-AKT) (pS473)

IHC staining of an adjacent section. All tumors lack Cdkn2a expression and

expressmutantBRAF.Pten statusandmyrAKT1expressionare indicatedon the

left. Pertinent tumor genotypes are as follows: (A and B) BRAFV600E;Cdkn2a�/�;
(C and D) BRAFV600E;Cdkn2a�/�;Pten�/�; (E and F) BRAFV600E ;Cdkn2a�/�;
myrAKT1; and (G and H) BRAFV600E ;Cdkn2a�/�;Pten�/�;myrAKT1. Scale bar

represents 200 mm.

Ce
Reverse-Phase Protein Array Analysis Reveals
Increased mTOR Signaling in Tumors Expressing
myrAKT1
To define differences in signaling between the melanomas lack-

ing PTEN and those expressing myrAKT1 in a high-throughput

manner we used a reverse-phase protein array (RPPA)

approach. RPPA allows quantitative analysis of protein levels

and activation using small amounts of protein (Liotta et al.,

2003). Tumor-enriched protein isolates from five PTENNull and

four myrAKT1-expressing melanomas were analyzed by RPPA.

The heatmap in Figure 5 shows the results of unsupervised hier-

archical clustering of the results of this analysis, which showed a
ll Reports 13, 898–905, November 3, 2015 ª2015 The Authors 901



Figure 4. Protein Expression in Mutant

BRAF Melanomas

(A) Expression of myrAKT1-HAwas assessed in 12

different tumor samples from four different geno-

types:Cdkn2a�/�;BRAFV600E (2,697, 2,698, 2,756),
Cdkn2a�/�;BRAFV600E;Pten�/� (311, 3,145, 3,147),

Cdkn2a�/�;BRAFV600E;myrAKT1 (445, 446, 450),

and Cdkn2a�/�;BRAFV600E;Pten�/�;myrAKT1

(5,413, 5,417, 5,461). The cells were lysed in SDS

lysis buffer and separated on 4%–20% gradient

polyacrylamide gels. Virally delivered myrAkt1

expression was detected with an antibody to the

HA epitope tag onmyrAKT1. Activation of AKTwas

evaluated by blotting for p-AKT and comparing the

levels of total AKT expression. Mutant BRAF

expression was confirmed and downstream ac-

tivity was evaluated by blotting for phosphorylated

ERK1/2 (p-ERK1/2) and comparing the levels of

total ERK1/2 expression. GAPDH expression was

used as a loading control.

(B) Bar graphs illustrate the relative quantification

of p-AKT (black bars) and myrAKT1 expression

(gray bars) from the four different tumor geno-

types. Relative levels of p-AKT were calculated

by densitometry and normalized to total AKT

levels. The levels of myrAKT1 were determined by

calculating the densitometry for HA and normal-

izing to GAPDH levels. Data are presented as

mean ± SEM.
significant difference in protein modification/expression levels

(n = 11; p < 0.05 by unpaired t testing) between the five PTENNull

tumor samples and the four myrAKT1-expressing melanoma

samples. A list of all 131 epitopes assessed with their respective

p values is presented in Table S2. As expected, lower levels of

PTEN expression were detected in the melanoma samples

from Ptenlox/lox mice. In agreement with both the IHC and immu-

noblot analyses, a higher level of pS473-AKT was observed in

the PTENNull tumor samples. Interestingly, components of the

mammalian target of rapamycin (mTOR) signaling pathway

(e.g., RAPTOR, RICTOR, NF2, and MYH11) were significantly

different between the two groups (Figure 5; Figure S4).

Pharmacological Inhibition of PI3K and mTOR Reduces
Melanoma Cell Migration
Pharmacological inhibition of PI3K and mTOR has been shown

to inhibit melanoma cell growth both in vitro and in vivo and inter-

fere with angiogenesis (reviewed in Sznol et al., 2013). To deter-

mine the dependence of melanoma cell migration on PI3K/
902 Cell Reports 13, 898–905, November 3, 2015 ª2015 The Authors
mTOR signaling, we treated normal hu-

man embryonic melanocytes (NHEM)

and human melanoma cell lines A375,

M14-MEL, and CACL, which harbor

mutant BRAF, with DMSO or the pharma-

cological inhibitor NVP-BEZ-235 (BEZ-

235), a dual PI3K/mTOR inhibitor. While

very little migration was observed for

NHEM, all three melanoma cell lines

were highly migratory in this assay. Treat-

ment with BEZ-235 (2 mmol/l) significantly
reducedmigration in the NHEM and all three melanoma cell lines

over a 48-hr time period compared with DMSO treatment alone

(Figure S5A). To examine the effects of BEZ-235 on signal

pathway activity, extracts of melanoma cells treated with BEZ-

235 (2 mmol/l) for 24 hr were subjected to immunoblot analysis

(Figure S5B). BEZ-235 elicited a 96% reduction in phosphory-

lated AKT (pAKT; pS473) in A375 and M14 melanoma cells and

a 90% reduction in phosphorylated AKT in CACL cells, which

displayed the highest levels of pAKT among the three cell lines.

DISCUSSION

Through combined PTEN silencing and mutational activation

of AKT1 in the context of the BRAFV600E oncoprotein kinase

and INK4A-ARF silencing, we have established an autochtho-

nous model of spontaneous lung and brain metastases that

is similar to the human disease. Furthermore, we provide

compelling evidence that AKT1 activation plays a critical role

in promoting melanoma metastasis to distant organs in vivo



Figure 5. RPPA Analysis of Protein from Pten Null and myrAKT1

Melanomas

Protein was isolated from Cdkn2a�/�;BRAFV600E;Pten�/� (Pten�/�) and

Cdkn2a�/�;BRAFV600E;myrAKT1 (myrAKT1) tumors; expression was assessed

by RPPA. Log2 expression data were subjected to unsupervised clustering,

and the results are presented as a heatmap. Tumors were labeled Pten�/�

(gray squares) or myrAKT1 (blue squares). The heatmap shown represents the

proteins and phosphorylated proteins with a significant difference (p < 0.05

using unpaired t tests) between myrAKT1 and Pten�/� tumors. An asterisk (*)

denotes a primary tumor from a mouse with brain metastasis.
via a mechanism that is independent of, yet augmented by,

PTEN silencing.

We observed dramatically increased distant metastasis in

mice bearing tumors driven by activated AKT1 compared with

Pten loss. Moreover, AKT1 activation cooperated with Pten

loss to accelerate tumor formation and further increase dissem-

ination to the lungs and brain. Our data suggest that aberrant

AKT1 signaling in melanoma extends beyond the modulation

of PIP3 levels by PTEN and PI3K. Our previous work demon-

strated that the growth of BRAFV600E/PIK3CAH1047R melanomas

depends on AKT signaling, but this dependency was not

observed for the growth of BRAFV600E/PTENNull melanomas

(Marsh Durban et al., 2013). Our current study builds on these

findings and demonstrates that BRAFV600E/PTENNull/INK4A-

ARFNull melanomas are not significantly metastatic (<10%)

compared to controls, while ectopic expression of myrAKT1

strongly potentiates metastasis in BRAFV600E/INK4A-ARFNull

melanomas. These data suggest that there are likely to be

PI30-lipid signaling thresholds in melanoma cells that can confer

different properties on the melanoma cell as demonstrated

recently (Deuker et al., 2015).

Interestingly, PTEN deficient melanomas had significantly

higher levels of phosphorylated AKT (Figures 3D, 4A, and 5)
Ce
compared with tumors expressing myrAKT1 (Figures 3F, 3H,

4A, and 5) yet significantly fewer distant metastases. In mam-

mals there are three isoforms of AKT, namely AKT1, AKT2

and AKT3. While the AKT isoforms share �80% amino acid

sequence identity, in vivo studies demonstrate that they have

both redundant and non-overlapping functions (Gonzalez and

McGraw, 2009). Compound AKT isoform knockout mice demon-

strate that AKT1 exhibits functional redundancy with AKT2 and

AKT3, but the reverse relationships lack full reciprocation

(Dummler et al., 2006; Peng et al., 2003; Yang et al., 2005).

Thus, for our studies of in vivo AKT signaling in melanoma,

expression of activated AKT1 facilitates signaling in the broadest

context. There have been conflicting reports regarding which

isoforms of AKT are phosphorylated following PTEN loss in

melanoma cells (Nogueira et al., 2010; Stahl et al., 2004). It is

possible that signaling from AKT1 differs from the signaling

that results from the activation of AKT isoforms with PTEN

silencing. Some studies suggest that AKT isoforms have

opposing functions with regards to tumorigenesis (Linnerth-Pet-

rik et al., 2014; Maroulakou et al., 2007). It is possible that spe-

cific isoforms of AKT differentially contribute to tumor growth

and/or metastatic potential in melanoma and that activation of

AKT2 or AKT3 following PTEN loss may oppose the activity of

AKT1 resulting in the different phenotypes we observed. Acti-

vating mutations in AKT1 and AKT3 have been detected in hu-

man melanoma and are associated with disease progression

(Davies et al., 2008; Shi et al., 2014). Future studies will compare

the effects of AKT2 and AKT3 in this context.

In this study, we observed significant differences in mamma-

lian target of rapamycin complex (mTORC) pathway components

between our PTEN deficient and myrAKT1 expressing mela-

nomas suggesting an elevation of this signaling downstream of

AKT activation. Hyperactive mTORC signaling is disproportion-

ately observed inmelanomas (73%; 78/107) compared to benign

nevi (4%; 3/67) (Karbowniczek et al., 2008). Deletion of Lkb1, a

known negative regulator of mTORC signaling, in KRas mutant

mouse melanocytes results in the formation of highly metastatic

melanomas in vivo (Liu et al., 2012).More recently, loss of Lkb1 in

the context of non-metastatic BRAFV600E/INK4A-ArfNull mela-

nomas resulted in highly metastatic disease (Damsky et al.,

2015). The pharmacological targeting ofmTOReffectively blocks

melanoma cell growth in vitro and in animal models (Dankort

et al., 2009; Guba et al., 2002; Hidalgo and Rowinsky, 2000). Un-

fortunately, mTOR inhibitors have failed to demonstrate clinical

efficacy against melanoma as mono-therapy and are currently

being evaluated in combination with other therapies for this dis-

ease (Margolin et al., 2005). In line with increased mTORC

signaling in melanoma metastasis, we found that total protein

and phospho-protein levels of Rictor, an exclusive mTORC2

component, were significantly higher in myrAKT1-expressing

melanomas than in PTEN-deficient melanomas (Figure 5; Fig-

ure S4). Combined inhibition of PI3K andmTOR has been shown

to inhibit melanoma cell growth both in vitro and in vivo and inter-

fere with angiogenesis (reviewed in Sznol et al., 2013). We

observed that pharmacological inhibition of PI3K and mTOR

also reduces melanoma cell migration. Taken together, our find-

ings and those of others implicate increasedmTORC signaling in

promoting melanoma metastasis.
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This model is ideally suited to further define the role of these

proteins in melanoma metastasis, and future studies will focus

on evaluating specific effectors downstream of AKT signaling in

melanoma progression with the ultimate goal of identifying tar-

gets for therapies aimed at preventing or treating disseminated

disease.

EXPERIMENTAL PROCEDURES

Vector Constructs

The retroviral vectors in this study are replication-competent avian leukosis

virus, Bryan polymerase-containing vectors of envelope subgroup A (desig-

nated RCASBP(A) and abbreviated RCAS). RCAS-Cre and RCAS-myrAkt1

have been described previously (Aoki et al., 1998; VanBrocklin et al., 2010).

Cell Culture

DF-1 cells were grown in DMEM-high glucose media supplemented with 10%

FBS (Invitrogen), 50 ug/ml gentamicin (Invitrogen) and maintained at 39�C.

Migration Assays

Cell migration was evaluated for serum-starved cells with FBS as the chemo-

attractant using amodified boyden chamber assay (Cultrex 96Well Cell Migra-

tion Assay, Trevigen) per the manufacturer’s specifications.

Virus Propagation

Virus infection was initiated by calcium phosphate transfection of plasmid DNA

into DF-1 cells. Viral spread was monitored by GFP positive control transfec-

tion and expression of the p27 viral capsid protein by western blot.

Western Blotting

Tumor lysates were suspended in RPPA buffer (Tibes et al., 2006) with

protease and phosphatase inhibitors (Pierce Biotechnology), separated on

a 4%–20% Tris-glycine polyacrylamide gel, and transferred to nitrocellulose

for immunoblotting. Detailed experimental procedures and antibodies used

are described in Supplemental Experimental Procedures.

Viral Infections In Vivo

Infected DF-1 cells from a confluent culture in a 10-cm dish were trypsinized,

pelleted, resuspended in 50 ml PBS, and placed on ice. Newborn mice were

injected subcutaneously behind the ear with 50 ml suspended myrAkt1 cells

and 50 ml suspended Cre cells.

Histology and Histochemical Staining

Mice were euthanized at their experimental endpoints set according to the

guidelines of the University of Utah Institutional Animal Care and Use Commit-

tee. Mouse tissues were fixed in formalin overnight, dehydrated in 70% ethyl

alcohol, and paraffin embedded. Sections were stained with H&E or left un-

stained for immunohistochemistry.

Immunohistochemistry

Tissue sections were hydrated, deparaffinized, and processed using the

Biocare Medical HRP-Polymer system (Biocare Medical) according to the

manufacturer’s recommendations. Detailed procedures and antibodies used

are described in Supplemental Experimental Procedures.

Reverse-Phase Protein Array

Frozen tumor tissue was embedded in optimum cutting temperature (OCT)

compound. H&E-stained slides were reviewed by an experienced dermatopa-

thologist (Alexander J. Lazar) to identify areas that contained >70% tumor

cells. Regions with extensive necrosis, fibrosis, or hemorrhage within the

tumor specimens were excluded. The H&E slides were used as a guide to

macrodissect the OCT blocks and isolate tumor-enriched regions for further

analysis. 10- to 20-mm tumor shears were generated by cryostat and were

used for protein and total RNA extraction. Proteins were isolated from the tu-

mor shears, and RPPA was performed as previously described (Davies et al.,

2009; Tibes et al., 2006).
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Dct::TVA;Cdkn2alox/lox;BrafCA mice (designated as PtenWT) and Dct::TVA;

Cdkn2alox/lox;BrafCA; Ptenlox/lox mice (referred to as Ptenlox/lox) were generated

via crossing previously existing genetically engineered mice. All mice were

maintained on a mixed C57Bl/6 and FVB/N background by random inter-

breeding. DNA from tail biopsies was used to genotype for theDct::TVA trans-

gene, Cdkn2alox, BrafCA, Ptenlox and wild-type alleles as described previously

(Dankort et al., 2007; VanBrocklin et al., 2010; Zheng et al., 2008).

Statistical Analysis

Censored survival data were analyzed using a log-rank test of the Kaplan-Me-

ier estimate of survival. Densitometry of the western blot was performed using

ImageJ (Schneider et al., 2012), and the data are presented as mean ± SEM.

Student’s t test was used to compare migration between control and

treated cells as well as protein expression levels between groups in the

RPPA analysis. Protein-protein coefficients were determined by the Pearson

correlation method, and the significance of the interactions was determined

by the t statistic using R software. Unsupervised hierarchical clustering of

mean-centered protein expression values was done using Cluster 2.1 and

Treeview software.

Study Approval

All animal experimentation was performed in Association for Assessment and

Accreditation of Laboratory Animal Care (AAALAC)-approved facilities at the

University of Utah. All animal protocols were reviewed and approved prior to

experimentation by the Institutional Animal Care and Use Committee at the

University of Utah.
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Supplemental information includes Supplemental Experimental Procedures,

five figures, and two tables and can be found with this article online at http://
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