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Most studies on memory consolidation consider the new information as if it were imposed on a tabula rasa,
but considerable evidence indicates that new memories must be interleaved within a large network of rele-
vant pre-existing knowledge. Early studies on reconsolidation highlighted that a newly consolidatedmemory
could be erased after reactivation, but new evidence has shown that an effective reactivation experience
must also involve memory reorganization to incorporate new learning. The combination of these observa-
tions on consolidation and reconsolidation highlights the fundamental similarities of both phenomena as
the integration of new information and old, and it suggests reconsolidation = consolidation as a neverending
process of schema modification.
Memories evolve over time, and many have come to consider

that memories have two extended ‘‘lives’’ after the initial encod-

ing of new information. The first, called consolidation, involves a

prolonged period after learning when new information becomes

fixed at a cellular level and interleaved among already existing

memories to enrich our body of personal and factual knowledge.

The second, called reconsolidation, turns the tables on amemory

and involves the converse process in which a newly consoli-

dated memory is now subject to modification through subse-

quent reminders and interference. Here we propose that the

time has come to join the literatures on these two lives of memo-

ries, toward the goal of understanding memory as an ever-

evolving organization of the record of experience.

Consolidation
Since the pioneering studies on retrograde amnesia, it has been

accepted that memories undergo a process of consolidation

(Ribot, 1882; Müller and Pilzecker, 1900; Burnham, 1903). Imme-

diately after learning,memories are labile, that is, subject to inter-

ference and trauma, but later they are stabilized, such that they

are not disrupted by the same interfering events. It is well recog-

nized that memory consolidation involves a relatively brief

cascade of molecular and cellular events that alter synaptic effi-

cacy as well as a prolonged systems level interaction between

the hippocampus and cerebral cortex (McGaugh, 2000; Dudai,

2004). Here we will focus mainly on the latter. Linkage between

the hippocampus and consolidation began with the earliest

observations by Scoville and Milner (1957) on the patient H.M.,

who received a resection of the medial temporal lobe area

including the hippocampus and neighboring parahippocampal

region at age 27. H.M.’s amnesia was characterized as a severe

and selective impairment in ‘‘recent memory’’ in the face of

spared memory for knowledge obtained remotely prior to the

surgery. Tests on H.M.’s memory for public and personal events

have shown that his retrograde amnesia extends back at least

eleven years (Corkin, 1984), and more recent studies of patients

with damage limited to the hippocampal region also report

temporally graded retrograde amnesia for factual knowledge
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and news events over a period extending up to ten years (Manns

et al., 2003; Bayley et al., 2006). There remains debate about

whether there is a temporal gradient for retrograde amnesia after

hippocampal damage for all categories of memory (see below).

However, it is consensual that damage restricted to the hippo-

campal region results in temporally retrograde graded amnesia

for semantic information.

A major limitation on studies of retrograde amnesia in humans

is that there is no control over the extent of exposure to events

during acquisition, as well as no control over how often the

memories for those events are re-experienced or remembered.

This problem has been addressed in several prospective studies

on amnesia in animals, where hippocampal damage occurs at

different time points after learning and temporally graded

amnesia emerges across multiple species and memory tasks

(reviewed in Milner et al., 1998; but see Sutherland and Lehmann

2011). The duration of the systems consolidation period is highly

variable across species and tasks, and hippocampal neurogen-

esis may also control its time course (Kitamura et al., 2009). The

evidence for temporally limited hippocampal involvement is

compelling; however, this observation does not provide direct

evidence on what brain areas support memory when the hippo-

campus is no longer necessary.

Insights about the relative engagement of other brain areas

over the course of consolidation have come from recent experi-

ments that have measured brain activation during memory

retrieval at different times after learning in humans and animals.

In humans, activation of the hippocampus during accurate

memory retrieval in normal subjects was maximal for the most

recent news stories and declined over approximately nine years,

parallel with the course of retrograde amnesia (Smith and Squire,

2009). Conversely, activation of widespread cortical areas was

lowest for the most recent accurately remembered events and

increased for more remote memories (see also Haist et al.,

2001; Douville et al., 2005; Bayley et al., 2006). Recent prospec-

tive studies using functional imaging have identified greater acti-

vation of the hippocampus during recall of recently over remotely

studied paired associations and the opposite temporal gradient
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in cortical areas (Yamashita et al., 2009; Takashima et al., 2009).

In the latter study, over time following learning, functional

connectivity between the hippocampus and cortical areas

decreased, whereas connectivity within the cortical network

increased.

Studies on animals have employed 2-deoxyglucose (2DG)

uptake and immediate early gene (IEG) activation as measures

of neural activity in brain areas during memory retrieval for

recently and remotely acquired memories. Bontempi et al.

(1999) reported greater 2DG uptake in hippocampal area for

recently acquired spatial discriminations, and conversely greater

activation of frontal and temporal cortical areas for remotely

acquired spatial memories. Similar patterns of decreasing hip-

pocampal activation and increasing widespread cortical activa-

tion were observed using IEG expression as a reflection of neural

activation in a contextual fear paradigm (Frankland et al., 2004;

Maviel et al., 2004). Whereas the latter studies have focused on

the medial prefrontal area as a key site for postconsolidation

spatial memory, other studies have localized greater activation

of olfactory recipient cortical areas for remote social-olfactory

memories (Ross and Eichenbaum, 2006), and greater activation

of a higher-order auditory cortical area for remotely acquired

tone-cued fear conditioning (Sacco and Sacchetti, 2010). The

overall findings on cellular imaging studies in rodents impres-

sively parallel the findings from functional imaging in humans,

providing compelling evidence of systems consolidation charac-

terized by early greater involvement of the hippocampus and

later greater involvement of the task-relevant cortical areas.

Additional evidence for cortical-hippocampal interactions

during consolidation comes from studies on hippocampal

‘‘replay’’ of memories during sleep and other offline states, sug-

gesting that the strengthening of cortical linkages depends on

inputs from the hippocampus (e.g., Wilson and McNaughton,

1994; reviewed inCarr et al., 2011). These interactionswere high-

lighted in a study where, during sleep following maze running,

populations of simultaneously recorded hippocampal and visual

cortical cells fired in coordinated replays of the sequences of

activity observed during awake behavior (Ji and Wilson, 2007).

Additional support for the idea that hippocampal replay drives

memory consolidation came from a report that replay following

new spatial learning predicts subsequent memory performance

(Dupret et al., 2010) and from findings that stimulation-produced

suppression of hippocampal sharp waves, when most replay

events occur, impairs subsequent spatial memory, whereas

stimulation at other times has no effect (Girardeau et al., 2009;

Ego-Stengel and Wilson, 2010; see also Nakashiba et al., 2009).

Other studies have focused on the cerebral cortex and shown

development of a coordinated cortical neural network activation

following learning (Alvarez and Eichenbaum, 2002; Takehara-

Nishiuchi and McNaughton, 2008; Sakai and Miyashita, 1991)

and cortical reorganization that depends upon an early tag within

the regions that subsequently support the memory (Lesbur-

guères et al., 2011).

Models of Memory Consolidation within
the Cortical-Hippocampal System
These recent findings support the classic idea that a newly

acquired memory depends initially on the hippocampus and
eventually on widespread areas of the cerebral cortex. The

classic and new observations have generated three current

hypotheses about different aspects of the consolidation process

(see Figure 1).

Consolidation as Linking Cortical Representations

There are several variations of the hypothesis that the hippo-

campus rapidly stores critical information for linking cortical

representations and that during multiple iterations of cortical-

hippocampal interaction, connections within the cortex are

strengthened and eventually support these associations in the

absence of hippocampal function (Marr, 1971; Squire et al.,

1984; Teyler and DiScenna, 1986; Damasio, 1989; Squire,

1992). Each of these models proposes that, during learning,

information from cortical areas that are activated in perceptual

processing and working memory is sent through inputs to the

hippocampus, which encodes a ‘‘sketch’’ or ‘‘conjunction’’ of

that information or ‘‘index’’ of loci within the cortex that contain

the detailed information. During the consolidation period,

memory cues that replicate partial information from the learning

experience reach the hippocampus, activating the hippocampal

representation or index, which, via back projections to the

cortex, reactivates the complete pattern of activations in cortical

networks that were generated during learning (Figure 1A). Each

time this reactivation occurs, intracortical connections between

the disparate, active cortical networks are gradually strength-

ened. After many such reactivations the intracortical connec-

tions are sufficiently strong to support reactivation of the entire

set of cortical networks without assistance from the hippo-

campus (Figure 1B). Under this model, blocking consolidation

prevents the strengthening of the intracortical connections for

a newly acquired memory but leaves pre-existing memories

intact (Figure 1C).

With regard to the functional imaging studies described above,

it is notable that these models do not explicitly predict that

the hippocampus should be less activated during effortful recall

of remote memories. Indeed, a recent experiment showed

increased c-fos expression in the hippocampus for older memo-

ries for the escape location on the Morris water maze (Lopez

et al., 2011). Furthermore, these models predict that the relevant

cortical networks should be activated for both recent and remote

memories, even though those activations might be generated

differentially through the hippocampus for recent memories

and directly for remote memories. There is also strong evidence

that the hippocampus is engagedduring anymemory processing

that involves combinations of detailed associative and contex-

tual information (see below) and evidence that cortical networks

that are engaged during encoding are re-engaged during recall

even shortly after the learning experience (e.g., Buckner et al.,

2001; Polyn et al., 2005; Hannula et al., 2006; Danker and Ander-

son, 2010). These issues remain to be resolved for models of the

hippocampus as temporarily linking cortical representations.

Consolidation as Semantic Transformation

The multiple trace theory, frequently opposed with the cortical

linkage view, proposes that memories are qualitatively trans-

formed from episodic memories into semantic memories during

the consolidation period (Nadel and Moscovitch, 1997; Winocur

et al., 2010). In this view, memories that are initially stored in

cortical-hippocampal circuitry are episodic, defined as context
Neuron 71, July 28, 2011 ª2011 Elsevier Inc. 225
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Figure 1. Three Models of Systems Consolidation, Each of Which Also Supports Aspects of Reconsolidation
The hippocampus and an idealized network of connections among nodes (neurons) in the cortex represent a pre-existing memory (gray nodes), a newly acquired
memory (white nodes), and shared components (gray/white nodes). The thickness of lines between cortical nodes reflects the strengths of intracortical
connections. The dependence of cortical networks on the hippocampus is indicated by the arrows (dark = strong; gray = weak; open = no dependence).
Throughout, red indicates a network disrupted by amnesic agents.
(A–C) The cortical linkage model. (A) Immediately after learning, the pre-existing memory has strong connections (thick lines) between nodes, whereas
connections in the newly acquired memory network are weak (thin) and hippocampal dependent (dark arrows). (B) Consolidation is accomplished by
strengthening intracortical projections (thick lines) and eventually the hippocampal connections are not required (open arrows). (C) Blocking consolidation
prevents cortical strengthening of the new information (red, thin lines), leaving those cortical regions still dependent on the hippocampus (red arrow). Pre-existing
memories (thick lines) that are supported by cortical networks are spared.
(D–F) The semantic transformation model. (D) Immediately after learning, hippocampal connections are critical (dark arrows) for pre-existing episodic memories
as well as for the newly acquired memory. (E) Consolidation involves strengthening (very thick lines) of intracortical connections shared by overlapping nodes to
create a system that differs from either the first or second network (black nodes) and no longer depends upon the hippocampus (open arrow). Network elements
that represent unique (episodic) portions of those memories remain weakly connected (thin lines) and dependent on the hippocampus (dark arrows). (F) Blocking
consolidation prevents the formation of a new episodic memory stored within the hippocampal-cortical networks (red thin lines) and also the strengthening of the
overlapping portion of the cortical network, leaving the newly formed network (red arrow), as well as the pre-existing cortical networks, hippocampal dependent
(dark arrows).
(G–I) The schemamodificationmodel. (G) Immediately after learning, the hippocampus is essential for supporting connections within the newly acquiredmemory,
and important for the full elaboration of details of episodic memories (gray arrow). (H) During consolidation, the hippocampus supports both increases (thick lines)
and decreases (thin lines) in connection strengths within the networks for pre-existing and new memories, resulting in an interleaving of the memories into
a composite network (black nodes) that remains dependent on the hippocampus for the full range of detailed information (gray arrows). (I) Blocking consolidation
after learning not only disrupts the consolidation of the newly acquired memory, but also corrupts the synaptic weight changes that support the interleaving of
networks (reconsolidation), resulting in an altered set of cortical networks (red) still partially dependent on the hippocampus (red arrows).
Parentheses indicate references to the text.
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specific, and repeated ‘‘offline’’ reactivations create multiple

distinct traces (Figure 1D, ‘‘New Memory’’) from which the com-

mon information is extracted and integrated within pre-existing

semantic networks in the cortex. Eventually the cortical repre-

sentations that are common among memories, i.e., semantic

memories free of episodic/contextual detail (Figure 1E, thick

lines), do not depend on the hippocampus (Figure 1E, empty

arrow), but retrieval of episodic details continues to depend

upon cortical-hippocampal connections (Figure 1E, black

arrows). In this model, blocking consolidation prevents the

strengthening of intracortical connections that support semantic

transformation, leavingnewaswell as remotely acquiredepisodic

memories dependent on the hippocampus (Figure 1F, red).
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In support of this view are reports that amnesic patients show

temporally ungraded retrograde impairment for episodic memo-

ries (e.g., Rosenbaum et al., 2001; Steinvorth et al., 2005).

However, contrary to the view that episodic and contextual

memories always depend on the hippocampus, there are also

findings of spared remote autobiographical memories in patients

with medial temporal lobe damage (Bayley et al., 2003; reviewed

in Squire and Bayley, 2007) and it is argued that flat retrograde

gradients for episodic memory occur only following damage ex-

tending beyond the hippocampus into cortical areas (Reed and

Squire, 1998). However, functional imaging studies have con-

sistently reported that the hippocampus is activated for both

recently and remotely acquired episodic and autobiographical
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memories (Ryan et al., 2001; Maguire et al., 2001; Piolino et al.,

2004; Addis et al., 2004; Gilboa et al., 2004; Viard et al., 2007).

These findings contrast with the above-described observations

of declining hippocampal activation during retrieval of famous

faces and names and of news events, i.e., semantic memories

(Smith and Squire, 2009; Haist et al., 2001; Douville et al.,

2005). A possible reconciliation of these observations is that

the hippocampus is consistently engaged whenever detailed

associative or contextual information is recalled (Piolino et al.,

2008; Hoscheidt et al., 2010). Notably, the hippocampus is

also involved even when people imagine detailed events that

have never occurred (Hassabis et al., 2007; Addis et al., 2007).

Thus, observations of hippocampal activation during relational

processing may fit the expectation that the hippocampus

becomes engaged by cues that generate an extensive memory

search, regardless of the age or even the existence of a memory.

Rodent studies also support the view that consolidation

involves the semantic transformation of memories. In these

studies, a memory that generalizes to testing conditions that

differ from original training is typically considered an animal

model of semantic memory. Parallel to the human literature,

several experiments have shown that remote contextual memo-

ries become more generalized and independent of the hippo-

campus (Wiltgen and Silva, 2007; Wiltgen et al., 2010; Winocur

et al., 2007; see also Lehmann et al., 2010; but also Weinberger

et al., 2009). Conversely, hippocampal damage results in ungra-

ded retrograde amnesia for spatial memories (Clark et al., 2005a,

2005b; Martin et al., 2005; Winocur et al., 2005a), except under

circumstances of extensive and varied experience in environ-

ments wherein remote spatial memories are spared following

hippocampal damage in both humans (Teng and Squire, 1999)

and rats (Winocur et al., 2005b). Notably, these findings are

also consistent with a simpler view that details of memories

and information not repeated or contradicted across repeated

experiences are most likely to be forgotten or overwritten, which

also would be expected to result in a residual and strengthened

semantic memory.

Consolidation as schema modification

A distinct idea on memory transformation argues that newly

acquired memories are not stored in isolation. Instead, they are

gradually incorporated into a ‘‘schema,’’ an organization of

related knowledge that contains semantic knowledge as well

as episodic details. Unlike the semantic transformation view,

schemas do not distinguish episodic and semantic memories.

Rather, they interleave all memories via common elements,

and, unlike the focus on semantic transformation of multiple

hippocampal traces, schemas involve the interleaving of new

learning initially with previously acquired memories and subse-

quently with future memories. The schema idea, originally pro-

posed by Bartlett in 1932 (Bartlett, 1932), was extended from

the perspective of consolidation theory by McClelland et al.

(1995), who contrasted rapid synaptic modification in the hippo-

campus with slowly modified connections within the cortex and

suggested that that the hippocampus supports memory for

a brief period after learning, during which system reactivations

integrate the new information via modifications of a pre-existing

schema that connects related memories (Figures 1G and 1H).

In this model, blocking consolidation disrupts the reorganization
of pre-existing cortical representations and leaves newly

acquired memories corrupted and dependent on the hippo-

campus (Figure 1I).

In support of this model, Tse et al. (2007) demonstrated that

rats develop a schema of locations where different foods are

buried by showing that once several food/location associations

had been formed, new ones could be added within a single trial;

however, in a different environment, the learning of new associ-

ations was much more gradual. Moreover, when new associa-

tions could be integrated within a pre-existing schema, hippo-

campal lesions after 3 hr, but not 48 hr, impaired subsequent

performance, revealing a consolidation gradient considerably

steeper than those reported in studies in which learning did not

benefit from an existing schema.

By examining the organization of related memories that is the

foundation of schemas, Bunsey and Eichenbaum (1996) showed

that normal rats link overlapping paired associates and make

new inferences about indirectly related elements, and that this

capacity depends on the hippocampus. The same finding was

extended to a schema that involved a hierarchical organization

of stimulus elements (Dusek and Eichenbaum, 1997). Consistent

with these findings, Gupta et al. (2010) reported replays of spatial

representations that comprised overlapping spatial trajectories

that occasionally linked to form representations of routes that

would be consistent with a navigational inference of related

previous experiences. Many other studies in humans, monkeys,

and rats have shown that hippocampal neurons encode both

distinct experiences and their common overlapping features,

consistent with the existence of networks of related memories

(for review see Eichenbaum, 2004). In addition, fMRI studies

have shown that the hippocampus is engaged as related memo-

ries are integrated to support novel inferences in tasks similar to

those dependent on the hippocampus in rats (Preston et al.,

2004; Zalesak and Heckers, 2009). Hippocampal activation is

also observed as humans learn overlapping face-scene associ-

ations that they later can generalize across indirectly related

elements (Shohamy and Wagner, 2008) and as they acquire

conceptual knowledge that bridges across related experiences

in predicting the outcomes of complex associations that have

overlapping features (Kumaran et al., 2009). Reports of hippo-

campal ‘‘preplay,’’ where neural patterns recorded during

behavior can be observed before the subject explores a well-

learned (Louie andWilson, 2001) or novel (Dragoi and Tonegawa,

2011) environment, suggest a potential mechanism by which

retrieval at the time of learning can link past experience with

present.

The three models of consolidation described above are not

mutually exclusive. The hippocampus plays a key role in linking

elements of memories processed in the cortex, including links

that compose representations of discrete events and represen-

tations of episodes composed of sequences of events (Eichen-

baum, 2004). Memories interact through ‘‘nodal’’ representa-

tions of features common to multiple experiences. Importantly,

these common nodal elements characterize information that is

not bound to a particular event or episode and is consistent

across experiences, and in that sense they underlie a ‘‘semantic

transformation.’’ Also, it is precisely via the nodal elements that

memories are connected and therefore underlie the structure
Neuron 71, July 28, 2011 ª2011 Elsevier Inc. 227
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of schemas. The evidence presented above suggests a critical

role for the hippocampus in the establishment of the cortical

nodes that link and relate disparate experiences. As illustrated

in Figure 1, the different models of consolidation may best be

viewed as focusing on different aspects of the larger process

by which memories are interleaved during consolidation.

Reconsolidation
The standard consolidation theories described above charac-

terize consolidation as a one-time event, after which a memory

is impermeable to subsequent disruption. However, this view

was challenged in the late 1960s by studies reporting that pre-

sentation of a ‘‘reminder’’ cue made a completely consolidated

memory again labile to the same agents that would block consol-

idation (Misanin et al., 1968; Schneider and Sherman, 1968). In

2000, Nader and colleagues raised this challenge again in ex-

periments that targeted the known role of the amygdala in

synaptic consolidation of the Pavlovian association of a tone

(CS) with a shock (US; Falls et al., 1992; Duvarci et al., 2006),

showing that a CS alone reminder presented long after consoli-

dation was complete re-engaged the temporary susceptibility of

the memory. These findings were interpreted as evidence that

the reminder reactivated the original memory trace, making it

necessary to ‘‘reconsolidate’’ the memory, or else suffer erasure

of the memory (Sara, 2000; Nader et al., 2000). Over the last

decade, many experiments have supported the observation of

memory susceptibility following reminders and these findings

have been reviewed extensively in recent papers (Nader and

Hardt, 2009; Dudai and Eisenberg, 2004; Lee, 2010; Alberini,

2011; Sara, 2010).

Results supporting the existence of reconsolidation have been

reported in several species across a broad range of learning

tests, and using a variety of manipulations to block memory

(e.g., Rose and Rankin, 2006; Pedreira et al., 2002; Eisenberg

et al., 2003; Frankland et al., 2006; Lee et al., 2005; Hupbach

et al., 2007; Monfils et al., 2009; Schiller et al., 2010). Despite

broad support for the generality of reconsolidation (Nader and

Hardt, 2009), several studies have failed to find that amnesic

agents block memory in the reconsolidation paradigm (Bieden-

kapp and Rudy, 2004) or have observed that thememory deficits

are temporary (Lattal and Abel, 2004, Power et al., 2006), leading

to the idea that the reconsolidation phenomenon has ‘‘boundary

conditions’’ (Eisenberg et al., 2003; Milekic and Alberini, 2002;

Morris et al., 2006). Several experimental parameters have

been shown to be important in determining whether reconsolida-

tion occurs, including how memories are reactivated (Debiec

et al., 2006; Tronel et al., 2005), whether novelty is introduced

during memory reactivation (Pedreira et al., 2004), and the age

and strength of a memory (Eisenberg et al., 2003; Milekic and

Alberini, 2002). We consider two main categories of boundary

conditions: which memory is active at the time of amnesic treat-

ment and whether the reminder generates new learning.

Early in the recent series of studies on reconsolidation there

were conflicting reports on whether reminders reinstated lability

of memories for classical aversive conditioning. Several studies

(Berman et al., 2003; Vianna et al., 2001; Koh and Bernstein,

2003; Pedreira andMaldonado, 2003) noted that, in thePavlovian

conditioning studies, presentation of the CS alone can have two
228 Neuron 71, July 28, 2011 ª2011 Elsevier Inc.
opposing effects: it can act as a reminder to engage the original

memory trace, and it can generate extinction, which involves

development of a new and competing memory trace. Based on

the dual roles of CS alone presentation, Eisenberg et al. (2003)

suggested that the effects of amnesic agents differ depending

on whether the original memory trace or the newly developed

memory for extinctionwas dominant at the time of amnesic treat-

ment. To test the trace dominance theory, subjects were given

either more initial CS/US training or more CS-alone trials after

initial conditioning, with the assumption that more initial training

would cause the fear memory to dominate during the reminder,

while extinction memory would dominate after more sessions

with the CS alone. Consistent with the trace dominance hypoth-

esis, more CS/US pairings resulted in disrupted reconsolidation

of the original aversive memory whereas more CS-alone presen-

tations resulted in subsequent loss of extinction and preserved

fear memory, in different species and different memory tests.

These findings can also explain why extensive training and/or

specific time periods between initial training and reminder could

result in strong, original memory traces that are reactivated as

dominant following a reminder (Suzuki et al., 2004; Wang et al.,

2009; Milekic and Alberini, 2002; Eisenberg and Dudai, 2004;

Robinson and Franklin, 2010, but see Duvarci et al., 2006) and

why effective reminders must be presented for reconsolidation

of the original memory (Bozon et al., 2003).

The other major factor in determining the efficacy of amnesic

agents in the reconsolidation protocol is whether the reminder

event involves new learning in addition to recovery of the initial

memory trace. One study reported that whereas original memo-

ries are blocked by an amnesic agent following a CS alone

reminder, there was no loss of the original memory following

reminder presentations that involve a combination of CS and

US presentations, suggesting that CS alone reminder consti-

tuted a new learning experience (Pedreira et al., 2004). However,

there are several examples of successful disruption of reconso-

lidation following presentation of both a CS and US (Duvarci and

Nader, 2004; Rodriguez-Ortiz et al., 2008; Valjent et al., 2006). In

these studies, it is not clear that performance was at asymptote,

leaving open the possibility that new learning still occurred

during the reminder event, a factor that proved critical in another

study (Rodriguez-Ortiz et al., 2005). Also, Morris et al. (2006)

directly compared reconsolidation following reminder trials in

rats trained to asymptotic performance in standard (‘‘reference

memory’’) water maze task versus a (‘‘working memory’’) variant

of the task where new escape locations were learned daily and

found that anisomycin was effective after reminders only in the

condition of new learning each day. Also, in other studies on

human declarative and motor memory, providing subjects with

a reminder that involves new learning is key to alteration of exist-

ing memories (Walker et al., 2003; Hupbach et al., 2007, 2008,

2009; Forcato et al., 2007, 2009). These findings and several

other studies indicate that learning during the reminder session

is a critical boundary condition for reconsolidation (Winters

et al., 2009; Robinson and Franklin, 2010; Lee, 2010).

The combination of requirements for dominance of the original

memory and new learning suggest that the key conditions for

blockade of reconsolidation involve a reactivated memory trace

that is susceptible to modification and new, related learning that
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occurs during the interfering event. Thus, the encoding of new

information occurs within the context of retrieval, and the circuits

that aremodulated by new information are the ones that are acti-

vated by the reminder. At the same time, blockade of reconsoli-

dation is only observed in conditions that favor new learning

related to the reactivated memory (e.g., additional training, ex-

tinction), suggesting that reconsolidation involves some kind of

reconciliation or integration of a vulnerable memory trace and

new relevant information (Eichenbaum, 2006).

Reconsolidation and Systems Consolidation
The three models of systems consolidation introduced earlier

differ in the nature of interactions between pre-existing and

new memory networks and their dependence on the hippo-

campus. In the cortical linkage model, consolidated memories

are independent of the hippocampus (Figures 1A and 1B). There-

fore, in a reconsolidation protocol, amnesic agents delivered to

the hippocampus could only affect the newly acquired net-

work—that is, the reminder—but leave intact the previously

consolidated memories (Figure 1C). This outcome is not con-

sistent with the findings that even consolidated memories are

affected by reminders and damage to the hippocampus (Debiec

et al., 2002;Winocur et al., 2009). Theories that hypothesize elim-

ination of hippocampal connectivity to cortical networks during

systems consolidation must be somehow updated to incorpo-

rate the findings that even consolidated memories can regain

hippocampal dependence after a reminder (systems recon-

solidation).

In the semantic transformation model, newly acquired memo-

ries are overlaid with pre-existing semantic memory networks,

such that the commonelements and connections becomehippo-

campal independent andsemantic (Figures1Dand1E). Reconso-

lidation has been suggested as having two roles: to potentiate in-

tracortical connections to form semantic memories, and to

strengthen episodic memories when new learning, or a reminder,

re-engages the hippocampal networks active during original

learning (Figure 1E; Hupbach et al., 2007; Winocur et al., 2009).

In this scheme, hippocampal amnesic treatments after a reminder

should block the retention of any new episodic memory, prevent

new semantic memory formation, and disrupt reconsolidation of

other, similar episodic memories (Figure 1F, red); pre-existing,

semantic memories would be left intact. Initial support for these

claims came from a study that found systemic, but not hippo-

campal, delivery of amnesic agents disrupted reconsolidation of

remote fear memories, findings that were interpreted to be

evidence of corrupted semantic memory (Frankland et al.,

2006). However, other studies showed that hippocampal recon-

solidation is necessary for consolidated memories (Debiec

et al., 2002; Winocur et al., 2009), and a recent experiment on

remote memories showed that the generalized, ‘‘semantic,’’ fear

responding that normally occurs in nonconditioned contexts

was also dependent on hippocampal reconsolidation (Winocur

et al., 2009). Therefore, somehowpre-existing semantic networks

mustbecomehippocampusdependent, a condition that counters

predictions of the original theory (Nadel and Moscovitch, 1997).

In the schema modification model, consolidation occurs by

integrating the new memory into active, pre-existing memories

via reorganization of common elements within the hippocampus
and the cortex (Figures 1G and 1H). In reconsolidation experi-

ments, the reminder determines which memories will be active

during encoding and therefore which synapses will be affected

by the new learning (Figure 1G). In this model, systemic amnesic

treatment after a reminder would result in a partial integration of

the newly learned information into the hippocampal and cortical

networks, resulting in a corruption of the reorganizing network

(Figure 1I, red). Manipulations limited to the hippocampus could

cause disruption of cortical reconsolidation due to interrupted

replay of the newly acquired learning (Eichenbaum, 2006) or

errant discharges from a damaged hippocampus driving molec-

ular changes in reorganizing cortical circuits (Rudy and Suther-

land, 2008) or perhaps another mechanism that would affect

cortical circuits undergoing plastic remodeling. While each of

the models described here captures some of the phenome-

nology of reconsolidation experiments, none has compelling

support, and this is likely to remain the case until we better

understand the nature of neural representations in the hippo-

campus and cortex and how they change during consolidation

and its breakdown.

Reconsolidation = Consolidation?
While the cellular substrates of consolidation and reconsolida-

tion are largely shared, several studies have reported dissocia-

tions between these processes for particular plasticitymolecules

or for plasticity in general within certain brain regions (e.g., von

Hertzen and Giese, 2005; Maroun and Akirav, 2009; Taubenfeld

et al., 2001; Lee et al., 2004, Lee, 2008, 2010; reviewed in Alberini

2005). Furthermore, several reconsolidation studies have shown

that as time passes memories become resistant to reconsolida-

tion blockers (Milekic and Alberini, 2002; Suzuki et al., 2004;

Eisenberg and Dudai, 2004), though others have found conflict-

ing results (Debiec et al., 2002; Wang et al., 2009; Robinson and

Franklin, 2010). The apparent differences between consolidation

and reconsolidation can be expected due to the design of

consolidation experiments. First, due to the importance of the

active memory as a boundary condition, a difference in the pre-

dominance of the memory during initial learning versus following

the reminder event could lead to a difference in susceptibility to

interference (Alberini, 2005). Second, in many behavioral para-

digms (especially aversive conditioning tasks), arousal is likely

to be much larger during original learning than during the

reminder, especially if the reminder is the CS alone. Since

arousal plays a major role in consolidation (McGaugh, 2000),

dissociations between consolidation and reconsolidation are ex-

pected. Third, given large differences in the duration of the

consolidation period observed across paradigms (Milner et al.,

1998), there is reason to expect differences in the durations of

consolidation and reconsolidation even for the same memories.

Fourth, there is a large literature, described above, suggesting

that different brain areas or networks may support highly novel

memories versus retrieval from well-integrated networks. These

conditions may work in combination to underlie differences

in the susceptibility of newly formed versus recently retrieved

memories.

Taken together, the findings on blockade of reconsolidation

following molecular interventions, hippocampal lesions, and

interference has led several to suggest that reconsolidation
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normally involves an ‘‘updating’’ of memories (Lewis, 1979; Sara,

2010; Morris et al., 2006; Lee, 2009, 2010; Dudai and Eisenberg,

2004). It has been suggested that updating can occur via two

mechanisms, a destabilization of existing memory traces and

modification of the contents of the original memory to add new

related material (Lee et al., 2008; Lee, 2010). Common among

these views is the idea that reconsolidation is the mechanism

by which initially consolidated memories are changed with new

learning.

We take a different view and propose that even initial consol-

idation occurs through a reorganization of pre-existing memo-

ries. Thus, while there is still much to be discovered about the

mechanisms of consolidation and reconsolidation, we suggest

that it would be valuable to consider that reconsolidation =

consolidation. Dudai and Eisenberg (2004) adopted a very

similar hypothesis, suggesting that reconsolidation is a manifes-

tation of a ‘‘lingering’’ consolidation process. Here we take this

idea one step further and suggest that reconsolidation is the

neverending consolidation process. When we refer to consolida-

tion, we cannot consider new learning to occur in a tabula rasa.

Rather, the consolidation of new learning, the first life of a

memory, is a reorganization (and therefore a ‘‘re’’-consolidation)

of the existing schema. Correspondingly, after the new learning

has been consolidated into the existing schema, reminders

and new related experiences normally constitute memories

that must be consolidated by further reorganization of the

current relevant schema. By this view, the fundamental conclu-

sion here is that new information is continually being integrated

and thereby repeatedly consolidated in a never-ending reorgani-

zation of memory networks.
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