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The motivation of this study was to prove the following conjecture by Rota: Given a
pregeometry G(r, s) and an integer k = 1, the geometrization of the function kr is a functor of the
category of finite pregeometries and strong maps into itself. In addition to a proof of this fact,
properties of other classes of functors based on expansions and geometrizations are presented in
this paper.

1. Introduction

As in the case with most mathematical structures, an important question in the
theory of combinatorial geometries is to develop constructions for obtaining new
geometries from old ones. Several geometric constructions are well-known, e.g.
deletion, contraction, truncation, direct sums, etc. ... and are generally extensions
to combinatorial geometries of existing operations on projective geometries, graphs
or lattices. In this paper we introduce a new class of constructions based on the
ideas of expansion and geometrization. More precisely, we will study several classes
of functors of the category & of combinatorial pregeometries and strong maps into
itself. The motivation of this study was the following conjecture of Rota: Given a
pregeometry G (r, 5) and an integer k > 1, the geometrization of the function kr 's a
functor of & into itself. After a brief review of the basic concepts of the theory of
combinatorial geometries in Section 2, the conjecture is proved in Section 3 as a
consequence of a general study concerning a broader class of functors. In Section 4,
a generalization is considered which yields a method for constructing new classes of
functors.

2. Basic concepts

A combinatorial pre;eometry G(S), or simply a pregeomeiry G, is a set S
together with a closure relation A — A ¢ (or A if no ambiguity) for all A, A CS,
which satisfizs the following two axioms:

Exchange axiom: if a,h€ S, ACS, and a €AUb-A then bEA Ua.
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Finite basis property: if A CS, there is a finite subset A,C A such that A,= A.

A pregeometry is a geometry if @ and ail single-element subsets are closed. The
flats of G(S) are the closed subsets of S. The set of all flats of G(S) ordered by
inclusion is a geometric lattice, i.e. a semi-modulac point lattice with finite rank.

A subset A CS is independent if for no a €A, ACA -a If A is not
independent, then A is dependent. 1f B CA CSand A C B, we say that B spans A.

A basis of A, for A CS8, is an independent cabset of A which spans A. All bases
of A havc the same cardinality, r(A), the rank of A. If A is finite, the nullity of A
is n(A)=]A |- r(A). The fiats of G(S) of rank 1,2,r(G)— 1, r(G) - 2 are called
point, line, copoint, coline respectively. r(G) is the rank of G.

A circuit is a minimal dependent set. A cyclic flat is a flat which is a union of
circuits. :

The pregeometry G *(S) dual to G(S) is the pregeometry on § whose bases
are § - B where B is a basis of G. If r is the rank-function of G, the rank-function
r* of G*S) is VACS, r*(A)=|A|-r(G)+r(S—-A). The function
n:YACS—-n(A)=|A|~-r(A)isthe nullity function. r*(A)=n(S§ - A)—n(A).

A CS, the subgeomerry of G defined on A, G — A, is the pregeometry on A
whose closure relarion is: U CA — U N A. The contraction of G by A, G/A, is the
pregeometry on S — A, with closure;: UCS-A—-»UUA-A Apointx€A is
an isthmus of G if r(G ~x)=r(G)~ 1. x isa loop of G if r(G/s)=r(G). x isa
relative isthmus of a set ACS if r(A-x)=r(A)-1.

Given two geometric lattices L, and L,, a strong map from L, to L, is a function
o : Ly L, which is supremum-preserving and cover-preserving. A strong map o
between two pregeometries G(S) and H(T) is a strong map between the corres-
ponding geometric lattices of flats of G(S) and H(T). With the expedient of
adjoining a point 0 to each point set § and T, o determines a function & from the
point s2t $ U0 to the point set T U0, with ¢(0) = 0. & is said to extend to the sirong
map 7. A function & from S U0 to T U0 such that (0) = 0 extends to a strong
map G(S) to H(T) if and only if the inverse image of any flat of H(T) is a flat of
G (S). When the identity extends to a strong map from G (S) to H(S), H iscalled a
quotient of G and G is a lift. The category whose objects are pregeometries and
morphisms are strong maps is called .

S being a finite set, a real-valued function f defined on the power set of § is
semi-modular if and only if:

VA, BCS, f(A)+f(B)=f(A NB)+f(A UB).

Given an integer-valued. semi-modular, non decreasing function f on S, the
pregeometry defined by the following family of independent sets

{I:1CSYICLI'#6,/I'l<f(')}

is called the geometrization of f and denoted G(f, S). The rank-function of G(f, S)

is .
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VICS, T#9, r(T)=inf{f(A)+IT- A1}

Given an integer-valued, semi-modular, non decreasing, non negative function f
on S, the free expansion (or simply expansion in this paper) of f is the pregeomern
E(f) defined (1) on the set X = Uies X, where | X, | = f(a) (notation: VACS,
Xa =U.caX.), (2) by the following family of independent sets:

{I.ICX,VACS. INX.|<f(A)}
The rank tunction of E(f) is

&

pYTCX,p(T)= inf{f(A)+T - X,

In particular VA CS, p(X..) = f(A). s is the natural surjection of X onto S: ¥TCX,
s{(T)={a:a € 8, X. N T#WY}. The fundamentai relationship [8} between G(f.S)

and E(f) isthat G(f. S)is the subgeometry of E(f)defined on aset Y C X such that
Ya ES, g Yn X =1.

Notation:
S is a finite set,
f is a semi-modular, integer-valued, non decreasing, non negative function, defined
on 8,
G(f. S) is the geometrization of [,
G(r,8) is the pregeometry on § with rank-function #,
E(f) is the expansion of f, defined on the set X = U, X..
VACS, X, = Uca X,
p is the rank-function of E(f), i.e. E(f)= G(p, X),
VTCX,s(T)={a:a €85, X, NT#H},
A€ isthe closure of A in the pregeometry G (or simply A if there is no ambiguity).
¥ is the category of pregeometries and strong maps.
We will use the simplified set notation: A Ue, A —e¢, etc. for A Ule}. A - {e}.
etc. ...

3. A class of functors of ¥ into itself

Given a pregeometry G(r,$) and an integer k > |, we define E, (G) to be the
expansion of the function kr. The motivation in this section is first to studv some
properties of E.. in particular to characterize the flats of E, (G). and finally to show
that E, defines a functor of ¥ into itself.

‘The following general properties of the expansions of a semi-modular function
will be needed.

umma 3.1. If K is a circuit of C(f). then p(K) = f(s(K)).
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Proof. K is dependent in E(f): JA CS such that [K N X, | > f(A). On the other
hand, Vx € K, K - x is independent and | (K ~ x) N Xa | =< f(A). Thus necessarily,
K CX. and | X N X4 |=f(A)+ 1. Now consider s(K): K CX,«," 5(K) being the
smallest subset T of S such that K C Xy, we have s(K)CA. If [ K N Xk = K| =

£0 L1 %\ saon szsnss 14 houa | Kl £ A which ic a contradictinn 'rhm PGy Xow >
’t;(‘l\ 7). We wWUuia uavs (A PSR GORF WERGEE 10 @ VUMTIARIVEIUL. T3 Saked [AR 50 FRR{K1

f(s(K)) and by repeating the above argument used with A, we can show that
(Ki=[K nxs(x)f—f(s(l'())ﬁ'l ‘

Lemmsa 3.2, If K is a circuit of E(f), then for any x € K, we have X..,CK.

Proof. Excluding the trivial case when K = {x} is a loop, suppose that X,.,=
{x0. X5, X5, ..., X } S (s(x)) = m = 1) and that {x,,x,,.. ., x.} CK, 1 =i <m; we want
to show that x, €K, for j=i+1,....m

Consider yE K, yE X nand x,, i+t1<j<sm.
K -y is independent in E(f) whereas (K — y)U x; is dependent because

K - YU IN Xk =K N Xl > f(s(K))
Thus s, EK - y= K.

3.1. Circuits and cyclic fiats of E, (G)

From the general properties of the expansion of a semi-modular Hiraction, E; (G)
is defined on a set X = U, s X, where | X, | = kr(a), with the foliowing family of
‘ndependent set {I: 1 CX,YVACS,|INX,|<kr(A)} and the rank function

o ¥TCX,n (T) = inf {kr(A)+]T ~ X4}

The following results are easy to prove: a set X, is independent if and only if A
s independent, and X, is closed if and only if A is closed.

In general, the circuits and flats of an expansion E (f) have no neat characteriza-
tion but in the case of E, (G) it turns out that we have the following:

Theorem 3.3. A subset F of X is a cyclic flat of E. (G) if and only if s(F ) isa cyclzc
flat of G and F = X,

In order to prove Theorem 3.3 we need the following intermcdiary results:

Proposition 3.4. . If Cis a circuit of G, any subset K C X such that QK |=kr{C)+1
ts a circuit of E (G).

Proof. As E, (G) is the expansion of kr, we have r, {Xc) = kr(C) and any subset
K T X K= kr(C)+ 1 is dependent. To prove Proposmon 3.4, we have to show
that any subset T CXc, |T|= kr(C) is independent in E,(G). Let TCXc and

T =kr(C).VACS, ITO XA =]TN Xnancl- U CNA#C, then CNA isinde-
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pendent in G and.
[TOXace| <1 Xanc|<k{ANC|=kr(ANC)<kr(A).
I CNA =C then
TN Xancl=[TNXc|= | T = ke(C)=kr(A NC)<kr(A).
In all cases we have | T N X, | < kr(A) and thus T is independent in E. (G).
Lemma 3.5. If K is a circuit of E«(G), VXEK, s(x) is not a relative isthmus
of s(K).

As a consequence of Lemma 3.5, we have:
Proposition 3.6. The natural surjection extends to a strong map from E, (G) 10 G.
Proposition 3.7. If K is a circuit of Ei (G), then
K = Xz

Proof. By Lemma 3.2 we know that X,x,CK.

Leta €8 a € s(K): there is a circuit C in G such that C —a Cs(K)and a € C.
By Proposition 3.4, VTCX, | T{= kr(C)+ 1, T is a circuit of E, (G); then Jor any
element a, € X,, L = X, Ua, is a circuit of E, (G).

Xcoa CXury => Xc.u CXx,CK.
By Lemma 3.2,
X.CL=X..=> X.CK.

Thus Va€s(K), X. CK => Xz CK.
Conversely, let x € K: there is a circuit L of E. (G)suchthat L - x CK,x € L.
By Lemma 3.5, s(x) is not an isthmus of s(L ): there exists a circuit C containing
s{x) and C Cs(L), but

L-xCK => s(L)~s(x)Cs(K)- s(x)
and

C=C-s(x) => s(x)€C-s(x)=CCs(L)Cs(K) => x € X..,.CXK~
Finally X5, = K.

A description of all cyclic flats of E. (G) is «* hand. Let F be a c:yclif flat of
'E.(G): F is the union of closures of circuits contained in F, say F = U7, K, where
each K, is a circuit of E, (G):

Cs

i=} 4

- L]
Ki= U X=X A Xoir)
i 1

iw

-
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X,risaflatin E, => s(F)isaflatin G.Vx € 8, x € U, s(K,), by Lemma 3.5,
x is not an isthmus of U/, s(K,) and thus s(F) does not contain any isthmus. s(F)
is a cyclic flat of G.

Conversely, let if be a cyclic Hat of G.say H = U, C where C. isa circuit of
G, i=1\,. o X‘{“ isa C"“!l" flat & in E, l('\ hecanse hv Prnnnuglnn 34, I‘hPrP m a

i R SSwwiRiaidwy

circuit K, of E, (G) such that s(K.)=C and then
K = X5 = Xe,
H being a flat in G, X, is a flat in E. (G), as

p [ -
Xu = fo”(-.'a= LJ‘ X(",‘ = U K::";
i=

Xy is a cyclic flat of E,.. Theorem 3.3 is thus proved.

1.2, Properiies of the functor E,

The transformation E, defined above induces an action on morphisms of & as
follows. Given a strong map o from G.(r,,S;) to G:(r., S.), with the classical
convention of adding a point 0 to 3, and §., the map o induces a function of the set
$, U0 to §; U0 (by definition o(0) = 0 and 0 € #). E, (G,) is a geometry on a set X,
E.(G:) is defined on X and we consider the following function o, from X, U0 to
XUl

(i) for any a € S,, X, has either no element if r,(a)=0 or k elements if
r.{A) =1, in the latter case we can write X, ={a,, a,...,a.};

(it) for any element a of §;, if o(a) is 0 we set ov(a)=0, V&, E€X, and if
o(a) = a £ 8., we set o(a)=a, Va,€X,, where X, ={a., as,as,...,a}.

We will say that o induces the function o, from X, U0 to X, U0. For E, tobe a
functor, among other requirements, we need to prove that the function o, extends
to a strong map from E,(G,) to E.(G,), i.e. that we have the following:

Theorem 3.8. o being a strong map from G(r,, S,) to GAr2, S,), the point map a.
induced by o exiends to a strong map E.(o) from E.(G)) to E.(G:).
We will fitst consider 2 special cases: first when o is an embedding and then when

o 15 a sinzle point contraction.

Proposition2.9.  If G(r, S,) is a subgeometry of Gir,, S:), E+(G)) is a subgeometry
l?/f El (G:).

Propositien 3.10. If G.(r:, S) is the contrection of G(r,, S1) by apointe € 8,, then
E.(G:) is the contraction of E.(G,) by the ser X,.

Proof. We will suppose that e is not a loop of G.’ | '
As §: = S, - e, the geometry E, (G;) is defined on the set X, = X, ~ X.: let o, be
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the map induced by the contraction G,-»Gi/e = G; from X, U0 to X,U0:
o (X.)=0.

Let F be a flat of E,(G.). We want to shcw that o'(F)= FU X, is a flat of
E,(G,). I it is not the case, ther~ exist an x € X and a circuit K of E,(G)).
K‘—-XC'FU& with xEK, xZ FUX..

x € K == s(x) is not a relative isthmus in s(K) (Lemma 3.5). In the contrac-
tion by e, s(x ) does not become a relative isthmus of s(K) - ¢ in G,/e so thereis a
circuit L of G./e such that s(x)E L, L Cs(K)-e Cs(F). L Cs(F)and F being a
flat of E,(G;) we have by Lemma 3.2 and Theorem 3.3,

XEX,, CXB©CICF

which is a contradiction.

Thus F U X, is a flat of E.{(,) and consequently F is a flat of E, (G )/ X.: E.(G:) s
thus a quotient of E,(G,)/X.. Furthermore, it is clear that £,(G:) and E.(G )/ X.
are geometries with the same rank so finally, Ei(G:) = E.(G\)/X..

In order to prove Theorem 3.8, we will invoke the fundamental result of Higgs {7]
stating that any strong map can be decomposed into a surjection followed by an
injection: if o is a strong map from G, to G, then o = ics where

G- Q = o(G)— G,

a

s is a surjection of G, into a quotient Q of G, and i is an embedding of o (G))
(isomorphic to Q) into G.. (o(G)) is a sybgeometry of G..)

Furthermore, the surjection G,-» Q can be decamposed into a sequence of
elementary quotients:

G:’:"“’Qx"lz"Oz—“"'1’0n =Q.

Any elementary quotient is decomposed further as an embedding into a
single-element extension followed by the contraction by that element.

Any strong map is thus decomposed into the products of single-ciement
contractions and extensions. We know that Theor 2m 3.8 holds for those elementary
strong maps. It is easy to see that Theorem 3.8 still holds when we compose
elementary strong maps (this is a direct consequence of rule for composing strong
maps) and thus Theorem 3.8 holds in general.

Let us consider the map F of & into itself defined as follows:

(i) for any pregeometry G(r,S), F(G)= E«(G);

(i) for any morphism o € Hom (G, G"), F(o) = Ex(0) € Hom[E.(G). E.(G)].
Theorem 3.11. F is a faithful functor of & into itself.

Proof. F is a functor because
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(a) if i is the identity of G(r, §), clearly

F(ic) = Ex(ia) = ir, (G),
(b) if a morphism ¢ is the composition o =000, then

F(c) = F(0003) = Ex (010 02) = Ev(0n)° Ex (05) = F(01) F(05).
F is faithful because N

F(o)=F(o'Y<> Ei(0)=E. (o) <> =0, <> o =0,

In the following we will investigate some further properties of E,.. A remarkable
result is the following:

Theorem 3.12. If G*(r*, S) is the dual of a given pregeometry G(r, S) which has
no isthmuses or loops, then E.(G™) is ihe dual of E.(G).

Proof. Wec want to show that the following diagram is commutative:
G<>G*
SI Is“
E.(G)=>E.(G")

First we note that E,(G) and E, (G *) are defined un the same set X, | X |=k [§]
{because Ya€S, r(a)=r*(a)=1).
The system of bases of E,(G) is

B ={B:-BCX,|B|=kr(S),YACS,|BNX,|<kr(A)}
and the family of bases of E«(G*) is
B*={B*:B*CX,|B*|=kr*(S),VACS,|B N X.|=kr*(A)}.
Call 3'={B":B’= X~ B,B € #B}. We want to show that B’ = $B*.
VB'E B, VACS.
let A’=8 -~ A. We have
‘B'NXai={X~-B)N(X~Xs)|=|X~{XsUB)]
=] X|~{XaUB|=|X|-|Xa|~|B|+|Xs UB)|
but BER =2 | X., UB|<kr(A’), so
B OX.i=ki{S|-k{A'i~kr(S)+kr{A")
< kn(S)~ kn{A") (n = aullity function)
< kn(S)~ kn(S - A)= kr*(A)
thus B'ER* = B'CR*.
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If we now call B*' ={B*:B* = X — B*, B* € B*} because of reciprocity of G
and G*, we would have
BYCRB => BYC R,
finally ‘ '
B =R

We give without proofs some other interesting properties of E,:

Theorem 3.13. TG being the rruncation of a give: pregeametry G(r,S), E. (TG) is
the k-truncation of E, (G) (i.e., obtained by k successive truncations of E, {G)).

Corollary 3.14. If G is an erection of G', E,(G) is an erection of E.(G').
Tkeorem 3.15. If G = G, @G, then E. (G)= E. (G E, (G>).

33, Propertié's of the functor G,

Given a pregeometry G(r, S), for any integer k =1, we consider the geometriza-
tion of kr, G(kr,S), which we will write G.(G).

G« (G) is a subgeometry of E.(G) and expectedly, we will be able to derive some
properties of G which are similar to those of E,, and prove the initial conjecture.
As a consequence of Proposition 3.6 we have

Proposition 3.16. G is a quotient of G, (G).

Theorem 3.17. Let o be a strong map from G,(r,, S)) to G(r.. $:), then o induces a
function from S, 0 to S: U0 which extends to a strong map G.(a) from Gi.(G)) to
G (G;) '

As for Theorem 3.8, the proof of Theorem 3.17 reduces to showing that it holds
in the cases when o is an embedding and when ¢ is a single-element contraction.

Proposition 3.18. Let G.(r,, S:) be a subgeometry of G(r., S:), then Gi({(3,) is a
subgeometry of G(G:).

Proposition3.19. Let GAr;, S.) be the contraction of G (1, $)) by a point e € S: the
function induced by the contraction from 5, U0 to S: U0 extends to a strong map from
Gk (G:) to Gg (Gz).

Proof. To prove the proposition directly is not easy. We will use the fact that
G.(G) is a subgeometry of E.(G) by the means of the following lemma:

‘Lemma 3.20. Givena pregeometry H(S) ad a subgeometry H(T) of H(S). T CS.
let H(S)/A be the contraction of H(S) by the set ACS and H (T') be the
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subgeometry of H{S)/A defined on the set T'=TN(S-A)= T — A. Then the
contraction H(S)— H(S)/A induces a function from T U0 to T' U which extends
to a strong map from H(T) to H'(T’).

Proof. We have to show that given any flat F of H'(T"), the set F U(A N T) isa -
flat of H(T). :
As H (T)is a subgeometry of H(S )/A there is a flat F' of H (i)lA such that
FCFandFNT"=F The + ')A isaflatin H(S)and (FFUA)NT is a flat of

H(T). The proof is completed by noting that: -

(FUAYNT=(FNT)U(ANT)=FU(ANT).

We can now prove Proposition 3.19: let us consider E,(G,) and E(G>): by
Propusition 3.10, E.(G) is the contraction of E,(G,) by the set X.. Gi(G)) is the
subgeometry of E.(G,) defined on the set Y,CX, (Va€S, |Y,NX,|=1), and
G.(G;) is the subgeometry of E.(G;) defined on ¥,= Y,— Y. By the above
lemma, the function of Y, U0 to YU 0 induced by the contraction by X., extends
i0 a strong map of Gi(G) to G.(G').

Theorem 3.17 is thus proved: to any strong map o from Gqr) to Gz(rz) is
associated a strong map G. (o) from Gi(G)) to Gi(G:). The following diagram is
commutative in 7:

G;(r.)——:—* Gz(rz)

.-d‘{ 3 Jia

G (G)— G, (G))

id is the strong map induced by the identity on the ground set.
As for E,, the functor F’ defined by:
Y pregeometry G(r,S), F'(G)= G.(G),
Yo€Hom (G, G'), F'(0) = Gy (o)
is faithful,

G (G) being a subgeometry of E,(G), the following results hold:
() if G = G,&G; then G.(G)= G(G) 9 G (G,);

(ii) if G'(r', S’} is the truncation of G(r, $), then G.(G") is obtained from G, (G)
by a sequence of truncations.

i we consider duality, with evident notations, we have the following commuta-
tive diagram:
G(G)= G(N->[G(G*)]
i i 1 |
G (G)Y = G*(r*) e G (G*)
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The whole picture is clear if we consider Ei(G) and its dual [E.(G)]* =
E. (G"): [G«(G)}* and G.(G*) can be considered as defined on a same set.
[G(G)]* being a contraction of E,(G*) whereas G, (G*) is a subgeometry of
E.(G*).

‘8o far, most of the results we have derived for G.(G) are consequences of
- properties of Ex (G). The following result is particular to G..

~Theorem 3.21. For any pregeometry G(r,S), and any two integers k =k’ =1,
Gi(G) is a quotient of G.(G).

Proof. We need the two following lemmas. We call r. and r.. the rank-functions
of G\ (G) and G.(G) and we set k =k’'+d, d =0.

Lemma 3.22. If K is a circuit of G.(G) then r.(K) = k'r(K).

Provf. K being acircuit of Gi(G), [ K| =kr(K)+ lLand n(K)={K |- 1= kr(K).
Another way to write . (K) is

n(K) = inf {kr(A)+|K - A|}.

Consider K in G,(G):

rk'(K)zii}:L{k’r(A)-#—lK'-A §}=j3_£ [kr(A)—dr(A)+{K - A}

= inf {kr(A)+]K - A1} - dr(K) = n(K)- dr(K)

= kr(K)~ dr(K}=k'r(K)

thus r.{K)=k'r(K).
On the other hand, letting A = K in the formula, we have n(K)<k'r(K) so
finally n{(K)= k'r(K).

Lemma 3.23. K being a circuit of G.(G), K has no relative isthmus in G (G).

Proof. If it is not the case, there is a point x € K such that

n{K)=n{K-x)+1
SO

r(K-x)= inf {k'r{A)+|(K-x)-Al}
Suppose the inf is attained for a set BCK ~x:
o E'H(B)+ (K -x)~Bl=n{K-x)=nr(K)-1=k'r(K)~ 1



154 H.Q. Nguyen

tilen by adding dr(B) to both sides of the equality

k'r(K)+dr(By-1=kr(B)+|(K —x)— B|
SO
kr(B)+|(K — x)= B|<k'r(K)+dr(B) < k'r(K) + dr(K) = kr(K)

which is a contradnctlon as
kr(K)=n(K)=n{K-x)= Ay’l‘f_x {kr(A) +I(K—x)—Al}

The proof of Theorem 3.21 is now straightforward. Let F be a flat of Gi(G ). we
have to show that F is a flat of G.(G); if it is not the case, there is a circuit K of
G.(G) and a point x € K such that x € F and K - x C F. But now,

n{K)=n(K—-x)=>x eK-1049cF
which is a contradiction. Thus F is a flat of G.(G).

Corollary 3.24. For any loopless pregeometry G(r, §) and two integers k < k'=<1,
G.(G)= G.(G) if and only if G.(G) is a Boolean algebra.

Theorem 3.25. Let o be a strong map between G(r,, S,) and G(r3, S-), then for any
two integers k < k' <1, the following diagram is commutative in ¥,:

G (11 $))————— GAr.S)
2
id

id G i)

GAG)———  G.(G)
id id
G(G)—22 ., G.(G)

The quotient ma2p Gi(G)— Gi{(G) is a natural transformation betwecen the
functors associated with G, and G,.

Proof. The proof is immediate by checking the composition of the respective
induced functions.

4. A generalization

In the case of k =2, given a pregeomeiry G(r, S), E:(G) is the expansion of the
function r + r: a generalization which is interesting tc i..waugate is ic consider the
expansion of r + 7" where r’ is the rank-function of some pregeometry G'(r $)
(defined on the same ground set as G) associated to G. We will use the notation
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E(G + G’) to denote the exparsion of r +r'. More precisely, we will prove the
following:

Theorem 4.1. If a is a functor of f into itself, the image of a given pregeometry
G(r,§) being a(G) = G'(r', §) the transformation associating to G(r, S) the expan-
- sion E(G + G') of the function r + r’ is a functor of & into itself.

Theorem 4.1 will be proved as a consequence of the following 3 results.

Proposition 4.2. Given 2 pregeometries G(r,,S) and G:Ar.. S), if H, and H, are
the respective subgeometries defined on the same set S - A, E(H,+ H)) is a
subgeometry of E(G,+ 4.

Proposition 4.3. Given 2 pregeometries G,(r,,S) and G,(r., S). e being an isthmus
of Ga, if Gi(ri. S — ¢) is the contraction Gi/e of G, by e and Gi(r;, S — ¢€) is the
subgeometry of G- an S —~ e, then E(G |+ G) is the contraction of Ei G\ + G:) by the
set X,.

Proof. Let E,~E(G,+G:), El=E\/X. and E,= E(G;+ G:). We will prove
that E| is equal to E, by showing that E; and E; are defined by the sam< family of
independent sets. We will exclude the trivial case when e is a loop of G,. If X is the
ground set of E;, both E| and E; are defined on X — X.. Consider an independent
set I C X — X. of E;| and suppose thai it is dependent in E..

3ACS — e such that

[ INXa|>ri(A)+ri(A)=rn(A)- 1+ r(A).
On the other hand I independent in E| is also independent in E, and
)IﬁXA ISI;(A)-'F rz(f‘l.)

Combining the 2 inequalities, we get [I N X, |=r.(A)+ r(A) and also ri(A)=
r{(A)-1,ie.e€ A% orn(AUe)=r(A).
Let p, and p; be the rank functions of E, and E| respectively:

VICX - X., piT)=p(TUX.)-p(X.)=p(TUX.,)-2.
We have

px(“fA)z P'[(A)‘f' r;(A)=§IﬂX,\ f = pl(l ﬂXA)
and
pi(IﬂXA)=p;[(IﬂX4)UX,]"3 = pl(xA UX?).._Z

=p[(XAU¢)"2= r;(A Ue)+r2(A UC)_Z
= (A)+ () + D) =2=]T1N X |- 1,

‘which is a contradiction because I is independent in E£{ and we must have
piI N X.)=|INX,| Thus I is also independent in E..
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Conversely suppose that a set I C X — X, is independent in E, and dependent
in E;j.
I is then independent in E, because
ey <r|(A)+rz\44)
So for I to be dependent in E; we must have
X.Nni5#9

or: 3K, circuitof E,, K~ X, CIL, X. NK#8. As X, = {e,, e,}, W.l.;o.g. suppose that
¢, € K. Then

HTUe) N Xuxy =K1 = 1=r(s(K))+ r(s(K)) by Lemma 3.1
and also
(HUe)N X = 1IN Xporf + 1= 1T 0 Xy |+ 1
<ri(s(K)—e)+ri(s(K)—e)+1 ,
(because I is i.ndependent in E,)
=(rn(s(K)- 1)+ ((s(K) -1 +1
= n(s(K)}+ r:(s(K)) - 1,
which is a contradiction and thus I is also independent in E ;.

Propositions 4.2 and 4.3 are special cases of the following situation: 2 strong maps
are given o;: G(r,, §)—> Gi(r},S"), a,: GAr, )~ G(r3, S’) and they induce a
point map u from X U0 to X’U0 where X and X' are the ground sets of
E(G,+ G;) and E(G{+ G}) respectively.

For a point a of S, X. may have 0, 1 or 2 clements as | X, | = ri(a)+ r(a). By
convention we will write X, = {a,, a:} with 4,7 0 (i.e. a; is a proper point of X) if
and only if r.{ay = 1. The same notation being used for X', « is then defined as
follows: Va €S, if 0,(a) = a then u(a;) = a. ,

Propositions 4.2 and 4.3 say that in the special cases considered, u extends to a
strong mzp from E(G, + G:) to E(G1+ G3). More generally, we have

Propasition 4.4. Any 2 strong  maps o.:G(r,S)—=Gi(r},S) and
a:: GAr:, S)— Gri, 8') induce a strong map from E(G,+ G,) to E(G\+ G})).
Proof. Using Higgs' decomposition, we can- wnte

Ut”tgegn ”gnv g Sz"gl

where g = g.o---og, is the product of clememargr twotlems bringing G, onto a
guotient Q = u;(G.) and i, is an embedding of ,(G,) into G}:

Gi;"’ 0:::0:": '**an;j:Qwog(G.)—?G..
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We clzim that the following diagram is commutative:

G, Gz—‘:“i’ gn(Gu). G

1T

' E(Gi+ G)— E(gi(G)) = G)

where u, is the map induced by g, and the identity of G.,.

g1, being an elementary quotient, is the composition of a singie-eilement
extension, say by a point e, giving the pregeometry G, defined on S U e, followed
by the contraction by e giving G./e = Q.. Let G, be the single-element extension »f
G, with e being an isthmus; the following diagram is commutative as a consequence
of Propositions 4.2 and 4.3:

embedding fefe

G, Gz'—"—'"‘"G“! G:——-—-—-—-—————-——-i Q.. G-

embodaing l

E(G,+G2) ™23 E(6, + G)—2 E(Q,+ G2)

proving our claim.
By repeating the argument, we can show that the following diagram is also
commutative

&3.4d

pond . R - 1
Gl,Gz":""‘""Ols G: Oz, Gz"‘“"“’""‘" "‘R“‘“’O, G:

| |

E(G\+ Gy)— E(Qy + G:) = E(Q:+ G3)— - + - = — E(Q + G>)

which is equivalent to the diagram:

G, G.—20,G,

i

E(G,+ G:)-——E(Q + G))
Similarly, we nave o, = i,op where p(G,;) is a quotient R of G, and i is an
embedding of R = o:(G;) into G:. The following diagram is commuiative:
0.G:—%>Q,R
E(Q+G:)— E(Q +R)
Finally, Proposition 4.4 is proved by showing that the foliowing diagram is
commutative
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O.R 1 G, G}

emhedding

E(Oa‘ R)— E(G |+ G})
which is a consequence of Proposition 4.2.

As a consegquence of Proposition 4.4 given a functor a of & into itself, the
following transformation T : |

(a) V pregeomeiry G(r,S) whose image by «a is denoted a{(G)= G'(r', 5),
T(G)=E(G +G),

(b) Yr € Hom (G, G;), T (o) is the element of Hom (T(G,), T(G:)) induced by
o and a(or), '

is a functor of 7 into itself. Theorem 4.1 is thus proved.

As examples of functors that one can define using Theorem 4.1, one may take for
a any Enown functor of ./ into itself: truncation, dual functor, G, defined in
Section 3, or any of the functors obtained by using Theorem 4.5 below.

Considering geometrizations as subgcomeatries of expansions and using the same
arguments as in Section 3, one obtains:

Theorem 4.5. If a is a functor of ¥ into itself, the image of a given pregeometry
G(r.S) being a(G)= G'(r',S), the transformation associating to G(r,8) the
geomelrization of the function r + r’ is a functor of ¥ into itself.

By alternating or repetitive applications of Theorems 4.1 and 4.5 one car get
large sets of new functors of & iuto itself.
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