
Journal of Computational and Applied Mathematics 177 (2005) 461–465

www.elsevier.com/locate/cam

Letter to the editor

Lanczos’ generalized derivative for higher orders
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Abstract

The method of differentiation by integration due to Lanczos is generalized to cover derivatives of arbitrary order.
Umbral versions and further extensions are indicated.
© 2004 Elsevier B.V. All rights reserved.
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1. Lanczos’ generalized derivative Dhf , defined by[5]

Dhf = (3/2h3)

∫ h

−h

tf (x + t) dt = (3/2h)

∫ 1

−1
tf (x + ht) dt, (1)

is an approximation to the first derivative off (x), df/dx in the sense that

Dhf = f ′(x) + O(h2) (2)

and is aptly called a method of “differentiation by integration”.
Two recent notes examined its robustness (with respect to random errors on data)[3] and probabilistic

overtones[4]. We report in this note, the analogue of (1) forhigher order derivatives. In other words
defining

D(n)
h f = h(−n)

∫ 1

−1
�n(t)f (x + ht) dt, (3)
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we choose�n(t) that satisfies

D(n)
h f = f (n)(x) + O(h2), n = 1, 2, 3, . . . . (4)

Restricting the search topolynomials, we show in the next section that�n(t) is proportional to the familiar
Legendre polynomialsPn(t) [1]. Besides making a connection to Umbral (or operator) calculus[6,7],
a formal operator representation for D(n)

h can be given explicitly as a function of D where D= d/dx.
Further generalizations are also indicated.

The emphasis being on formal connections, our approach in this note is somewhat heuristic.
2.To identify�n(t) in (3) we employ the “brute force approach” based on finite difference representation

or Taylor expansion[3]. Let us write, for a givenn,

f (x + ht) = f (x) + htf ′(x) + · · · + (hntn)

n! f (n)(x)

+ (h(n+1)t (n+1))

(n + 1)! f (n+1)(x) + (h(n+2)t (n+2))

(n + 2)! f (n+2)(�). (5)

Substituting (5) in (3) and requiring that�n(t) satisfy the constraints∫ 1

−1
�n(t)t

m dt = 0, 0�m < n (6)

and ∫ 1

−1
�n(t)t

ndt = n!, (7)

we deduce from the theory of orthogonal polynomials or otherwise that

�n(t) = �nPn(t), (8)

wherePn(t) is the Legendre polynomial and�n = (1
2)(1)(3)(5) · · · (2n + 1).

Observing that∫ 1

−1
�n(t)t

n+1 dt = 0 (9)

and using (5)–(7) we can also conclude that

D(n)
h f = f (n)(x) + O(h2). (4′)

Thus, thenth derivative analogue of Dh is

D(n)
h = (�n/hn)

∫ 1

−1
Pn(t)f (x + ht) dt

= (�n/h(n+1))

∫ h

−h

Pn

(
t

h

)
f (x + t) dt (10)
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with �n given by (9). Forn = 1, (10) reduces to (1), and forn = 2, 3, . . . ,

D(2)
h f = (45/4h5)

∫ h

−h

(
t2 − h2

3

)
f (x + t) dt, (10a)

D(3)
h f = (525/4h7)

∫ h

−h

t

(
t2 − (3h2)

5

)
f (x + t) dt. (10b)

3. It is easy to verify that Dh as defined in (1) is a delta operator[7] and an explicit representation for Dh

and D(n)
h in terms of the derivative operator D= (d/dx) is given below. Using the shift operator[7] form

of Taylor expansion viz.,

f (x + t) = Etf (x) = etDf (x) (11)

in (10), it is seen that, formally,

D(n)
h f = (�n/hn)

∫ 1

−1
Pn(t)e

thDf (x) dt. (12)

Substituting the Neumann-type expansion[2]

e�z =
∞∑

n=0

(� + n)C(�)
n (�)

(
I�+n(z)

(
2

z

)�)
�(�) (13)

for the special case� = 1
2; C

(1/2)
n (�) = Pn(�), in (12) and noting the orthogonal property ofPn(t), we

deduce that

D(n)
h = (2�n/hn)( fn(hD)). (14)

In (13),I�(z) andC(�)
n (�) denote the modified Bessel function of the first kind and Gegenbauer polynomials

[1,2] respectively, while in (14),

fn(x) = In+1/2(x)

√
�

2x
(15)

denotes the modified spherical Bessel functions[1].
Forn = 1,

D(1)
h = Dh =

(
2�1

h

)√
�

2hD
I3/2(hD)

=
(

3

h

)[
(coshhD − sinhhD

hD )

hD

]
, [1, p. 443]. (16)

4. The above approach suggests that the choice of kernels�n(t) in (3) need not be restricted to polynomials.
In fact, the following operators also perform the task of “differentiation by integration”.

D(n)
h,� f = (�n/hn)

∫ 1

−1
C(�)

n (t)(1 − t2)�−1/2f (x + ht) dt, (17)
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D(1)
h,� f =

(
2
��

h

)∫ 1

−1
t (1 − t2)�−1/2f (x + ht) dt

(
� > − 1

2

)
(18)

can replace (10) and (1), and approximatef (n)x andf ′(x), respectively. In (17)

�n =
(

2n(�)n+1n!
(2�)n

)(
�(�)

�(� + 1
2)

√
�

)
, (19)

where

(�)n = �(� + n)

�(�)
. (20)

In Fig. 1, the estimated values of the second and third derivatives of the functionf (x) = exp(−x2)

calculated using (17) for the case of� = 2, and� = 1
2 are plotted with their actual values. As is evident,

the graphs are indistinguishable.
Calculations for a series of values of� yield a very similar result.
The operator connection, analogous to (14)–(16), is

D(n)
h,� =

(
2

h

)n

�(� + n + 1)

(
I�+n(hD)

(
2

hD

)�)
. (21)

When�= 1
2, �n reduces to�n of (9) and the results of the previous section can be recovered. Again, the

limit � → 0, where the Gegenbauer polynomials go over to Chebyshev polynomials, gives yet another
option. For example,

D(n)
h,0 f =

(
(2n)(n!)
(�)(hn)

)∫ �

0
(cosnt)f (x + h cost) dt

comes under this category. Generalizations with respect to functions of several variables can also be made
on the lines indicated here.

A final comment on the choice of the discretization parameterh is appropriate. On the basis of Eqs.
(2) and (4), one would expect the approximations to improve ash → 0, but a word of caution is in place.
When the data are perturbed (random or systematic) such that|f (x) − f 	(x)| < 	 (wheref 	(x) is the
perturbation), an optimal choice ofh does noth → 0, but has an order	(1/3) [3]. This is particularly
relevant when the integrals in (1) or (3) are not evaluated exactly (cf. Gaussian schemes).
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