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SUMMARY

Elevated plasma cholesterol levels are considered
responsible for excess cardiovascular morbidity and
mortality. Cholesterol in plasma is tightly controlled
by cholesterol within cells. Here, we developed and
applied an integrative functional genomics strategy
that allows systematic identification of regulators of
cellular cholesterol levels. Candidate genes were
identified by genome-wide gene-expression profiling
of sterol-depleted cells and systematic literature
queries. The role of these genes in cholesterol regula-
tion was then tested by targeted siRNA knockdown
experiments quantifying cellular cholesterol levels
and the efficiency of low-density lipoprotein (LDL)
uptake. With this strategy, 20 genes were identified
as functional regulators of cellular cholesterol ho-
meostasis. Of these, we describe TMEM97 as SREBP
target gene that under sterol-depleted conditions
localizes to endo-/lysosomal compartments and
binds to LDL cholesterol transport-regulating protein
Niemann-Pick C1 (NPC1). Taken together, TMEM97
and other factors described here are promising to
yield further insights into how cells control cholesterol
levels.

INTRODUCTION

Elevated plasma cholesterol levels result in excess cholesterol

deposition in arterial vessel walls and are a major risk factor for

atherosclerosis and premature death by coronary heart disease.

In the blood, cholesterol is transported as cholesterol esters in

lipoprotein particles, �70% of which are low-density lipopro-

teins (LDLs). For keeping blood cholesterol levels balanced,

LDL cholesterol is constantly cleared by internalization into cells.

The LDL receptor (LDLR) is critical in this process, as it binds and

internalizes LDL via its apoB portion and clathrin-mediated

endocytosis. Mutations in LDLR or APOB are a cause for the
frequent genetic disorder familial hypercholesterolemia (FH)

(Brown and Goldstein, 1974; Maxfield and Tabas, 2005). In the

acidic environment of endocytic compartments, LDLR is

released from its ligand and recycled to the cell surface, while

the LDL particle is degraded in lysosomes. LDL-derived choles-

terol esters are hydrolyzed, and free cholesterol is delivered to

downstream organelles such as the plasma membrane, endo-

plasmic reticulum (ER), recycling endosomes, or mitochondria

(Chang et al., 2006; Ikonen, 2008).

In the plasma membrane, cholesterol may contribute to up to

25% of membrane lipids, and it is also enriched in endo-/lyso-

somal compartments and the Golgi. In contrast, ER membranes

are low in cholesterol. Nevertheless, being the site of cholesterol

biosynthesis and the sterol-homeostatic machinery, the ER is

crucial for keeping cellular sterols balanced (Goldstein et al.,

2006). E.g., ER membranes retain the sterol response element-

binding protein (SREBP) transcription factors in an inactive state.

Once cellular cholesterol is low, SREBPs are exported from the

ER to the Golgi, where they are activated by Golgi-resident

proteases. The transcriptional active form of SREBP subse-

quently translocates into the nucleus and activates the expres-

sion of genes responsible for increasing cellular cholesterol

and fatty acids. All genes known to be necessary for cholesterol

biosynthesis have been suggested as putative SREBP target

genes (Horton et al., 2003). Moreover, SREBPs activate genes

such as LDLR that mediate cholesterol uptake from extracellular

supplies, as well as other genes important for cellular lipid

homeostasis.

Despite extensive insight into how cellular cholesterol metab-

olism is regulated, important questions remain: the molecular

details of central transport events, e.g., how LDL-derived

cholesterol leaves the lysosomes, have not yet been resolved.

Little is known about the molecular interactions of the already

identified cholesterol-regulating factors. And the interrelation

between sterol-mediated gene expression control and subse-

quent events that direct cellular cholesterol homeostasis on

a functional level is poorly understood. It is therefore suggested

that only a limited number of proteins involved in cellular choles-

terol regulation and associated membrane trafficking processes

have been identified to date (Chang et al., 2006; Ikonen, 2008).
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Figure 1. Gene Expression Analysis in

Sterol-Depleted HeLa Cells

(A) HeLa cells were cultivated for 21 hr at 37�C, 5%

CO2 either under control (DMEM/2 mM L-gluta-

mine/100 IU/ml penicillin/100 mg/ml strepto-

mycin/5% FCS; medium A) or sterol-depleted

(DMEM/2 mM L-glutamine/100 IU/ml penicillin/

100 mg/ml streptomycin/0.5% LDS; medium B)

conditions. Then, cells were fixed (0 hr) or media

were exchanged for either medium A or medium

B substituted with 2% (w/v) 2-hydroxypropyl-b-

cyclodextrin (HPCD) for another 3 hr. Again, cells

were either fixed (3 hr) or washed once with

DMEM and cultivated for an additional 1.5

(4.5 hr) or 3 hr (6 hr) in medium A (controls) or

medium B (sterol depl.) before staining with Filipin

(50 mg/ml). Bar = 10 mm.

(B) Gene expression analysis in HeLa cells in order

to identify genes with differential expression under

sterol-depleted relative to control cell culture

conditions. For each condition, RNAs were ex-

tracted at three different time points (3, 4.5, and

6 hr) and hybridized to human cDNA microarrays

(n = 3 or 4 experiments/time point). According to

magnitude and delay of transcriptional response,

the 308 differentially expressed genes were classi-

fied into 10 distinct functional groups (I–X). Red/

green, up-/downregulated with >2-fold; light red/

light green, up-/downregulated with >1.5-fold;

gray, not differentially regulated.
With the aim to identify genes with relevance to cellular choles-

terol metabolism, we developed an integrative functional geno-

mics strategy, applying genome-wide expression profiling in

combination with targeted RNAi screening. For this, we estab-

lished two microscope-based siRNA (small interfering RNA)

screening assays that were designed to reflect (1) cellular

cholesterol levels as visualized by means of cholesterol-binding

dye Filipin (Börnig and Geyer, 1974) and (2) cellular internaliza-

tion of fluorescence-labeled LDL (DiI-LDL) (Ghosh et al., 1994).

We identified 20 genes as probably immediately relevant for

maintaining cellular cholesterol levels and/or LDL uptake. Of

these, we propose TMEM97 as an SREBP target gene that in

sterol-depleted cells enriches in endo-/lysosomal compart-

ments and binds Niemann-Pick C1 (NPC1) protein, a central

regulator of LDL-derived cholesterol transport out of lysosomes.

RESULTS

Genome-Wide Expression Profiling of Sterol-Depleted
HeLa Cells Identifies 308 Regulated Genes
In order to identify genes with a role in cellular cholesterol metab-

olism, we performed genome-wide gene expression analyses in

HeLa cells cultivated in lipoprotein-depleted serum (LDS) and

2-hydroxypropyl-b-cyclodextrin (HPCD) (Figure 1A). This treat-

ment reduces cellular cholesterol levels to up to �50% of

controls and activates cellular sterol homeostatic regulatory

machinery, as shown by increased levels of transcriptionally
64 Cell Metabolism 10, 63–75, July 8, 2009 ª2009 Elsevier Inc.
active SREBP (mSREBP) (Figure S1) (Nohturfft et al., 2000;

Runz et al., 2006). Transcriptional response was monitored

from sterol-depleted and control cells at three different time

points by expression profiling with human cDNA microarrays

(Wagner et al., 2004). In total, 308 genes showed statistically

significant altered gene expression upon cellular sterol deple-

tion. According to magnitude and delay of transcriptional

response, these genes were clustered into ten different func-

tional groups (Figure 1B; Table S1). A subset of 52 genes fulfilled

the stringent criteria of being either up- or downregulated at all

time points investigated. Among these, 20 genes had already

previously been described as functionally relevant to cellular lipid

metabolism. E.g., 16 of the 22 genes necessary for cholesterol

biosynthesis in humans were represented among the genes

showing strongest transcriptional activation upon sterol deple-

tion (Table S2). Transcriptional activation of four cholesterol-

synthesizing genes not represented on the microarray (HMGCS1,

MVD, LSS, and TM7SF2) was independently confirmed by

qRT-PCR. Expression of only two of the genes described as

essential for cholesterol biosynthesis in humans (AACS and

PMVK) did not respond to our sterol-depleting conditions.

Thirty-two of the fifty-two most strongly regulated genes had

not previously been linked to cellular lipid metabolism. Among

these, 18 genes were up- and 14 genes downregulated at all

time points investigated (Table S1). Two of these genes (SYTL2

and SV2A) are described as involved in membrane trafficking,

three genes (CCNG2, FOS, and TGFB2) in cell growth/cell cycle
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control, and three genes (inhibitors of DNA binding 1, 2, and 3

[ID1, ID2, and ID3]) in transcriptional regulation. The remaining

24 genes were either attributed to diverse functional classes or

had not been further classified.

RNAi Screening Identifies 20 Genes as Functionally
Relevant for Cellular Cholesterol Metabolism
We decided to analyze the functional relevance of these and other

promising candidate genes by RNAi screening. To monitor the

effect of candidate gene knockdown on cellular cholesterol

homeostasis, two fluorescence-based assays were established

for automated quantitative analysis: first, cellular cholesterol levels

were measured using the cholesterol-binding dye Filipin (Börnig

and Geyer, 1974; Runz et al., 2006); second, the dynamics

by which DiI-LDL is internalized into cells were assayed (Ghosh

et al., 1994; Gilbert et al., 2009) (Figure 2). Functional RNAi

screening of multiple genes at once was achieved by using siRNA

microarrays (Erfleetal., 2007), high-contentscreening microscopy

(Liebel et al., 2003; Simpson et al., 2007), and quantitative image

analysis software (Gilbert et al., 2009) (see Supplemental Data).

For systematic siRNA knockdown, we chose to target 100 pre-

selected candidate genes (Table S3). Of these, 64 genes not

previously linked to lipid metabolism were selected based on tran-

scriptional activation or repression in response to sterol depletion

(Table S1). In addition, 36 genes were chosen that had been

identified as potentially relevant for cholesterol metabolism by

systematic literature queries (see Experimental Procedures).

Immediate functions in regulating cellular cholesterol levels and/

or LDL uptake had previously been reported, to our knowledge,

for only 5 of these genes (LDLR, LPL, NPC2, PCSK9, and SCAP).

Out of these, single previously validated siRNAs against two

genes, LDLR and Niemann-Pick C2 protein (NPC2) (Naureckiene

et al., 2000), and the endosomal transport regulator COPB1 (coat-

omer protein complex, subunit B1) (Whitney et al., 1995) were

chosen as positive controls (Figures 2 and S2).

Each candidate gene was represented by six different siRNAs

from two independent siRNA libraries for functional character-

ization with the two separate RNAi screening assays. Mean Fili-

pin and DiI-LDL signal intensities were determined at the level of

single cells in up to 15 replica arrays per siRNA library and RNAi

screen (Tables S4 and S5). For each siRNA library, phenotypic

effects caused by individual siRNAs were normalized to nonsi-

lencing controls (Figure S4). Then, quantitative information of

all six siRNAs per gene was averaged to a single siRNA category

value per gene and RNAi screen (see Experimental Procedures).

Together, both RNAi screens identified 30 genes, silencing of

which resulted in cellular Filipin and/or DiI-LDL signal intensities

above or below predefined cutoff thresholds, encompassing

�18% of the genes analyzed (Figures S5 and 2; Supplemental

Experimental Procedures). Out of these, only those genes were

considered as validated functional regulators of the respective

biological process for which two or more siRNAs yielded activi-

ties larger than two SD from the mean of nonsilencing controls

(deviation > 1) (Simpson et al., 2007). Excluding positive controls,

20 candidate genes fulfilled such stringent statistical criteria,

validating loss of function of these genes as functionally relevant

for either cellular Filipin levels or DiI-LDL uptake or both

(Figure 3A, Table S6). In summary, knockdown of three candi-

date genes (BHMT2, TMEM97, and VRK3) and LDLR reduced
both Filipin signal as well as DiI-LDL uptake. Conversely, knock-

down of four candidate genes (GBP3, C20orf79, ETV5, and

TMSB10) and NPC2 increased signals in both screening assays.

Interestingly, knockdown of ID3 increased Filipin signal but

reduced cellular DiI-LDL uptake, an effect similar to the knock-

down of COPB1. Silencing of five genes (C17orf59, KPNB1,

LTBP1, LRP6, and SCAP) reduced internalization of DiI-LDL

without causing significant effects on Filipin signals. Conversely,

DiI-LDL uptake was stimulated by knockdown of six genes

(AP1S2, FDX1, GOT1, NDRG1, SYTL2, and SYP). Only knock-

down of the gene PSAP increased perinuclear Filipin signal

without significantly affecting DiI-LDL uptake.

LDL is internalized into cells via clathrin-mediated endocytosis,

which also delivers transferrin into cells (Harding et al., 1983).

Cellular uptake of transferrin depends on the transferrin receptor

(TFRC). Knockdown of TFRC reliably reduces internalization

of fluorescence-labeled transferrin (Tf568) into HeLa cells (Fig-

ure S6). To control the 20 genes validated as regulators in

Filipin and/or DiI-LDL uptake RNAi screens for effects on trans-

ferrin uptake, we performed a third RNAi screen based on the

dynamics of cellular internalization of Tf568 (Tables S4 and S5).

Interestingly, knockdown of COPB1, C17orf59, and VRK3 was

validated not only to reduce cellular DiI-LDL uptake, but also to

stimulate cellular internalization of Tf568 (Figures 3B and S6).

Conversely, knockdown of AP1S2 (sigma subunit of the adaptor

protein 1 complex), which stimulated DiI-LDL uptake, was vali-

dated as inhibitory for Tf568 uptake. Silencing of the remaining

17 genes with functional effects on Filipin and/or DiI-LDL uptake

had no significant effect on Tf568 internalization.

Comparison of Data Sets Indicates Further Genes
Relevant to Cellular Cholesterol Regulation
Results from gene expression profiling and functional RNAi

screening were now compared. For this, assignment to gene

expression group as well as siRNA category values from Filipin

and DiI-LDL uptake RNAi screens were considered for each

gene (Table S7). Genes were ranked according to summarized

data from all three data sets (Figure S7 and Supplemental

Data). Such comparison showed not only that knockdown of

C17orf59, TMEM97, and VRK3 reduced Filipin signal and/or

DiI-LDL uptake, but that these three genes were also repre-

sented among the genes with the strongest transcriptional acti-

vation in sterol-depleted cells. Conversely, GBP3 and ID3 mRNA

levels were most strongly downregulated upon cellular sterol

depletion. While knockdown of GBP3 increased signals in both

RNAi screens, silencing of ID3 increased cellular Filipin signals

but reduced DiI-LDL uptake.

Integration of gene expression results indicated further genes

as of likely importance for cholesterol regulation on a functional

level (Figures 3C and S7D; Movie S1). E.g., knockdown of CYR61

by two independent siRNAs consistently reduced both Filipin

signal as well as DiI-LDL uptake; nevertheless, CYR61 was not

considered as functional cholesterol regulator in RNAi screening,

as the mean inhibitory effect from all six siRNAs targeting CYR61

did not exceed predefined thresholds. However, mRNA-levels of

CYR61 were strongly downregulated in sterol-depleted cells,

thus increasing the likelihood that CYR61 is a cholesterol regu-

lator. This was also true for further genes (see Figures 3C and

S7 and Movie S1 for examples), which might turn out as
Cell Metabolism 10, 63–75, July 8, 2009 ª2009 Elsevier Inc. 65
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Figure 2. Filipin and DiI-LDL Uptake RNAi Screening Assays

(A and B) Functional RNAi screening for cholesterol regulating factors was performed using two cell-based assays: Filipin assay (A), in which HeLa cells cultivated

under control conditions were stained with cholesterol-binding dye Filipin; and DiI-LDL uptake assay (B), in which HeLa cells cultivated in serum-free medium
66 Cell Metabolism 10, 63–75, July 8, 2009 ª2009 Elsevier Inc.



Cell Metabolism

Targeted RNAi Detects Cholesterol-Regulating Genes
functionally significant for cellular cholesterol regulation in

follow-up studies.

TMEM97 Is a Regulator of Cellular Cholesterol
Homeostasis
To test the significance of our findings, we decided to further vali-

date one of the newly identified regulators in closer detail. We

chose transmembrane protein 97 (TMEM97): knockdown of this

gene reduced both Filipin signal as well as DiI-LDL uptake, while

uptake of Tf568 was not affected (Figure 3, Tables S4–S6). More-

over, TMEM97 mRNA levels were highly upregulated in expres-

sion profiling of sterol-depleted cells relative to controls (Table

S1). With this, when data from all data sets were compared,

TMEM97 showed a ranking similar to that of LDLR (Figures 3C

and S7, Movie S1, and Table S6).

Real-time RT-PCR confirmed that TMEM97 mRNA levels in

sterol-depleted cells were upregulated to an extent similar to

those of LDLR; however, this upregulation was suppressed

when sterols were added to the sterol-depleting culture medium

(Figure 4A). Similarly, TMEM97 expression was also strongly

upregulated upon siRNA knockdown of LDLR (Figure 4B), which

increased its mRNA levels to an extent similar to those of the

cholesterol-synthesizing gene HMG-CoA reductase (HMGCR).

Analysis of the human TMEM97 genomic reference sequence

substituted with 0.2% (w/v) bovine serum albumin (BSA) were exposed to 1% (w/v) HPCD for 45 min and stained with 50 mg/ml DiI-LDL for 30 min at 4�C, and

cellular uptake of DiI-LDL was followed for 20 min at 37.5�C before fixation. Shown are automatically acquired images of cells cultured and reverse siRNA trans-

fected on cell microarrays for 48 hr with nonsilencing control siRNA, siRNAs known to reduce (LDLR) or increase (NPC2) cellular cholesterol levels (A) or to inhibit

cellular DiI-LDL uptake (LDLR, COPB1) (B, upper panels), or siRNAs to selected candidate genes (lower panels). Red, inhibitory effect upon siRNA knockdown;

green, stimulatory effect upon siRNA knockdown. Insets show magnified areas from the respective automatically acquired images. For insets from Filipin images

of candidate genes, Lamp1 signal is shown.

Figure 3. Genes Validated as Functional Regulators in Filipin, DiI-LDL, and Tf568 Uptake RNAi Screens

(A) Genes validated as functional inhibitors or stimulators in Filipin and/or DiI-LDL uptake RNAi screens with two or more siRNAs fulfilling requested statistical

criteria (see Experimental Procedures). Genes were scored according to added class values.

(B) Genes validated as functional inhibitors or stimulators in Tf568 uptake and at least one other RNAi screen with two or more siRNAs fulfilling requested statis-

tical criteria.

(C) Graphical representation of data from expression profiling (x axis), Filipin (y axis), and DiI-LDL uptake RNAi screens (z axis) for individual genes (colored dots)

(for gene identities represented by numbers, see Figure S7D and Movie S1). Genes validated as functional regulators in RNAi screens are highlighted by coronas.

Selected genes with validated or likely functional relevance to cholesterol homeostasis are highlighted by gene symbols. For animated visualization of Figure 3C,

see Movie S1. Red, strongest inhibitory effect; green, strongest stimulatory effect upon siRNA knockdown.
Cell Metabolism 10, 63–75, July 8, 2009 ª2009 Elsevier Inc. 67



Cell Metabolism

Targeted RNAi Detects Cholesterol-Regulating Genes
68 Cell Metabolism 10, 63–75, July 8, 2009 ª2009 Elsevier Inc.



Cell Metabolism

Targeted RNAi Detects Cholesterol-Regulating Genes
revealed a 50-CACCGCAC-30 sequence element at �8857 bp to

�8849 bp upstream of the TMEM97 transcription initiation site

(Figure 4C, inset). This motif is identical to the SRE-1 consensus

sequence element in the human HMGCR gene (Smith et al., 1990)

and suggested that TMEM97 could be an SREBP target gene. In

support of this hypothesis, we observed that siRNA-mediated

knockdown of SREBP-2 suppressed transcriptional activation

of TMEM97 in sterol-depleted cells (Figure 4C).

Next, we quantified the kinetics of DiI-LDL uptake into

TMEM97 knockdown cells. As anticipated from RNAi screening,

targeted knockdown of TMEM97 by two distinct siRNAs to <10%

of control levels (data not shown) considerably inhibited cellular

DiI-LDL uptake, while cellular internalization of Tf568 was not

reduced (Figure 4D). When DiI-LDL uptake into cells was followed

over a time frame of 60 min, knockdown of TMEM97 reduced

the number of DiI-LDL-containing endosome-like particles per

cell to�50% of controls at all time points investigated (Figure 4E).

This effect could not be explained by reduced LDLR mRNA

or protein levels or a reduced abundance of LDLR at the plasma

membrane, which appeared unchanged under these conditions

(data not shown). Similar to inhibition of DiI-LDL uptake, knock-

down of TMEM97 significantly reduced cellular internalization

of LDL-associated [14C]cholesterol (Figure 4F). Consistent with

this, total cellular levels of free cholesterol were reduced (Fig-

ure 4G). Interestingly, overall cellular Filipin signal in TMEM97

siRNA-treated HeLa cells when quantified from whole cells

decreased only moderately. In contrast, when only perinuclear

Filipin signal overlapping with lysosomal marker Lamp1 was

quantified, Filipin intensities were more strongly reduced

(Figure 4H). This effect was not due to apparent changes in lyso-

somal morphology or area in TMEM97 siRNA-treated cells.

TMEM97 is a conserved integral membrane protein with

several sequence motifs of putative functional importance

(Figures 5 and S8). To test whether TMEM97 protein may func-

tionally compensate for reduced cholesterol levels in TMEM97

knockdown cells, we expressed epitope-tagged TMEM97 in

cells in which the endogenous protein was silenced (see Supple-
mental Data). Coexpressing TMEM97-YFP fully rescued reduced

cellular levels of free cholesterol as well as reduced Filipin signals

in TMEM97 knockdown cells (Figure 5D). This confirmed that the

effects observed in our knockdown experiments are indeed

caused by the absence of TMEM97. Moreover, it suggested

that, with respect to studying cellular cholesterol regulation,

TMEM97 constructs are likely to reflect the function of the endog-

enous protein.

We next localized TMEM97 in living cells. Transient expression

of TMEM97-YFP in HeLa cells cultivated under control condi-

tions revealed a predominant localization of the protein to retic-

ular ER-like membranes and the nuclear envelope, consistent

with ER localization (Figure 5E). Remarkably, however, in sterol-

depleted cells, i.e., under conditions when expression of endog-

enous TMEM97 is stimulated, a prominent fraction of TMEM97-

YFP localized to perinuclear vesicular-like structures and the

plasma membrane. Such shift in localization was not observed

when sterols were present in the sterol-depleting medium. Coim-

munostaining of cells cultivated under these conditions with

antibodies recognizing the lysosomal protein Lamp1 showed a

significant overlap of the juxtanuclear TMEM97 structures with

lysosomal markers (Figure 6A), but not markers of the Golgi

complex (data not shown). An overlap of TMEM97-YFP with

lysosomal markers was not observed under control culture

conditions or in the presence of sterols. However, we cannot

exclude the possibility that ER localization of the tagged protein

in the presence of sterols might be due to the fact that it is ectop-

ically expressed in cells.

We then quantified the dynamics of TMEM97-YFP localization

to lysosomes in response to sterol depletion. Increased perinu-

clear levels of TMEM97-YFP (Figure 6B, arrows) but not of

YFP-tagged ER protein Insig2 or KDEL (Figure 6B, insets) were

observed already upon 24 hr culture in LDS, corresponding to

�70% of cholesterol levels of controls (Figures 6B and S1).

Notably, localization to lysosomes strongly increased upon

further depleting cellular cholesterol levels by adding HPCD,

which induced a major fraction of TMEM97-YFP to localize to
Figure 4. Knockdown of the SREBP Target Gene TMEM97 Reduces LDL Cholesterol Uptake into Endo-/Lysosomal Compartments

(A) Gene expression (log2) of TMEM97, b-actin, and LDLR in HeLa cells at 3, 4.5, and 6 hr following cell culture in the absence (�sterols) or presence (+sterols) of

sterols (50 mg/ml LDL/10 mg/ml cholesterol) in sterol-depleting culture medium (0.5% LDS/1% HPCD).

(B) Gene expression (fold expression) under control culture conditions upon siRNA knockdown of LDLR for 48 hr relative to controls. SiRNA knockdown efficiency

was controlled for by western blot against LDLR-GFP (inset).

(C) Gene expression in sterol-depleted HeLa cells upon siRNA knockdown of SREBP-2. Inset: graph of the human TMEM97 gene showing an SRE-1 consensus

sequence element 50 of the transcription initiation site. Expression levels in (A)–(C) were determined by qRT-PCR and normalized to housekeeping gene RPL19

(n = 3 or 4 experiments/condition) (*p < 0.05; **p < 0.01; ***p < 0.001).

(D) Cellular DiI-LDL (20 min) (images) or Tf568 (15 min) uptake at 37.5�C in HeLa cells transfected with indicated siRNAs, fixed, and counterstained with nuclear

dye DRAQ5 and ER-tracker DPX. Endosomal DiI-LDL and Tf568 fluorescence was quantified from automatically acquired background-subtracted images and

normalized to nonsilencing controls (*p < 0.05; ***p < 0.001; n = 4–6 experiments). Bar = 10 mm.

(E) Dynamics of DiI-LDL internalization at 37.5�C into HeLa cells treated with siRNA against TMEM97 or controls followed over time. Numbers ± SEM of intra-

cellular endosome-like DiI-LDL particles/area (arrows denote examples) were quantified from background-subtracted maximal intensity projections using

ImageJ software (n = 4 experiments/time point). Bar = 2 mm.

(F) Analysis of cellular internalization of LDL-associated [14C]cholesterol (20 min; 37.5�C) into HeLa cells upon transfection with indicated siRNAs. Cellular lipids

were separated by thin-layer chromatography. Cell-associated free [14C]cholesterol signal (in counts per minute) was quantified by scintillation counting and

normalized to controls (*p < 0.05; ***p < 0.001; n = 5 experiments).

(G) Analysis of total cellular levels of free cholesterol (in mg/mg protein) as determined enzymatically from lipid extracts of HeLa cells transfected with indicated

siRNAs (*p < 0.05; n = 4 experiments).

(H) HeLa cells transfected with indicated siRNAs stained with Filipin (images) and counterstained for lysosomal protein Lamp1 (data not shown). Filipin signal

intensities from automatically acquired background-subtracted images were quantified by DetecTiff (lower panel, analysis mask) and ImageJ (graphs) from either

whole cells (left graph, blue) or perinuclear areas (right graph, red) and normalized to controls (n = 6 experiments;�24 images/condition) (*p < 0.05; ***p < 0.001).

Bar = 10 mm.
Cell Metabolism 10, 63–75, July 8, 2009 ª2009 Elsevier Inc. 69
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Figure 5. Characterization of Human TMEM97 Protein

(A) Amino acid sequence of full-length human TMEM97 protein. Conserved residues are highlighted. Structural motifs were predicted by ENSEMBL.

(B) Hydropathy blot as calculated by Kyte and Doolittle algorithm using ProtScale.

(C) Western blot analysis of human TMEM97 (linked to 33HA at the N terminus) in transiently transfected HeLa cells.

(D) Analysis of HeLa cells cotransfected with cDNAs (expressing either TMEM97-YFP [b, d] or a YFP-encoding control plasmid [a, c]) as well as siRNAs (either

control siRNA [a, b] or an siRNA targeting the 30UTR of TMEM97 [c, d]). Forty-eight hours after transfection, lipids were extracted, and total levels of free cellular

cholesterol were determined (left graph) (n = 4 experiments; *p < 0.05), or cells were stained with Filipin, and signal intensities overlapping with lysosomal marker

Lamp1 were quantified by ImageJ (right graph) (n = 3 experiments; �120 cells/condition; *p < 0.05).

(E) Living HeLa cells transiently expressing human TMEM97-YFP cultivated for 48 hr under either control (medium A) or sterol-depleted conditions in the absence

(�sterols) (0.5% LDS for 24 hr before adding 1% [w/v] HPCD for 1 hr) or presence (+sterols) (50 mg/ml LDL/10 mg/ml cholesterol) of sterols.
70 Cell Metabolism 10, 63–75, July 8, 2009 ª2009 Elsevier Inc.
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lysosomes within an interval of only 3 hr (Figure 6B). Lysosomal

enrichment was independent of total cellular levels of TMEM97-

YFP and not explained by increased abundance of the heterolo-

gous protein in sterol-depleted cells (Figure 6C).

Following its internalization into the endo-/lysosomal system,

LDL-derived cholesterol is distributed to subsequent cellular

compartments by mechanisms that involve NPC1 and NPC2

proteins. Of these, NPC1 is a cholesterol-binding integral

membrane protein that is essential for efficient lysosomal

cholesterol export (Chang et al., 2006; Ikonen, 2008). Based on

our findings of reduced uptake and lysosomal levels of LDL-

derived cholesterol in TMEM97 knockdown cells and the locali-

zation of TMEM97-YFP to endo-/lysosomal compartments in

sterol-depleted cells, we hypothesized that a potential choles-

terol regulatory function of TMEM97 in lysosomes could be con-

nected to that of NPC1. Consistent with this, TMEM97-YFP and

NPC1 colocalized in vesicular structures of sterol-depleted cells

(Figure 7A). In order to test whether the two proteins might phys-

ically interact, we performed coimmunoprecipitation experi-

ments. Importantly, an antibody targeting endogenous NPC1

but not a control protein (data not shown) was able to specifically

pull down TMEM97 from lysates of TMEM97-expressing HeLa

cells (Figure 7B). Coimmunoprecipitation was possible already

under control culture conditions, yet it appeared increased in

the absence and reduced in the presence of sterols, thereby

correlating with the amount of TMEM97 in endo-/lysosomal

compartments under these conditions.

In summary, our combined results demonstrate that TMEM97

is an SREBP target gene that under sterol-depleted conditions

localizes to lysosomes, directly or indirectly binds to NPC1

protein, and contributes to regulate cellular cholesterol levels at

the endo-/lysosomal compartments level.

DISCUSSION

Here, we aimed at identifying genes with functional relevance to

cellular cholesterol homeostasis. We assumed that a gene is

Figure 6. TMEM97 Localizes to Endo-/Lysosomal Compartments in

a Sterol-Dependent Manner

(A) HeLa cells expressing human TMEM97-YFP (green) were cultivated under

control conditions or in the absence (�sterols) (0.5% LDS for 24 hr before add-

ing 1% [w/v] HPCD for 1 hr) or presence (+sterols) (5% FCS/50 mg/ml LDL/10

mg/ml cholesterol) of sterols. Shown are single slices of confocal stacks from

paraformaldehyde-fixed cells expressing TMEM97-YFP counterstained for

Lamp1 (red). Arrows denote selected lysosomes.

(B and C) TMEM97-YFP (images), Insig2-YFP, and KDEL-YFP (insets) signal

intensities in Lamp1-positive perinuclear compartments (IYFP [lysosomes];

arrows) relative to total cell area (IYFP [cell]) (y axis) in HeLa cells cultivated

under control conditions (black) or in the absence (green) or presence (red)

of sterols for indicated time points (x axis) as quantified by ImageJ. For sterol

depletion, cells were cultivated in 0.5% LDS for up to 24 hr before adding

HPCD for 1 hr (24 + 1 hr) resp. 3 hr (24 + 3 hr) (n = 3 experiments; �50 cells/

time point and condition; **p < 0.01; ***p < 0.001). Bars = 10 mm. In (C), inten-

sities of perinuclear relative to total cellular TMEM97-YFP signal are shown

at the indicated time point (24 + 3 hr) for a population of individual cells (dots).

Formulas indicate linear regression curves. Inset: western blot analysis of

TMEM97-33HA under control culture conditions or in the absence (24 + 3 hr)

or presence of sterols.
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Figure 7. TMEM97 Colocalizes with and Binds to NPC1 Protein

(A) HeLa cells expressing human TMEM97-YFP (green) cultivated under sterol-depleted conditions (0.5% LDS for 24 hr before adding HPCD for 1 hr; 24 + 1 hr;

�sterols) were counterstained for endogenous NPC1 (red). Shown are single slices of confocal stacks from paraformaldehyde-fixed cells. Arrows denote

selected lysosomes.

(B) Lysates (lower panels) from HeLa cells expressing TMEM97-33HA, 33HA-tagged control protein TPR/MET (activated receptor tyrosine kinase MET onco-

gene) (Schaaf et al., 2005), or HA vector alone under control conditions (lanes 1–4) or in the absence (24 + 1 hr; lanes 5–8) or presence (lanes 9–12) of sterols were

subjected to immunoprecipitation (upper panel) with rabbit polyclonal anti-NPC1 antibody. Fractions were immunoblotted with monoclonal anti-HA IgG or anti-

NPC1 antibody. Of each sample, �10% was used for western blotting, while �90% was used for coimmunoprecipitation.
more likely to be of immediate functional importance if multiple

lines of evidence support its role in regulating cellular cholesterol

levels. Therefore, several systematic functional genomics strate-

gies were combined. First, candidate genes were identified

by genome-wide gene expression analyses of sterol-depleted

cultured cells and by systematic literature queries. Then, the

function of 100 selected genes was assayed by systematic siRNA

knockdown with two cell-based RNAi screens. To minimize the

risk of false-positive findings, as they are inherent in large-scale

RNAi screens, each gene was probed with six unique siRNAs

from two independent siRNA libraries. Moreover, RNAi screening

with cell microarrays (Erfle et al., 2007) allowed for high experi-

mental replica numbers, thus further reducing false-positive

results. Our integrative approach identified a number of genes

that, as demonstrated by silencing with multiple siRNAs, may

constitute validated regulators of cellular cholesterol levels and/

or DiI-LDL uptake.

Among the validated regulators, we found enrichment for

factors with established (SCAP) (Nohturfft et al., 2000) or recently

described (LRP6) (Liu et al., 2008) roles in cellular cholesterol

regulation. Mutations in SCAP and LRP6 have been reported as

causative for imbalanced blood lipoprotein levels that predispose

to cardiovascular disease and myocardial infarction (Mani et al.,

2007; Friedlander et al., 2008). Mutations in prosaposin (PSAP),
72 Cell Metabolism 10, 63–75, July 8, 2009 ª2009 Elsevier Inc.
knockdown of which increased perinuclear Filipin signals, cause

prosaposin deficiency, a lysosomal sphingolipid storage disorder

that clinically and in tissues may phenocopy the cholesterol-traf-

ficking disease NPC (Bradová et al., 1993). Reduced function of

betaine-homocysteine-methyltransferase 2 (BHMT2) decreased

cellular Filipin signals as well as DiI-LDL uptake but is also likely to

increase homocysteine levels. As hyperhomocysteinemia is well

known to directly correlate with increased risk of premature

cardiovascular disease (Verhoef et al., 1997), it is tempting to

speculate that proatherogenic effects of homocysteine interre-

late with impaired lipid metabolism.

For several of the validated regulators, our results confirm and

extend previously described molecular functions. E.g., silencing

of karyopherin1 (KPNB1) strongly reduced cellular DiI-LDL

uptake, which is consistent with its role in mediating nuclear

translocation of transcriptional active SREBP-2 (Nagoshi et al.,

1999). Also, ID3 is likely to directly affect SREBP-mediated

expression regulation by formation of nonfunctional hetero-

dimers with transcriptional active SREBP-1c (Moldes et al.,

1999). Reduced levels of ID3 may thus potentiate SREBP tran-

scriptional activation, leading to increased cholesterol levels,

as observed in ID3 knockdown cells. Conversely, SREBPs them-

selves could act as dominant-negative regulators of ID family

members, which would explain strongly reduced ID1, ID2, and
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ID3 mRNA levels in our gene expression analysis of sterol-

depleted cells and points to a general role of this protein family

in regulating cellular lipid metabolism.

Importantly, several of the newly identified regulators have

known roles in cellular membrane transport. E.g., synaptophysin

(SYP) is a cholesterol-binding protein important for biogenesis of

synaptic vesicles (Thiele et al., 2000), knockdown of which stim-

ulated DiI-LDL uptake into nonneuronal HeLa cells. Silencing of

AP1S2 not only increased cellular Filipin signal, but was also

inhibitory in our parallel RNAi screen studying cellular transferrin

uptake. The AP1 complex is crucial for recruiting clathrin to

membranes, participates in postendocytic sorting of membrane

receptors in polarized cells (among them LDLR and TFRC), and

coordinates vesicular transport between endosomes and the

Golgi (Gan et al., 2002). Inhibition of AP1S2, like inhibition of

other membrane transport regulators (Urano et al., 2008), is

therefore not unlikely to affect subcellular cholesterol transport

and also recycling of TFRC to the plasma membrane. Interest-

ingly, however, knockdown of AP1S2 had no effect on DiI-LDL

uptake, indicating that in HeLa cells the AP1 complex might

differentially regulate postendocytic sorting of LDLR and TFRC.

Altogether, these results demonstrate that our approach allows

convincing identification of candidates with a direct or indirect

role in cholesterol homeostasis.

Therefore, although the molecular roles of the 12 other vali-

dated candidates identified in our RNAi screens remain elusive,

the likelihood that they represent cholesterol regulators is high.

Six of these genes were identified based on their pronounced

transcriptional activation (C17orf59, ETV5, SYTL2, TMEM97,

and VRK3) or repression (GBP3) in response to sterol depletion

and have not previously been linked to lipid metabolism. The

other six genes were selected from literature and have at most

been indirectly related to processes of importance to lipid

homeostasis that may involve cellular signaling (LTBP1 and

NDRG1), subcellular transport (C20orf79, FDX1, and TMSB10),

and intermediary metabolism (GOT1).

To independently substantiate our functional genomics

strategy with one of the cholesterol regulators identified here,

TMEM97 was chosen to be analyzed in greater detail. One

previous study has shown that TMEM97 (Mac30) expression

occurs in coordination with genes of cholesterol biosynthesis

(Wilcox et al., 2007). Most interestingly, it was also found among

a small number of genes whose mRNA levels were increased in

livers of mice transgenic for SREBP but decreased in SCAP�/�
mice (Horton et al., 2003), suggesting that TMEM97 might be

an SREBP target gene. We show here that, on a cellular level,

expression of TMEM97 is highly sensitive to alterations in sterol

levels and propose, consistent with the literature and our own

results, that this is regulated via SREBP and a sterol-response

element upstream of the human TMEM97 gene. Our siRNA

knockdown experiments demonstrate loss of TMEM97 function

as inhibitory for both cellular levels as well as internalization of

cholesterol from LDL. Importantly, cholesterol levels in TMEM97-

deficient cells were most profoundly reduced in compartments

overlapping with endo-/lysosomal markers. Lysosomal choles-

terol is of special relevance to cellular cholesterol homeostasis,

as from this compartment LDL-derived cholesterol is transferred

to the ER where it exerts regulatory functions (Pentchev et al.,

1987; Infante et al., 2008). How cholesterol transport between
these compartments is achieved has not yet been fully clarified.

NPC1 and NPC2 proteins are central regulators in this process,

as malfunction of these factors may cause massive accumulation

of cholesterol in the endo-/lysosomal system, as seen in NPC

disease (Chang et al., 2006; Ikonen, 2008). The observation that

in sterol-depleted cells TMEM97-YFP localizes to the endo-/lyso-

somal system and the plasma membrane suggests that endoge-

nous TMEM97 might exert its cholesterol regulatory function

in these compartments. Our finding that TMEM97 colocalizes

and directly or indirectly interacts with NPC1 implies that, rather

than being involved in the immediate endocytic uptake of LDL,

TMEM97 contributes to regulate LDL-cholesterol trafficking

toward or away from lysosomes. In NPC1-deficient cells, lyso-

somal cholesterol as well as LDL uptake is increased (Pentchev

et al., 1987), while both these processes were reduced in

TMEM97 knockdown cells. Thus, one hypothesis of how

TMEM97 and NPC1 could functionally interact is that upon stim-

ulation of TMEM97 expression by activated SREBP, TMEM97 is

transported to lysosomes, where it might induce NPC1 to modify

its cholesterol transport activity. Detailed analyses of the mecha-

nisms by which TMEM97 is enriched in endo-/lysosomal

compartments of sterol-depleted cells and how this may affect

cholesterol regulatory events in lysosomes and functionally

related compartments await to be clarified in further studies.

Taken together, our approach has uncovered a number of

genes with a high likelihood of being immediately functionally

relevant to cellular cholesterol regulation and potentially also

disease. Disease-associated genes affecting plasma cholesterol

levels have successfully been identified in single families and,

more recently, large-scale linkage and association studies (Man-

olio, 2009). Conversely, using cultured cell models in combina-

tion with genetic complementation has proven successful to

delineate most of the machinery that keep cellular cholesterol

levels balanced (Goldstein et al., 2002). Integrated functional

genomics, as applied here, now harbors significant potential

not only to ease identification, but also to allow functional char-

acterization of regulators of cholesterol homeostasis in health

and disease.

EXPERIMENTAL PROCEDURES

Antibodies and Materials

Mouse monoclonal antibodies against LAMP1 and HA were from DSHB

(University of Iowa) and Sigma, respectively. Rabbit polyclonal antibody

against NPC1 was from Novus Biologicals (Littleton, CO). For further materials,

expression of markers, and coimmunoprecipitation conditions, see Supple-

mental Data.

Sterol Depletion

For sterol depletion, cells cultivated in DMEM/2 mM L-glutamine/100 IU/ml

penicillin/100 mg/ml streptomycin/0.5% LDS for up to 24 hr were exposed

to 2% (w/v) HPCD for 3 hr (for expression profiling) or 1% HPCD for indicated

time points (for further experiments) (Runz et al., 2006). Where indicated, sterol

depletion was counteracted by simultaneously adding 50 mg/ml LDL/10 mg/ml

cholesterol. For details on cell culture and how cellular sterols were modified

and analyzed, see Supplemental Data.

RNA Isolation and Gene Expression Analysis

For expression profiling using human RZPD3 cDNA microarrays (Wagner et al.,

2004) and qRT-PCR, see Supplemental Data.
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Design and Production of Transfected siRNA Microarrays

One hundred candidate genes were selected for RNAi screening (Table S3):

64 genes, typically not previously linked to cellular cholesterol regulation,

were chosen based on transcriptional response to sterol depletion. Of these,

28 genes were from gene expression group I or X (strongest transcriptional

activation and repression upon sterol depletion, respectively), 17 genes from

group II or IX, and 19 genes from groups III–VIII. Additionally, 36 genes were

chosen from a list of �600 genes that had been generated by systematic

PubMed queries using the respective NCBI Gene Symbol in combination

with the keywords cholesterol, atherosclerosis, or lipid (see Table S3 and

Supplemental Data for source articles). For RNAi screening, two custom siRNA

microarrays consisting of 308 siRNA transfection mixes/array were designed

and produced as described (Erfle et al., 2007). Each of the 100 genes was rep-

resented by 6 distinct, chemically synthesized 21 nt siRNAs from either

QIAGEN (siRNA library I) or Ambion/Applied Biosystems (siRNA library II)

(Tables S4 and S5). Previously validated siRNAs against five genes were

selected as controls: INCENP, inducing multinucleated arrested cells that

served to monitor siRNA transfection efficiency (Neumann et al., 2006);

LDLR, reducing DiI-LDL uptake to �25% and perinuclear Filipin signal to

�60%; NPC2, increasing perinuclear Filipin signal to �150%; COPB1,

reducing DiI-LDL uptake to �5%; and TFRC, reducing Tf568 uptake to

�50% (Tables S4 and S5). Scrambled siRNA (randomized siRNA sequence

not targeting any human gene) (Neumann et al., 2006) and Ambion negative

control siRNA-1 (Neg-1) were represented on nine spots of the respective

array.

Functional RNAi Screening Assays

HeLa cells were plated on cell microarrays at a density of 1 3 105 cells and

cultivated and reverse siRNA-transfected as described (Erfle et al., 2007).

For Filipin assay (Runz et al., 2006), culture conditions were maintained until

48 hr after seeding cells were fixed with 3% paraformaldehyde, stained with

50 mg/ml Filipin in PBS from a stock solution of 1 mg/ml in dimethylformamide,

and counterstained for Lamp1 and nuclear marker DRAQ5 (Biostatus Limited;

Leicestershire, UK). For DiI-LDL uptake assay (Gilbert et al., 2009), medium

was exchanged 32 hr after seeding for DMEM/2 mM L-glutamine/100 IU/ml

penicillin/100 mg/ml streptomycin/0.2% (w/v) BSA, and cells were cultivated

for another 15 hr before adding 1% HPCD for 45 min. Cells were washed

with ice-cold imaging solution (MEM without phenol red, containing 30 mM

HEPES and 0.5 g/l NaHCO3 [pH 7.4]) (Invitrogen)/0.2% BSA and labeled

with 50 mg/ml DiI-LDL (Invitrogen) for 30 min at 4�C. DiI-LDL uptake was stim-

ulated for 20 min at 37.5�C. Cells were then washed for 1 min in imaging solu-

tion (pH 3.5) at 4�C, fixed, and counterstained for nuclei and ER (ER-Tracker

DPX, Invitrogen). For Tf568 uptake assay, 47 hr after seeding, medium was

exchanged for imaging solution/0.2% BSA for 60 min. Cells were washed

and labeled at 4�C with 60 mg/ml Tf568 (Invitrogen) in imaging solution/0.2%

BSA. After 30 min, medium was exchanged for imaging solution/0.2% (w/v)

BSA/300 mg/ml apo-transferrin (Invitrogen) and incubated for 15 min at

37.5�C before fixation and counterstaining for nuclei and ER.

Image Acquisition and Data Analysis

Images were acquired as described (Simpson et al., 2007) and quantitatively

analyzed using the software DetecTiff (Gilbert et al., 2009) or NIH ImageJ

(Wayne Rasband Analytics, NIH; Bethesda, MD). For details, see Supple-

mental Data.

ACCESSION NUMBERS

The complete microarray data are available online at the public microarray

database ArrayExpress (accession number E-TABM-599).

SUPPLEMENTAL DATA

Supplemental Data include Supplemental Experimental Procedures, Supple-

mental References, seven figures, seven tables, and one movie and can be

found online at http://www.cell.com/cell-metabolism/supplemental/S1550-

4131(09)00157-0.
74 Cell Metabolism 10, 63–75, July 8, 2009 ª2009 Elsevier Inc.
ACKNOWLEDGMENTS

We are grateful to B. Neumann, C. Conrad, and J. Bulkescher for support in

image acquisition and helpful discussions, N. Beil for preparing cell microar-

rays, O. Oppermann for help with data display, and B. Karten for critical

comments on the manuscript. Olympus Biosystems is acknowledged for

continuous support of the ALMF at EMBL. The authors declare no conflicts

of interest. The work was supported by the Landesstiftung Baden-Württem-
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