Letter to the editor

Lanczos' generalized derivative for higher orders

S.K. Rangarajan ${ }^{\text {a,* }}$, Sudarshan P. Purushothaman ${ }^{\text {b }}$
${ }^{a}$ Raman Research Institute, Bangalore, 560 080, India
b 2075 Lavoie Court, Yorktown Heights, NY 10598, USA

Received 15 October 2004

Abstract

The method of differentiation by integration due to Lanczos is generalized to cover derivatives of arbitrary order. Umbral versions and further extensions are indicated. © 2004 Elsevier B.V. All rights reserved.

Keywords: Lanczos' method; Umbral calculus; Numerical differentiation

1. Lanczos' generalized derivative $\mathrm{D}_{h} f$, defined by [5]

$$
\begin{equation*}
\mathrm{D}_{h} f=\left(3 / 2 h^{3}\right) \int_{-h}^{h} t f(x+t) \mathrm{d} t=(3 / 2 h) \int_{-1}^{1} t f(x+h t) \mathrm{d} t \tag{1}
\end{equation*}
$$

is an approximation to the first derivative of $f(x), \mathrm{d} f / \mathrm{d} x$ in the sense that

$$
\begin{equation*}
\mathrm{D}_{h} f=f^{\prime}(x)+\mathrm{O}\left(h^{2}\right) \tag{2}
\end{equation*}
$$

and is aptly called a method of "differentiation by integration".
Two recent notes examined its robustness (with respect to random errors on data) [3] and probabilistic overtones [4]. We report in this note, the analogue of (1) for higher order derivatives. In other words defining

$$
\begin{equation*}
\mathrm{D}_{h}^{(n)} f=h^{(-n)} \int_{-1}^{1} \rho_{n}(t) f(x+h t) \mathrm{d} t \tag{3}
\end{equation*}
$$

[^0]we choose $\rho_{n}(t)$ that satisfies
\[

$$
\begin{equation*}
\mathrm{D}_{h}^{(n)} f=f^{(n)}(x)+\mathrm{O}\left(h^{2}\right), \quad n=1,2,3, \ldots \tag{4}
\end{equation*}
$$

\]

Restricting the search to polynomials, we show in the next section that $\rho_{n}(t)$ is proportional to the familiar Legendre polynomials $P_{n}(t)$ [1]. Besides making a connection to Umbral (or operator) calculus [6,7], a formal operator representation for $\mathrm{D}_{h}^{(n)}$ can be given explicitly as a function of D where $\mathrm{D}=\mathrm{d} / \mathrm{d} x$. Further generalizations are also indicated.

The emphasis being on formal connections, our approach in this note is somewhat heuristic.
2. To identify $\rho_{n}(t)$ in (3) we employ the "brute force approach" based on finite difference representation or Taylor expansion [3]. Let us write, for a given n,

$$
\begin{align*}
f(x+h t)= & f(x)+h t f^{\prime}(x)+\cdots+\frac{\left(h^{n} t^{n}\right)}{n!} f^{(n)}(x) \\
& +\frac{\left(h^{(n+1)} t^{(n+1)}\right)}{(n+1)!} f^{(n+1)}(x)+\frac{\left(h^{(n+2)} t^{(n+2)}\right)}{(n+2)!} f^{(n+2)}(\theta) . \tag{5}
\end{align*}
$$

Substituting (5) in (3) and requiring that $\rho_{n}(t)$ satisfy the constraints

$$
\begin{equation*}
\int_{-1}^{1} \rho_{n}(t) t^{m} \mathrm{~d} t=0, \quad 0 \leqslant m<n \tag{6}
\end{equation*}
$$

and

$$
\begin{equation*}
\int_{-1}^{1} \rho_{n}(t) t^{n} \mathrm{~d} t=n! \tag{7}
\end{equation*}
$$

we deduce from the theory of orthogonal polynomials or otherwise that

$$
\begin{equation*}
\rho_{n}(t)=\gamma_{n} P_{n}(t), \tag{8}
\end{equation*}
$$

where $P_{n}(t)$ is the Legendre polynomial and $\gamma_{n}=\left(\frac{1}{2}\right)(1)(3)(5) \cdots(2 n+1)$.
Observing that

$$
\begin{equation*}
\int_{-1}^{1} \rho_{n}(t) t^{n+1} \mathrm{~d} t=0 \tag{9}
\end{equation*}
$$

and using (5)-(7) we can also conclude that

$$
\mathrm{D}_{h}^{(n)} f=f^{(n)}(x)+\mathrm{O}\left(h^{2}\right)
$$

Thus, the nth derivative analogue of D_{h} is

$$
\begin{align*}
\mathrm{D}_{h}^{(n)} & =\left(\gamma_{n} / h^{n}\right) \int_{-1}^{1} P_{n}(t) f(x+h t) \mathrm{d} t \\
& =\left(\gamma_{n} / h^{(n+1)}\right) \int_{-h}^{h} P_{n}\left(\frac{t}{h}\right) f(x+t) \mathrm{d} t \tag{10}
\end{align*}
$$

with γ_{n} given by (9). For $n=1$, (10) reduces to (1), and for $n=2,3, \ldots$,

$$
\begin{align*}
& \mathrm{D}_{h}^{(2)} f=\left(45 / 4 h^{5}\right) \int_{-h}^{h}\left(t^{2}-\frac{h^{2}}{3}\right) f(x+t) \mathrm{d} t, \tag{10a}\\
& \mathrm{D}_{h}^{(3)} f=\left(525 / 4 h^{7}\right) \int_{-h}^{h} t\left(t^{2}-\frac{\left(3 h^{2}\right)}{5}\right) f(x+t) \mathrm{d} t . \tag{10b}
\end{align*}
$$

3. It is easy to verify that D_{h} as defined in (1) is a delta operator [7] and an explicit representation for D_{h} and $\mathrm{D}_{h}^{(n)}$ in terms of the derivative operator $\mathrm{D}=(\mathrm{d} / \mathrm{d} x)$ is given below. Using the shift operator [7] form of Taylor expansion viz.,

$$
\begin{equation*}
f(x+t)=E_{t} f(x)=\mathrm{e}^{t \mathrm{D}} f(x) \tag{11}
\end{equation*}
$$

in (10), it is seen that, formally,

$$
\begin{equation*}
\mathrm{D}_{h}^{(n)} f=\left(\gamma_{n} / h^{n}\right) \int_{-1}^{1} P_{n}(t) \mathrm{e}^{t h \mathrm{D}} f(x) \mathrm{d} t \tag{12}
\end{equation*}
$$

Substituting the Neumann-type expansion [2]

$$
\begin{equation*}
\mathrm{e}^{\gamma z}=\sum_{n=0}^{\infty}(v+n) C_{n}^{(v)}(\gamma)\left(I_{\gamma+n}(z)\left(\frac{2}{z}\right)^{\nu}\right) \Gamma(v) \tag{13}
\end{equation*}
$$

for the special case $v=\frac{1}{2} ; C_{n}^{(1 / 2)}(\gamma)=P_{n}(\gamma)$, in (12) and noting the orthogonal property of $P_{n}(t)$, we deduce that

$$
\begin{equation*}
\mathrm{D}_{h}^{(n)}=\left(2 \gamma_{n} / h^{n}\right)\left(f_{n}(h \mathrm{D})\right) . \tag{14}
\end{equation*}
$$

In (13), $I_{v}(z)$ and $C_{n}^{(v)}(\gamma)$ denote the modified Bessel function of the first kind and Gegenbauer polynomials [1,2] respectively, while in (14),

$$
\begin{equation*}
f_{n}(x)=\mathrm{I}_{n+1 / 2}(x) \sqrt{\frac{\pi}{2 x}} \tag{15}
\end{equation*}
$$

denotes the modified spherical Bessel functions [1].
For $n=1$,

$$
\begin{align*}
\mathrm{D}_{h}^{(1)} & =\mathrm{D}_{h}=\left(\frac{2 \gamma_{1}}{h}\right) \sqrt{\frac{\pi}{2 h \mathrm{D}}} \mathrm{I}_{3 / 2}(h \mathrm{D}) \\
& =\left(\frac{3}{h}\right)\left[\frac{\left(\cosh h \mathrm{D}-\frac{\sinh h \mathrm{D}}{h \mathrm{D}}\right)}{h \mathrm{D}}\right], \quad[1, \text { p. 443]. } \tag{16}
\end{align*}
$$

4. The above approach suggests that the choice of kernels $\rho_{n}(t)$ in (3) need not be restricted to polynomials. In fact, the following operators also perform the task of "differentiation by integration".

$$
\begin{equation*}
\mathrm{D}_{h, \alpha}^{(n)} f=\left(\lambda_{n} / h^{n}\right) \int_{-1}^{1} C_{n}^{(\alpha)}(t)\left(1-t^{2}\right)^{\alpha-1 / 2} f(x+h t) \mathrm{d} t, \tag{17}
\end{equation*}
$$

Fig. 1.

$$
\begin{equation*}
\mathrm{D}_{h, \alpha}^{(1)} f=\left(2 \frac{\alpha \lambda}{h}\right) \int_{-1}^{1} t\left(1-t^{2}\right)^{\alpha-1 / 2} f(x+h t) \mathrm{d} t \quad\left(\alpha>-\frac{1}{2}\right) \tag{18}
\end{equation*}
$$

can replace (10) and (1), and approximate $f^{(n)} x$ and $f^{\prime}(x)$, respectively. In (17)

$$
\begin{equation*}
\lambda_{n}=\left(\frac{2^{n}(\alpha)_{n+1} n!}{(2 \alpha)_{n}}\right)\left(\frac{\Gamma(\alpha)}{\Gamma\left(\alpha+\frac{1}{2}\right) \sqrt{\pi}}\right) \tag{19}
\end{equation*}
$$

where

$$
\begin{equation*}
(\alpha)_{n}=\frac{\Gamma(\alpha+n)}{\Gamma(\alpha)} \tag{20}
\end{equation*}
$$

In Fig. 1, the estimated values of the second and third derivatives of the function $f(x)=\exp \left(-x^{2}\right)$ calculated using (17) for the case of $\alpha=2$, and $\alpha=\frac{1}{2}$ are plotted with their actual values. As is evident, the graphs are indistinguishable.

Calculations for a series of values of α yield a very similar result.
The operator connection, analogous to (14)-(16), is

$$
\begin{equation*}
\mathrm{D}_{h, \alpha}^{(n)}=\left(\frac{2}{h}\right)^{n} \Gamma(\alpha+n+1)\left(\mathrm{I}_{\alpha+n}(h \mathrm{D})\left(\frac{2}{h \mathrm{D}}\right)^{\alpha}\right) \tag{21}
\end{equation*}
$$

When $\alpha=\frac{1}{2}, \lambda_{n}$ reduces to γ_{n} of (9) and the results of the previous section can be recovered. Again, the limit $\alpha \rightarrow 0$, where the Gegenbauer polynomials go over to Chebyshev polynomials, gives yet another option. For example,

$$
\mathrm{D}_{h, 0}^{(n)} f=\left(\frac{\left(2^{n}\right)(n!)}{(\pi)\left(h^{n}\right)}\right) \int_{0}^{\pi}(\cos n t) f(x+h \cos t) \mathrm{d} t
$$

comes under this category. Generalizations with respect to functions of several variables can also be made on the lines indicated here.

A final comment on the choice of the discretization parameter h is appropriate. On the basis of Eqs. (2) and (4), one would expect the approximations to improve as $h \rightarrow 0$, but a word of caution is in place. When the data are perturbed (random or systematic) such that $\left|f(x)-f^{\varepsilon}(x)\right|<\varepsilon$ (where $f^{\varepsilon}(x)$ is the perturbation), an optimal choice of h does not $h \rightarrow 0$, but has an order $\varepsilon^{(1 / 3)}$ [3]. This is particularly relevant when the integrals in (1) or (3) are not evaluated exactly (cf. Gaussian schemes).

References

[1] M. Abramovitz, I.A. Stegun, Handbook of Mathematical Functions, Dover Publications, New York, 1973.
[2] A. Erdelyi (Ed.), Higher Transcendental Functions, vol. II, McGraw-Hill, New York, 1953.
[3] C.W. Groetsch, Lanczos' generalized derivative, Amer. Math. Monthly 105 (1998) 320-326.
[4] Jhanghong Shen, On the generalized "Lanczos' generalized derivative", Amer. Math. Monthly 106 (1999) 766-768.
[5] C. Lanczos, Applied Analysis, Prentice-Hall, Englewood Cliffs, NJ, 1956.
[6] S. Roman, The Umbral Calculus, Academic Press, New York, 1984.
[7] G.C. Rota, Finite Operator Calculus, Academic Press, New York, 1975.

[^0]: * Corresponding author. Tel.: +1 (914) 2457551.

 E-mail address: sudar_purushothaman@yahoo.com (S.P. Purushothaman).

