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In this paper by a spectrum of mappings we mean a morphism of spectra of spaces.
However, using the notion of a mapping of mappings, we give the definition of a spectrum
of mappings similar to that of a spectrum of spaces. In this case, the formulations of the
given results are also similar to the formulations of the corresponding results concerning
the spectra of spaces.
For the spectra of mappings we define the notion of a τ -spectrum of mappings factorizing
in a special sense and prove a version of the Spectral Theorem for such spectra.
Furthermore, to a given indexed collection F of mapping we associate a τ -spectrum
factorizing in the above special sense whose mappings are Containing Mappings for F
constructed in Iliadis (2005) [4]. These associated τ -spectra and the corresponding version
of the Spectral Theorem imply that for a given indexed collection F of mappings any so-
called “natural” τ -spectrum for F factorizing in the special sense contains a cofinal and
τ -closed subspectrum whose mappings are Containing Mapping for F. Thus, Containing
Mappigs for F appear here without any concrete construction. The associated τ -spectra are
used also in order to define and characterize the so-called second-type saturated classes of
mappings (which are “saturated” by universal elements).

© 2010 Elsevier B.V. All rights reserved.

1. Introduction

In this introduction we recall in suitable for our consideration form some notions and results which will be used in
the next sections. First we recall the notion of an inverse spectrum of spaces and some related notions. In particular, we
recall the notion of a τ -spectrum factorizing with respect to a surjective subset of the limit space (that is a subset with
the property that the restriction on this set of any limit projection is onto) and the corresponding version of the Spectral
Theorem. As in [4], the notion of a factorizing (in the above special sense) spectrum and the Spectral Theorem are given
here (Proposition 1.3) in the realm of T0-spaces of weight � τ . In the realm of completely regular spaces of weight � τ for
the definition of a factorizing spectrum it is considered real functions on the limit space, that is mappings of the limit space
into the real line. Here, we consider mappings into an arbitrary T0-space. Of course, these definitions coincide in the realm
of completely regular spaces. In the end of the paper we make a remark concerning the case, where the realm of spaces is
the class of regular or the class of completely regular spaces of weight � τ . (The notion of a factorizing τ -spectrum and the
corresponding Spectral Theorem originally appear in [5]. For some (historical) comments and further bibliography see [1,2].)

Furthermore, for an indexed collection S of mutually disjoin spaces we recall the construction of Containing Spaces for
S (see [4]) and the construction of the associated to S a τ -spectrum D[S] (Proposition 1.4) whose spaces are Containing
Spaces for S. This spectrum is factorizing with respect to a surjective subset S of the limit space (and, therefore, the limit
projections of D[S] are onto) such that S is homeomorphic to the free union of elements of S. The interesting case is that,
where the cardinality of this collection is large than the weights of its elements, that is large than τ . The Spectral Theorem
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makes important the concrete factorizing τ -spectra indicating to the existence of a relation between the limit space of such
a spectrum and the spaces of this spectrum.

We recall also the following result (Corollary 1.5), which follows by the Spectral Theorem and Proposition 1.4: if a τ -
spectrum D on a corresponding directed set is factorizing with respect to a surjective subset S of the limit space such
that S is homeomorphic to the free union of elements of an indexed collection S of spaces, then there exists a cofinal and
τ -closed subspectrum of D whose spaces are Containing Spaces for S. Thus, Containing Spaces appear here without any
concrete construction.

Finally, using the associated τ -spectra D[S] we formulate and prove a characterization of the so-called second-type
saturated classes of spaces. This result is not indicated in [4].

All notions and results mentioned in this introduction will be extended in the next sections to spectra of mappings.

Agreement. The realm of spaces is the class of T0-space of weight less than or equal to a fixed infinite cardinal τ . In
particular, the spaces of the considered spectra are such spaces. However, the weight of the limit space of a spectrum may
be large than τ . All mappings of spaces are assumed to be continuous.

Spectra of spaces. A system

D ≡ {
X(λ),�λ′

λ ,Λ
}
, (1.1)

where:

(a) Λ is a directed set whose order is denoted by ≺,
(b) X(λ), λ ∈ Λ, is a space (a space of D), and
(c) �λ′

λ is a mapping of X(λ′) into X(λ) (a projection of D or the projection of X(λ′) into X(λ)) such that �λ′
λ ◦�λ′′

λ′ = �λ′′
λ

whenever λ ≺ λ′ ≺ λ′′ ,

is said to be an (inverse) spectrum of spaces.

By P(D) we denote the class consisting of all spaces which are homeomorphic to spaces of D .
Let (1.1) be a spectrum. We denote by lim(D) the set of all mappings

p : Λ →
⋃{

X(λ): λ ∈ Λ
}

such that p(λ) ∈ X(λ) and �λ′
λ (p(λ′)) = p(λ) whenever λ ≺ λ′ . By �λ we denote the limit mapping of lim(D) into Xλ

defined by relation �λ(p) = p(λ). The limit space of D is the set lim(D) with the topology for which the sets of the form
�−1

λ (U ), where λ ∈ Λ and U is an open subset of X(λ) compose a subbasis.
A subset S of lim(D) is said to be surjective if �λ(S) = Xλ for every λ ∈ Λ.
By a mapping of a space X into the spectrum D we mean an indexed set

f ≡ { fλ: λ ∈ Λ} (1.2)

where fλ is a mapping of X into Xλ such that fλ = �λ′
λ ◦ fλ′ whenever λ ≺ λ′ . Suppose that (1.2) is a mapping of X into D .

Then, this set defines a mapping of X into lim(D), denoted by lim( f ), as follows: if x is a point of X , then lim( f )(x) is the
point p of lim(D) for which p(λ) = fλ(x), λ ∈ Λ. If all mappings fλ , λ ∈ Λ, are homeomorphisms into (onto), then f is also
a homeomorphism into (onto). The mapping lim( f ) is called the limit mapping induced by f .

Let Λ′ be a directed subset of Λ (not necessarily cofinal) and λ0 ∈ Λ such that λ ≺ λ0 for every λ ∈ Λ′ . We denote by
D|Λ′ the subspectrum

{
X(λ),�λ′

λ ,Λ′}

of D . The indexed set{
�

λ0
λ : λ ∈ Λ

}

is a mapping of X(λ0) into the spectrum D|Λ′ . By �
λ0
Λ′ we denote the limit mapping of X(λ0) into lim(D|Λ′ induced by

{�λ0
λ : λ ∈ Λ}. This limit mapping will be called the natural mapping of X(λ0) into lim(D|Λ′ ).
Now, we suppose that Λ′ is a cofinal subset of Λ. In this case, each point p of lim(D) corresponds to the point p′

of lim(D|Λ′) defined by relation p′(λ) = p(λ), λ ∈ Λ′ . This correspondence is actually a homeomorphism of lim(D) onto
lim(D|Λ′ ) which is called the natural homeomorphism. In what follows, we shall identify the point p with the point p′ and,
therefore, the space lim(D) will be identified with the space lim(D|Λ′ ). In the case, where Λ′ is a cofinal (and τ -closed)
subset of Λ, D|Λ′ will be called a cofinal (and τ -closed) subspectrum of D .
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Let

D ≡ {
X(λ),�λ′

λ ,Λ
}

and R ≡ {
Y (λ),πλ′

λ ,Λ
}

be two spectra of spaces. By a morphism of the spectrum D into the spectrum R we mean an indexed set

f ≡ { fλ: λ ∈ Λ} (1.3)

where fλ is a mapping of Xλ into Yλ such that

fλ ◦ �λ′
λ = πλ′

λ ◦ fλ′

whenever λ ≺ λ′ . In the case, where all mappings fλ are homeomorphisms into (onto), f is called an isomorphism into
(onto).

Suppose that (1.3) is a morphism of D into R . This morphism defines a mapping of lim(D) into lim(R), denoted by
lim( f ), as follows: if p ∈ lim(D), then lim( f )(p) = q where q is the point of lim(R) defined by relation q(λ) = fλ(p(λ)),
λ ∈ Λ. The mapping lim( f ) is called the limit mapping induced by the morphism f . In the case, where f is an isomorphism
into (onto) the limit mapping induced by f is a homeomorphism into (onto).

τ -Complete sets. Let Λ be a directed set whose order is denoted by ≺. The lower upper bound of a subset Λ0 of Λ is
denoted (when it exists) by sup(Λ0). A subset Λ0 of Λ is said to be a chain if every two elements of Λ0 are comparable.
A subset Λ′ of Λ is said to be τ -closed in Λ if for every chain Λ0 ⊂ Λ′ with |Λ0| � τ we have sup(Λ0) ∈ Λ′ whenever
sup(Λ0) exists. The directed set Λ is said to be τ -complete if for every chain Λ0 with |Λ0| � τ there exists the lower upper
bound of Λ0.

The following two lemmas give the main properties of τ -complete sets which are used below. (See [5].)

Lemma 1.1. The intersection of not more than τ many cofinal τ -closed subsets of a τ -complete set is also cofinal and τ -closed.

Lemma 1.2. Let Λ be a τ -complete set and R a relation on Λ (that is, R ⊂ Λ × Λ) satisfying the following conditions:

(1) Existence: For every λ ∈ Λ there exists λ′ ∈ Λ such that (λ,λ′) ∈ R.
(2) Majorantness: if (λ,λ′) ∈ Λ and λ′ ≺ λ′′ ∈ Λ, then (λ,λ′′) ∈ R.
(3) τ -Closeness: if λ1 is a fixed element of Λ and Λ′ is a chain with |Λ′| � τ such that (λ,λ1) ∈ R for every λ ∈ Λ′ , then (λ′, λ1) ∈ R,

where λ′ = sup(Λ′).

Then, the set ΛR ≡ {λ ∈ Λ: (λ,λ) ∈ R} (that is, the set of all R-reflexive elements of Λ) is a cofinal and τ -closed subset of Λ.

In the class of all τ -complete sets we define an equivalence relation, denoted by ∼τ , as follows: two τ -complete sets
Λ0 and Λ1 are ∼τ -equivalent if they have isomorphic cofinal and τ -closed subsets. Lemma 1.1 provides that the defined
relation is really an equivalence relation. If Λ is a τ -complete set, then by Λ̃ we shall denote the class of all τ -complete
sets, which are ∼τ -equivalent to Λ.

Factorizing τ -spectra of spaces. ([1,4]) Suppose that (1.1) is a spectrum of spaces and P is a class of spaces. The spectrum
D is said to be P-factorizing with respect to a surjective subset S of lim(D) if for every mapping f of S into an element Y of
P there exist an element λ of Λ and a mapping fλ of X(λ) into Y such that fλ ◦ �λ = f . It is easy to see that if D is
P-factorizing, then any cofinal subspectrum is also P-factorizing. In the case, where P is the class of all spaces, then instead
of “P-factorizing” we shall write “factorizing”.

The spectrum D is said to be τ -continuous if for every chain Λ′ of Λ with |Λ′| � τ and λ = sup(Λ′) the natural mapping
�λ

Λ′ is an embedding of X(λ) into lim(D|Λ′ ). In what follows, whenever D is considered to be τ -continuous, then we shall
consider the space X(λ) as a subspace of lim(D|Λ′ ) identifying the point x of X(λ) with the point �λ

Λ′ (x) of the space
lim(D|Λ′ ). A τ -continuous spectrum D is said to be a τ -spectrum if the set Λ is τ -complete. (We recall that according to
our Agreement the weights of all spaces of a τ -spectrum are � τ .)

Proposition 1.3 (The Spectral Theorem). Let D0 and D1 be two τ -spectra of spaces on the same directed set such that D0 is P(D1)-
factorizing with respect to a surjective subset S0 of lim(D0). Then, each mapping f of S0 into lim(D1) is extended to a mapping f of
lim(D0) into lim(D1) such that f is induced by a morphism of cofinal and τ -closed subspectra. If moreover D1 is P(D0)-factorizing
with respect to a surjective subset S1 of lim(D1) and f is a homeomorphism of S0 onto S1 , then f is induced by an isomorphism onto
of cofinal and τ -closed subspectra.
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Containing Spaces. ([3,4]) Let S be an indexed collection of spaces. We recall that a co-mark of S is an indexed set

M ≡ {{
U X

δ : δ ∈ τ
}

: X ∈ S
}

where {U X
δ : δ ∈ τ } is an indexed base for the open subsets of X ∈ S. For every δ ∈ τ the indexed set {U X

δ : X ∈ S} is said to
be a component of M or, more precisely, the δ-component of M.

A family

R ≡ {∼s: s ∈ F
}

of equivalence relations on S, where F is the set of all finite subsets of τ , is said to be admissible if the following conditions
are satisfied: (a) for every s ∈ F the number of equivalence classes of ∼s is finite, (b) ∼s ⊂ ∼t if t ⊂ s and (c) ∼∅= S × S.
The equivalence relation ∼s is called the s-relation of R and it is denoted also by ∼s

R.
Let M be a co-mark of S. By RM we denote the admissible family of equivalence relations on S such that two element X

and Y of S are ∼s
RM

-equivalent if and only if there exists an isomorphism i of the algebra of subsets of X generated by the

set {U X
δ : δ ∈ s} onto the algebra of subsets of Y generated by the set {U Y

δ : δ ∈ s} such that i(U X
δ ) = U Y

δ , δ ∈ s.
Let R0 and R1 be two admissible families of equivalence relations on S. We say that R1 is a final refinement of R0 if for

every s ∈ F there exists t ∈ F such that the t-relation of R1 is contained in the s-relation of R0.
An admissible family of equivalence relations on S is said to be M-admissible if R is a final refinement of RM .
Let M be a co-mark of S and R an M-admissible family of equivalence relations on S. On the set of all pairs (x, X) where

x ∈ X ∈ S, we define an equivalence relation, denoted by ∼M
R , as follows: we say that two such pairs (x, X) and (y, Y ) are

∼M
R -equivalent if (a) the point x belongs to U X

δ for some δ ∈ τ if and only if the point y belongs to U Y
δ for the same δ and

(b) X and Y are ∼s
R-equivalent for every s ∈ F .

Denote by T ≡ T(M,R) the set of all equivalence classes of the relation ∼M
R . Let H be an equivalence class of some

equivalence relation of R and δ ∈ τ . By U T
δ (H) we denote the subset of T consisting of all elements a containing a pair

(x, X) for which x ∈ U X
δ and X ∈ H. On the set T we consider the topology for which the sets of the form U T

δ (H) compose a
subbase for the open subsets. The space T is called a Containing Space for S.

For every X ∈ S we denote by i X
T the mapping of X into T such that for every x ∈ X , i X

T (x) = a, where a is the point of T
containing the pair (x, X). The mapping i X

T is a homeomorphism of X into T.

Associated factorizing τ -spectra. ([4]) Let S be an indexed collection of spaces. Denote by P(S) the set of all pairs (M,R),
where M is a co-mark of S and R is an M-admissible family of equivalence relations on S. On the set P(S) we define a
preorder, denoted by ≺cm

af , as follows: for two elements (M0,R0) and (M1,R1) of P(S) we say that (M0,R0) ≺cm
af (M1,R1) if

(a) each component of M0 is also a component of M1, and (b) the family R1 is a final refinement of R0.
On P(S) we define also an equivalence relation, denoted by ∼S , as follows: for two elements (M0,R0) and (M1,R1) of

P(S) we set (M0,R0) ∼S (M1,R1) if (M0,R0) ≺cm
af (M1,R1) and (M1,R1) ≺cm

af (M0,R0).

Denote by C(S) the set of all equivalence classes of the relation ∼S . On the set C(S) we define an order, denoted by ≺
≡ ≺S , as follows: for two elements c0 and c1 of C(S) we write c0 ≺ c1 if (M0,R0) ≺cm

af (M0,R1) where (M0,R0) ∈ c0, and
(M1,R1) ∈ c1.

For every c ∈ C(S) we denote by T(c) the Containing Space T(M,R), where (M,R) ∈ c. The space T(c) is independent of
elements of c.

For every c, c′ ∈ C(S) with c ≺ c′ we define a mapping pc′
c of T(c′) onto T(c) as follows: if a ∈ T(c′) and (x, X) ∈ a, then

we set pc′
c (a) = b where b is the point of T(c) containing the pair (x, X). The mapping pc′

c is called the natural mapping of
T(c′) onto T(c).

Let S be an indexed collection of mutually disjoin spaces. By a free union of elements of S we mean the set X which is
the union of all elements of S equipped with the topology defined as follows: a subset U of X is open in X if and only if
the intersection of U with any element of S is open in this element.

Proposition 1.4. ([4]) For every indexed collection S of mutually disjoin spaces the system

D[S] ≡ {
T(c), pc′

c ,C(S)
}

(1.4)

is a τ -spectrum (the associated to S τ -spectrum) whose the limit space contains a surjective subest S which is homeomorphic to the
free union of elements of S such that D[S] is factorizing with respect to S

Definition. Let S be an indexed collection of mutually disjoin spaces. Any τ -spectrum

D ≡ {
Xc,�

c′
c ,C

}
with C ∈ C̃(S) whose the limit space contains a surjective subset S which is homeomorphic to the free union of elements
of S, is said to be a natural τ -spectrum for S. The subset S is said to be a kernel of lim(D). If moreover D is factorizing (re-
spectively, P-factorizing, where P is a class of spaces) with respect to S , then D is said to be kernel factorizing (respectively,
kernel P-factorizing) natural τ -spectrum.
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Corollary 1.5. ([4]) Let S be an indexed collection of mutually disjoin spaces. Then, each kernel factorizing natural τ -spectrum for S
contains a cofinal and τ -closed subspectrum whose spaces are Containing Spaces for S.

Definition. A class P of spaces is said to be a second-type saturated class if for every indexed collection S of mutually disjoin
elements of P the associated τ -spectrum D[S] contains a cofinal and τ -closed subspectrum whose spaces belong to P.

Proposition 1.6. A class P of spaces is second-type saturated if and only if for every indexed collection S of mutually disjoin elements
of P each kernel P-factorizing natural τ -spectrum for S contains a cofinal and τ -closed subspectrum whose spaces belong to P or,
equivalently, if and only if for every indexed collection S of mutually disjoin elements of P there exists a kernel factorizing natural
τ -spectrum for S containing a cofinal and τ -closed subspectrum whose spaces belong to P.

Proof. Let P be a second-type saturated class of spaces and S an indexed collection of mutually disjoin elements of P. Then,
D[S] contains a cofinal and τ -closed subspectrum

D0[S] ≡ {
T(c), pc′

c ,C0
}

such that T(c) ∈ P for every c ∈ C0. Let now

D ≡ {
Xc,�

c′
c ,C

}

be a kernel P-factorizing natural τ -spectrum for S. Then, C ∈ C̃(S) which means that there exist isomorphic cofinal and τ -
closed subsets C′ and C′

0 of C and C̃(S), respectively. Without loss of generality we can suppose that C′ = C′
0. By Lemma 1.1

the set C′′ = C′
0 ∩ C0 is simultaneously cofinal and τ -closed subset of C and C(S). Consider the cofinal and τ -closed subspec-

tra

D ′ ≡ {
Xc,�

c′
c ,C′′} and D′

0[S] ≡ {
T(c), pc′

c ,C′′}

of D and D0[S], respectively. By the Spectral Theorem there exist isomorphic cofinal and τ -closed subspectra

D ′′ ≡ {
Xc,�

c′
c ,C′′

0

}
and D′′

0[S] ≡ {
T(c), pc′

c ,C′′
0

}

of D ′ and D ′
0[S], respectively. The spectrum D ′′ can be also considered as a cofinal and τ -closed subspectrum of D . Thus,

since Xc is homeomorphic to T(c) ∈ P for every c ∈ C′′
0, Xc is also belongs to P for every c ∈ C′′

0.
To complete the proof of the proposition it suffices to show that if D0 is a kernel factorizing natural τ -spectrum for an

indexed collection S of mutually disjoin elements of P, then P is second-type saturated. This sentence can be proved as the
above replacing D[S] by D0 and D by D[S]. �
2. Spectra of mappings and the Spectral Theorem

In this section we define the notion of an (inverse) spectrum of mappings, the notion of an F-factorizing τ -spectrum
of mappings, where F is a class of mappings, and prove the Spectral Theorem for such spectra. Actually, a spectrum of
mappings is a morphism of a spectrum of spaces into another spectrum of spaces. However, it is convenient to consider
another definition. For this purpose we give the notions of a mapping of mappings and the composition of such mappings.
Using these notions, the spectrum of mappings is defined exactly as the spectrum of spaces replacing the word “space” by
the word “mapping”. In this case the Spectral Theorem for mappings has the same formulation as the Spectral Theorem for
spaces (Proposition 1.3).

Mappings of mappings. For every mapping f we denote by D f the domain of f and by R f the range of f , that is if f
is a mapping of a set X into a set Y , then D f = X and R f = Y . A mapping g is said to be a restriction of a mapping f
if D g ⊂ D f , R g ⊂ R f , and g(x) = f (x) for every x ∈ D g . In this case, the mapping f is said to be an extension of g . In
particular, if D is a subset of D f , then by f |D we denote the restriction g of f such that D g = D and R g = R f .

Let g and f be two mappings. A pair (�,π), where � is a mapping of D g into (onto) D f and π is a mapping of
R g into (onto) R f such that π ◦ g = f ◦ � , is said to be a mapping of g into (onto) f . In the case, where � and π are
homeomorphisms into (onto), the pair (�,π) is said to be a homeomorphism into (onto). A homeomorphism into is called
also an embedding. If (�,π) is a homeomorphism onto, then the mappings g and f are called homeomorphic.

Let (�,π) be a mapping of g into f and h a restriction of g . Then, the pair (� |D g ,π |R g ) is a mapping of h into f . This
mapping is called the restriction of (�,π) on h and it is denoted by (�,π)|h . In this case, the mapping (�,π) is called
an extension of (�,π)|h .

Let (�0,π0) be a mapping of g into f and (�1,π1) a mapping of f into a mapping h. By a composition of mappings
(�0,π0) and (�1,π1), denoted by (�1,π1) ◦ (�0,π0), we mean the mapping (�1 ◦ �0,π1 ◦ π0) of g into h.

Spectra of mappings. A system
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F ≡ {
fλ,

(
�λ′

λ ,πλ′
λ

)
,Λ

}
, (2.1)

where:

(a) Λ is a directed set whose order is denoted by ≺,
(b) fλ , λ ∈ Λ, is a mapping (a mapping of F ), and
(c) (�λ′

λ ,πλ′
λ ) is a mapping of fλ′ into fλ (a projection of F or the projection of fλ′ into fλ) such that

(
�λ′

λ ,πλ′
λ

) ◦ (
�λ′′

λ′ ,πλ′′
λ′

) = (
�λ′′

λ ,πλ′′
λ

)
whenever λ ≺ λ′ ≺ λ′′ ,

is said to be an (inverse) spectrum of mappings on Λ.
We note that the weights of the domains, as well as, of the ranges of the mappings of a spectrum of mappings are less

than or equal to τ .
By F(F ) we denote the class of all mappings which are homeomorphic to some mapping fλ , Λ ∈ Λ.
It is easy to see that the system (2.1) is a spectrum of mappings if and only if the systems

D ≡ {
D fλ ,�

λ′
λ ,Λ

}
and R ≡ {

R fλ ,π
λ′
λ ,Λ

}
are spectra of spaces and the indexed set

f ≡ { fλ, λ ∈ Λ} (2.2)

is a morphism of the spectrum D into the spectrum R . The spectra D and R are called the domain-spectrum and the
range-spectrum of F , respectively.

Suppose that the system (2.1) is a spectrum of mappings. The limit mapping induced by the morphism (2.2) is called
the limit mapping of the spectrum (2.1) and it is denoted by lim(F ).

Let �λ be the limit projection of lim(D) into D fλ and πλ is the limit projection of lim(R) into R fλ . By the properties of
the limit mapping of a morphism of spectra of spaces we have

πλ ◦ lim(F ) = fλ ◦ �λ.

This means that the pair (�λ,πλ) is a mapping of lim(F ) into fλ , which is called the limit projection of lim(F ) into fλ .
A restriction g of the limit mapping lim(F ) is said to be surjective if the restriction on g of the limit projections are onto.
By a mapping of a mapping g into the spectrum F we mean an indexed set

(i, j) ≡ {
(iλ, jλ): λ ∈ Λ

}
, (2.3)

where (iλ, jλ) is a mapping of g into fλ such that

(iλ, jλ) = (
�λ′

λ ,πλ′
λ

) ◦ (iλ′ , jλ′)

whenever λ ≺ λ′ .
Let (2.3) be a mapping of g into F . Then, the indexed set i ≡ {iλ: λ ∈ Λ} is a mapping of D g into the domain-spectrum

D of F and the indexed set j ≡ { jλ: λ ∈ Λ} is a mapping of R g into the range-spectrum R of F . These indexed sets define
respectively the induced mapping lim(i) of D g into lim(D) and the induced mapping lim( j) of R g into lim(R).

Lemma 2.1. The pair (lim(i), lim( j)) is a mapping of g into lim(F ), which is called the limit mapping induced by the indexed set (i, j).
Moreover, if in (2.3) all mappings (iλ, jλ), λ ∈ Λ, are homeomorphisms into (onto), then (lim(i), lim( j)) is also a homeomorphism
into (onto).

Proof. We need to prove the following relation:

lim( j) ◦ g = lim(F ) ◦ lim(i). (2.4)

Let x ∈ D g . Then, lim( j)(g(x)) is the point q of lim(R) for which q(λ) = jλ(g(x)), λ ∈ Λ. On the other hand, lim(i)(x) is the
point p of lim(D) for which p(λ) = iλ(x), λ ∈ Λ, and, by definition of lim(F ), lim(F )(p) is the point r of lim(R) for which
r(λ) = fλ(iλ(x)). Since (iλ, jλ) is a mapping of g into fλ we have jλ ◦ g = fλ ◦ iλ . Therefore, for every x ∈ D g , jλ(g(x)) =
fλ(iλ(x)). This means that q = r proving relation (2.4). If in (2.3) all mappings (iλ, jλ), λ ∈ Λ, are homeomorphisms into
(onto), that is the mappings iλ and jλ are homeomorphisms into (onto), then lim(i) and lim( j) are homeomorphisms into
(onto) and, therefore, (lim(i), lim( j)) is homeomorphism into (onto). �

Suppose that Λ′ is a directed subset of Λ (not necessarily cofinal). Then, the system

F |Λ′ ≡ {
fλ,

(
�λ′

λ ,πλ′
λ

)
,Λ′}
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is a spectrum of mappings on Λ′ , which is called a subspectrum of F . We note that if D and R are the domain-spectrum
and the range-spectrum of F , respectively, then D|Λ′ and R|Λ′ are the domain-spectrum and the range-spectrum of F |Λ′ ,
respectively.

Let λ0 be an element of Λ such that λ ≺ λ0 for every λ ∈ Λ′ . Then, the indexed set
{(

�
λ0
λ ,π

λ0
λ

)
: λ ∈ Λ′} (2.5)

is a mapping of the mapping fλ0 into the spectrum F |Λ′ . The limit mapping induced by (2.5) will be denoted by (�
λ0
Λ′ ,π

λ0
Λ′ )

and will be called the natural mapping of fλ0 into lim(F |Λ′ ).
Now, we suppose that Λ′ is a cofinal subset of Λ. In this case there exists a homeomorphism hd of lim(D) onto lim(D|Λ′ )

such that if hd(p) = p′ , then p(λ) = p′(λ) for every λ ∈ Λ′ . Similarly, there exists a homeomorphism hr of lim(R) onto
lim(R|Λ′ ) such that if hr(q) = q′ , then q(λ) = q′(λ) for every λ ∈ Λ′ .

Lemma 2.2. The pair (hd,hr) is a homeomorphism of lim(F ) onto lim(F |Λ′ ).

Proof. Since hd and hr are homeomorphisms onto, it suffices to prove that the pair (hd,hr) is a mapping of lim(F ) into
lim(F |Λ′), that is the following relation is true:

hr ◦ lim(F ) = lim(F |Λ′) ◦ hd. (2.6)

Let p ∈ lim(D). Then, lim(F )(p) is the point q of lim(R) such that q(λ) = fλ(p(λ)) and hr(q) is the point q′ of lim(F |Λ′ )
such that q′(λ) = fλ(p(λ)), λ ∈ Λ′ . On the other hand, hd(p) is the point p′ of lim(D|Λ′ ) such that p′(λ) = p(λ), λ ∈ Λ′ ,
and lim(F |Λ′ )(p′) is the point q′′ of lim(R|Λ′ ) such that q′′(λ) = fλ(p(λ)), λ ∈ Λ′ , which means that q′ = q′′ proving relation
(2.6). �

In what follows we shall identified any point p of lim(D) with the point hd(p) of lim(D|Λ′ ) and any point q of lim(R)

with the point hr(q) of lim(R|Λ′ ) and, therefore, we shall identified the mapping lim(F ) with the mapping lim(F |Λ′ ).
Let

F 0 ≡ {
f0,λ,

(
�λ′

0,λ,π
λ′
0,λ

)
,Λ

}
and

F 1 ≡ {
f1,λ,

(
�λ′

1,λ,π
λ′
1,λ

)
,Λ

}
be two spectra of mappings. An indexed set

(i, j) ≡ {
(iλ, jλ): λ ∈ Λ

}
, (2.7)

where (iλ, jλ) is a mapping of f0,λ into f1,λ such that
(
�λ′

1,λ,π
λ′
1,λ

) ◦ (iλ′ , jλ′) = (iλ, jλ) ◦ (
�λ′

0,λ,π
λ′
0,λ

)

whenever λ ≺ λ′ , is called a morphism of F 0 into F 1. In the case, where all mappings (iλ, jλ), λ ∈ Λ, are homeomorphisms
(into) onto, this morphism is called an isomorphism into (onto).

Suppose that (2.7) is a morphism. Then, i ≡ {iλ: λ ∈ Λ} is a morphism of the domain-spectrum D0 ≡ {D f0,λ
,�0,λ,Λ}

of F 0 into the domain-spectrum D1 ≡ {D f1,λ
,�1,λ,Λ} of F 1 and j ≡ { jλ: λ ∈ Λ} is a morphism of the range-spectrum

R0 ≡ {R f0,λ
,π0,λ,Λ} of F 0 into the range-spectrum R1 ≡ {R f1,λ

,π1,λ,Λ} of F 1. Therefore, we can consider the limit mapping

lim(i) of lim(D0) into lim(D1) induced by i and the limit mapping lim( j) of lim(R0) into lim(R1) induced by j.

Lemma 2.3. The pair (lim(i), lim( j)) is a mapping of lim(F 0) into lim(F 1), which is called the limit mapping induced by the morphism
(i, j). Moreover, in the case, where (i, j) is an isomorphism into (onto), (lim(i), lim( j)) is a homeomorphism into (onto).

Proof. First we prove that the pair (lim(i), lim( j)) is a mapping of lim(F 0) into lim(F 1), that is the following relation is
true:

lim(F 1) ◦ lim(i) = lim( j) ◦ lim(F 0). (2.8)

Let p ∈ lim(D0). Then, lim(F 0)(p) is the point q of lim(R0) such that q(λ) = f0,λ(p(λ)), λ ∈ Λ. Therefore, lim( j)(q) is the
point q′ of lim(R1) such that q′(λ) = jλ( f0,λ(p(λ))), λ ∈ Λ. On the other hand, lim(i)(p) is the point p′ of lim(D1) such that
p′(λ) = iλ(p(λ)), λ ∈ Λ, and lim(F 1)(p′) is the point q′′ of lim(R1) such that q′′(λ) = f1,λ(iλ(p(λ))), λ ∈ Λ. Since the pair
(iλ, jλ) is a mapping of f0,λ into f1,λ we have f1,λ ◦ iλ = jλ ◦ f0,λ . This relation implies that jλ( f0,λ(p(λ))) = f1,λ(iλ(p(λ))),
that is q′(λ) = q′′(λ) which means that q′ = q′′ proving relation (2.8). In the case, where (i, j) is an isomorphism into (onto),
that is all mappings iλ and jλ , λ ∈ Λ, are homeomorphisms into (onto), then lim(i) and lim( j) are also homeomorphisms
into (onto), which complete the proof of the proposition. �
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Factorizing τ -spectra of mappings. Suppose that (2.1) is a spectrum of mappings and F is a class of mappings. The spec-
trum (2.1) is said to be F-factorizing with respect to a surjective restriction g of lim(F ) if for every mapping (i, j) of g into an
element h of F there exist an element λ of Λ and a mapping (iλ, jλ) of fλ into h such that (i, j) = (iλ, jλ) ◦ (�λ,πλ)|g . In
the case, where F is the class of all mappings instead of “F-factorizing” we shall write “factorizing”.

The spectrum (2.1) is said to be τ -continuous if for every chain Λ′ of Λ with |Λ′| � τ and λ = sup(Λ′) the natural
mapping (�λ

Λ′ ,πλ
Λ′ ) of fλ into lim(F |Λ′) is an embedding. In this case, the domain-spectrum and the range-spectrum of

F is also τ -continuous. Therefore, by the assumption concerning the τ -continuous spectra of spaces, fλ is a restriction of
lim(F |Λ′ ).

A τ -continuous spectrum (2.1) is said to be a τ -spectrum if the set Λ is τ -complete. (We recall that the weights of the
domains and ranges of all mappings of a τ -spectrum of mappings are � τ .)

Proposition 2.4 (The Spectral Theorem for mappings). Suppose that F 0 and F 1 are two τ -spectra of mappings on the same directed set
such that F 0 is F(F 1)-factorizing with respect to a surjective restriction g0 of lim(F ). Then, for each mapping (p,q) of g0 into lim(F 1)

there exists a mapping (p,q) of lim(F 0) into lim(F 1) which is an extension of (p,q) such that (p,q) is induced by a morphism of
cofinal and τ -closed subspectra. Moreover, if F 1 is F(F 0)-factorizing with respect to a surjective restriction g1 of lim(F 1) and (p,q)

is a homeomorphism of g0 onto g1 , then (p,q) is induced by an isomorphism onto of cofinal and τ -closed subspectra (and, therefore,
(p,q) is a homeomorphism of lim(F 0) onto lim( f 1)).

Proof. Let

F 0 = {
f0,λ,

(
�λ′

0,λ,π
λ′
0,λ

)
,Λ

}
and

F 1 = {
f1,λ,

(
�λ′

1,λ,π
λ′
0,′

)
,Λ

}
.

We define a subset R of the set Λ × Λ as follows: an element (λ1, λ0) belongs to R if there exists a mapping (i, j) of f0,λ0

into f1,λ1 such that

(i, j) ◦ (�0,λ0 ,π0,λ0)|g0 = (�1,λ1 ,π1,λ1) ◦ (p,q).

We prove that the set R satisfies the conditions of Lemma 1.2. The existence condition follows immediately by the fact that
the spectrum F 0 is F(F 1)-factorizing and the majorantness condition is easy to see. We prove the τ -closeness condition.
Suppose that Λ′ is a chain with |Λ′| � τ and λ′ = sup(Λ′) such that for a fixed element λ0 of Λ, (λ,λ0) ∈ R for every
λ ∈ Λ′ . We need to prove that (λ′, λ0) ∈ R . For every λ ∈ Λ′ we denote by (iλ0

λ , jλ0
λ ) a mapping of f0,λ0 into f1,λ such that

(
iλ0
λ , jλ0

λ

) ◦ (�0,λ0 ,π0,λ0)
∣∣

g0
= (�1,λ,π1,λ) ◦ (p,q). (2.9)

Since the limit projections of the spectrum F 0 are onto, relation (2.8) implies that

(
iλ0
λ , jλ0

λ

) = (
�

λ1
1,λ,π

λ1
1,λ

) ◦ (
iλ0
λ1

, jλ0
λ1

)
whenever λ ≺ λ1. Therefore, the indexed set

{(
iλ0
λ , jλ0

λ

)
: λ ∈ Λ′}

is a mapping of f0,λ0 into the spectrum F 1|Λ′ of mappings. Setting

i ≡ {
iλ0
λ : λ ∈ Λ′} and j ≡ {

jλ0
λ : λ ∈ Λ′}

we have that the pair (lim(i), lim( j)) is a mapping of f0,λ0 into lim(F 1|Λ′) (see Lemma 2.1). We show that

lim(i)(D f0,λ0
) ⊂ D f1,λ′ .

(We recall that according to our assumption, D f1,λ′ is a subset of the domain of lim(F 1|Λ′ ).) Indeed, let x ∈ D f0,λ0
. Since

the restriction of the limit projections of F 0 on g0 are onto, there exists a point a of D g0 such that �0,λ0 (a) = x. Let

y = �1,λ′ (p(a)). It is easy to verify that lim(i)(x) = y proving relation (2.9). Denote by iλ0
λ′ the restriction of lim(i) whose

domain is the domain of f0,λ0 and whose range is the domain of f1,λ′ and by jλ0
λ′ the restriction of lim( j) whose domain is

the range of f0,λ0 and whose range is the range of f1,λ′ . Then, the pair (iλ0
λ′ , jλ0

λ′ ) is a mapping of f0,λ0 into f1,λ′ satisfying
relation (2.8) if λ is replaced by λ′ . Therefore, (λ′, λ0) ∈ R proving the τ -closeness condition. Hence, R satisfies all conditions
of Lemma 1.2.

Thus the set ΛR of all reflexive elements of R is a cofinal and τ -closed subset of Λ. For every λ ∈ ΛR denote by (iλ, jλ)
the mapping of f0,λ into f1,λ such that

(iλ, jλ) ◦ (�0,λ,π0,λ)|g0 = (�1,λ,π1,λ) ◦ (p,q). (2.10)
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This relation implies that

(iλ, jλ) ◦ (
�

λ1
0,λ,π

λ1
0,λ

) = (
�

λ1
1,λ,π

λ1
1,λ

) ◦ (iλ1 , jλ1)

whenever λ ≺ λ1, which means that the indexed set{
(iλ, jλ): λ ∈ ΛR}

is a morphism of the spectrum F 0|ΛR into the spectrum F 1|ΛR . It is not difficult top verify that the limit mapping of this
morphism, denoted by (p,q), is a mapping of lim(F 0|ΛR ) into lim(F 1|ΛR ) and, therefore, a mapping of F 0 into F 1, which is
an extension of the mapping (p,q).

Now, suppose that the τ -spectrum F 1 is P(F 0)-factorizing with respect to a surjective restriction S1 of lim(F 1) and
(p,q) is a homeomorphism onto. Then, as the above, there exists a cofinal and τ -closed subset ΛR of Λ and for every
λ ∈ ΛR a mapping (iλ, jλ) of f1,λ into f0,λ such that(

iλ, jλ
) ◦ (�1,λ,π1,λ) = (�0,λ,π0,λ) ◦ (

p−1,q−1), (2.11)

which means that the indexed set{(
iλ, jλ

)
: λ ∈ ΛR

}

is a morphism of the spectra F 1|ΛR into F 0|ΛR . We set Λ0 = ΛR ∩ ΛR . By Lemma 1.1 the set Λ0 is a cofinal and τ -closed
subset of Λ. Relations (2.10) and (2.11) imply that the mapping iλ ◦ iλ , λ ∈ Λ0, is the identical mapping of the domain of
f0,λ and the mapping iλ ◦ iλ is the identing mapping of the domain of f1,λ . This means that iλ is a homeomorphism of the
domain of f0,λ onto the domain f1,λ . Similarly, the mapping jλ is a homeomorphism of the range of f0,λ onto the domain
of f1,λ . Therefore, the pair (iλ, jλ) is a homeomorphism of f0,λ onto f1,λ . Thus, the indexed set{

(iλ, jλ): λ ∈ Λ0
}

is an isomorphism of the spectrum F 0|Λ0 onto the spectrum F 1|Λ0 and, therefore, is an isomorphism of the spectrum F 0
onto the spectrum F 1 which means that the limit mapping (p,q) of this isomorphism is a homeomorphism of lim(F 0) onto
lim(F 1) proving the proposition. �
3. Concrete factorizing τ -spectra of mappings

In this section to every indexed collection F of mutually disjoin mappings (see below the definition) we associate a
τ -spectrum, denoted by F(F), factorizing with respect to a surjective restriction g of the limit mapping such that g is
homeomorphic to the free union of elements of F (see below the definition). The mappings of F(F) are Containing Mappings
for F constructed in [4]. By the Spectral Theorem any τ -spectrum of mappings factorizing with respect to a surjective
restriction g such that g is homeomorphic to the free union of elements of F contains a cofinal and τ -closed subspectrum
whose mappings are Containing Mappings for F. Thus, the Containing Mappings and, therefore, the Containing Spaces which
are domains and ranges of the Containing Mappings, appear here without any concrete construction of these mappings and
spaces. Using the associated τ -spectra of mappings we define the so-called second-type saturated classes of mappings
(which are “saturated” by universal elements) and give a characterization of these classes.

Free unions of mappings. Let F ≡ { fμ: μ ∈ M} be an indexed collection of mappings. The collection F is called mutually
disjoin if the domains, as well as, the ranges of all elements of this collection are mutually disjoin. The free union of such
an indexed collection of mappings is a mapping g such that (a) the domain D g of g is the free union of the domains of
elements of F, (b) the range R g of g is the free union of the ranges of elements of F, and (c) g(x) = fμ(x) for every x ∈ D fμ ,
μ ∈ M .

Let {U R f : f ∈ F} be an indexed set, where U R f is a subset of R f . The indexed set { f −1(U R f ): f ∈ F} is said to be the
F-preimage of {U R f : f ∈ F}.

Let {∼s: s ∈ F } be a family of equivalence relation on the indexed set Sr ≡ {R f : f ∈ F}. The F-preimage of R is the family
{∼s

d: s ∈ F } of equivalence relations on the indexed set Sd ≡ {D f : f ∈ F} defined as follows: two elements D f and Dh are
∼s

d-equivalent for some s ∈ F if and only if the elements R f and Rh are ∼s-equivalent.

The τ -complete set C(F). Let F be a mutually disjoin indexed collection of mappings,

Sd ≡ {D f : f ∈ F}, and Sr ≡ {R f : f ∈ F}
the mutually disjoin indexed collections of domains and ranges of the elements of F, respectively. Consider the set C(Sd) ×
C(Sr) with the product order denoted by ≺F , that is for two elements c0 ≡ (cd

0, cr
0) and c1 ≡ (cd

1, cr
1) we write c0 ≺F c1 if and

only if cd
0 ≺Sd cd

1 and cr
0 ≺Sr cr

1. It is easy to prove that this ordered set is τ -complete.
We define a subset C(F) of C(Sd) × C(Sr) as follows: an element c ≡ (cd, cr) belongs to C(F) if for some elements

(Md,Rd) ∈ cd and (Mr,Rr) ∈ cr the following conditions are satisfied: (a) the F-preimage of any component of Mr is a
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component of Md and (b) the family Rd is a final refinement of the F-preimage of Rr . It is easy to verify that the set C(F) is
well defined, that is the fact that c is an element of C(F) is independent of the elements (Md,Rd) and (Mr,Rr) of cd and cr ,
respectively.

Lemma 3.1. The set C(F) is a cofinal and τ -closed subset of C(Sd) × C(Sr) and, therefore, it is τ -complete.

Proof. We prove that C(F) is a cofinal subset of C(Sd) × C(Sr). Let c ≡ (cd, cr) be an element of C(Sd) × C(Sr), (Md,Rd) ∈ cd ,
and (Mr,Rr) ∈ cr . Denote by Md

0 a co-mark of Sd which is simultaneously a co-extension of Md and the F-preimage of Mr .
Also, denote by Rd

0 an Md
0-admissible family of equivalence relations on Sd which is simultaneously a final refinement of the

family Rd and the F-preimage of Rr . Let cd
0 be the element of C(Sd) containing the pair (Md

0,Rd
0). Then, it is easy to verify

that the element c0 ≡ (cd
0, cr) of C(Sd) × C(Sr) belongs to C(F) and c ≺ c0.

Now, we prove that C(F) is a τ -closed subset of C(Sd) × C(Sr). Let C ≡ {cδ ≡ (cd
δ , cr

δ): δ ∈ τ } be a chain in C(F). Denote
by c ≡ (cd, cr) the sup(C) in C(Sd) × C(Sr). It suffices to prove that c ∈ C(F), that is if (Md,Rd) ∈ cd and (Mr,Rr) ∈ cr then (a)
any component of Mr is a component of Md and (b) Rd is a final refinement of the F-preimage of Rr .

We prove (a). Consider the chains Cd ≡ {cd
δ : δ ∈ τ } and Cr ≡ {cr

δ: δ ∈ τ } of the sets C(Sd) and C(Sr), respectively. It is
clear that cd = sup(Cd) and cr = sup(Cr). For every δ ∈ τ let (Md

δ ,Rd
δ ) ∈ cd

δ and (Mr
δ,Rr

δ) ∈ cr
δ . Suppose that U is a component

of Mr . Since cr = sup(Cr) there exists δ ∈ τ such that U is a component of Mr
δ . Since (cd

δ , cr
δ) ∈ C(F), U is a component of Md

δ

and since cd
δ ≺Sd cd , U is also a component of Md .

We prove (b). Let s ∈ F . Since cr = sup(Cr) we can suppose that for every s ∈ F ,

∼s
Rr =

⋂{∼s
Rr

δ
: δ ∈ s

}

(see the proof of Lemma 8.2.1 of [4]). Since for every δ ∈ τ , Rd
δ is a final refinement of the F-preimage of Rr

δ there exists

t(δ) ∈ F such that the equivalence relation ∼t(δ)
Rd

δ

is contained in the F-preimage of ∼s
Rr

δ
. Let t = s ∪ (

⋃{t(δ): δ ∈ s}). Then,

∼t
Rd

δ

is contained in ∼t(δ)
Rd

δ

and, therefore, is contained in the F-preimage of ∼s
Rr

δ
for every δ ∈ s, which means that ∼t

Rd
δ

is

contained in the F-preimage of ∼s
Rr . Since cd = sup(Cd) we can suppose that

∼t
Rd=

⋂{∼t
Rd

δ

: δ ∈ t
}

and, therefore, ∼t
Rd is contained in the F-preimage of ∼s

Rr , which means that Rd is a final refinement of the F-preimage of
Rr completing the proof of the lemma. �

Let c ≡ (cd, cr) ∈ C(F). Suppose that (Md,Rd) ∈ cd and (Mr,Rr) ∈ cr . Then, we can consider the Containing Spaces T(cd) ≡
T(Md,Rd) and T(cr) ≡ T(Mr,Rr). We define a mapping (the Containing Mapping) f T

c of T(cd) into T(cr) as follows: if a is a
point of T(cd) and (x, D f ) ∈ a, then we set f T

c (a) = b, where b is the point of T(cr) containing the pair ( f (x), R f ). This
mapping is well defined and continuous (see Lemma 6.1.1 of [4]).

Now, let c ≡ (cd, cr) and c′ ≡ (cd,′, cr,′) be two elements of C(F) such that c ≺F c′ . Therefore, cd and cd,′ are elements of
C(Sd), cr and cr,′ are elements of C(Sr), cd ≺Sd cd,′ , and cr ≺Sr cr,′ . We denote by pc′

c the natural mapping of T(cd) into T(cd,′)
and by qc′

c the natural mapping of T(cr) into T(cr,′).

Lemma 3.2. The pair (pc′
c ,qc′

c ) is a mapping of f T
c′ into f T

c .

Proof. We need to prove the following relation:

f T
c ◦ pc′

c = qc′
c ◦ f T

c′ . (3.1)

Let (Md,Rd) ∈ cd , (Mr,Rr) ∈ cr , (Md,′,Rd,′) ∈ cd,′ , and (Mr,′,Rr,′) ∈ cr,′ . Let ad,′ ∈ T(cd,′) and (x, D f ) ∈ ad,′ . Then, pc′
c (ad,′) is

the point bd of T(cd) containing the pair (x, D f ) and f T
c (bd) is the point br of T(cr) containing the pair ( f (x), R f ). On the

other hand, f T
c′ (ad,′) is the point ar,′ containing the pair ( f (x), R f ) and qc′

c (ar,′) is the point b of T(cr) containing the pair
( f (x), R f ), which means that b = br proving relation (3.1). �
Proposition 3.3. For every mutually disjoin indexed collection F of mappings the system

F[F] ≡ {
f T
c ,

(
pc′

c ,qc′
c

)
,C(F)

}
is a τ -spectrum of mappings (the associated to F τ -spectrum) whose limit mapping have a surjective restriction g which is homeo-
morphic to the free union of elements of F such that F[F] is factorizing with respect to g.
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Proof. It is easy to verify that (pc′
c ,qc′

c ) ◦ (pc′′
c′ ,qc′′

c′ ) = (pc′′
c ,qc′′

c ) whenever c ≺ c′ ≺ c′′ . Therefore, Lemmas 3.1 and 3.2 imply
that F[F] is a spectrum. The domain-spectrum and the range-spectrum of F[S] are subspectra of D[Sd] and D[Sr], respectively,
and therefore they are τ -continuous. This fact implies that F[F] is also τ -continuous. Since by Lemma 3.1 C(F) is τ -complete
we have that F[F] is a τ -spectrum.

We prove that lim(F[F]) have a restriction g which is homeomorphic to the free union of elements of F. Let f be an
element of F. There exists an element cd ≡ (Md,Rd) of C(Sd) such that the singleton {D f } is an equivalence class of an
element of Rd (see the proof of Lemma 8.2.8 of [4]). Similarly, there exists an element cr ≡ (Mr,Rr) of C(Sr) such that
the singleton {R f } is an equivalence class of an element of Rr . By Lemma 3.1 there exists an element c ∈ C(F) such that
(cd, cr) ≺ c. It is easy to verify that if c ≺ c′ ≡ ((Md,′,Rd,′), (Mr,′,Rr,′)) ∈ C(F), then {D f } is an equivalence class for some
element of Rd,′ and {R f } is an equivalence class for some element of Rr,′ . This fact implies that {D f } is an open subset of
the limit space of the domain-spectrum of F[F] and {R f } is an open subset of the limit space of the range-spectrum of F[F].
By the construction of the Containing Mappings the restriction of lim(F[F]) on {D f } coincides with the mapping f .

Thus, the subset D ≡ ⋃{D f : f ∈ F} of the limit space of the domain-spectrum of F[F] is the free union of the domains of
elements of F and the subset R ≡ ⋃{R f : f ∈ F} of the limit space of the range-spectrum of F[F] is the free union of ranges
of elements of F. This means that the restriction g of lim(F[F]) on D is homeomorphic to the free union of elements of F.
Since the domains and ranges of all mappings f T

c , c ∈ C(F), are Containing Spaces for Sd and Sr , respectively, the restriction
g is surjective.

Now we prove that F[F] is factorizing with respect to the surjective restriction g . Let (p,q) be a mapping of g onto a
mapping h. Denote by

Md
g ≡ {

U Dh
δ : δ ∈ τ

}
an indexed base for the open subsets of D g and by

Mr
g ≡ {

U Rh
δ : δ ∈ τ

}

an indexed base for the open subsets of R g such that for every δ ∈ τ there exists ε ∈ τ for which U
D g
ε = U

R g
δ . Let cd ≡

(Md,Rd) be an element of C(Sd) such that for every δ ∈ τ the indexed set{
(p|D f )

−1(U Dh
δ

)
: D f ∈ Sd

}

is a component of Md . Also, let cr ≡ (Mr,Rr) be an element of C(Sr) such that for every δ ∈ τ the indexed set{
(q|R f )

−1(U Rh
δ

)
: R f ∈ Sr

}

is a component of Mr . Without loss of generality we can suppose that c ≡ (cd, cr) ∈ C(F).
By Lemma 6.2.1 of [4] there exists a mapping f T

cd of T(cd) ≡ T(Md,Rd) into Dh such that f T
cd (a) = p|D f (x) where (x, D f ) ∈

a ∈ T(cd). Similarly, there exists a mapping f T
cr of T(cr) ≡ T(Mr,Rr) into Rh such that f T

cr (b) = q|R f (y) where (y, R f ) ∈ b ∈
T(cr). On the other hand, by the definition of the mapping f T

c the conditions f ∈ F, f (x) = y, (x, D f ) ∈ a, and ( f (x), R f ) ∈ b
imply that f T

c (a) = b. The last relation implies that the pair ( f T
cd , f T

cr ) is a mapping of f T
c onto h. Moreover, it is easy to

verify that(
f T
cd , f T

cr

) ◦ (pc,qc)|g = (p,q),

where (pc,qc) is the limit projection of lim(F[F]) onto f T
c , proving that the spectrum F [F] is factorizing with respect to the

surjective restriction g , which complete the proof of the proposition. �
Definition. Let F be a mutually disjoin indexed collection of mappings. Any τ -spectrum

F ≡ {
fc,

(
� c′

c ,π c′
c

)
,C

}
of mappings with C ∈ C̃(F) whose the limit mapping have a surjective restriction g which is homeomorphic to the free
union of elements of F is said to be a natural τ -spectrum for F. The restriction g is said to be kernel of lim(F ). If moreover
F is factorizing (respectively, F-factorizing, where F is a class of mappings) with respect to g , then F is said to be kernel
factorizing (respectively, kernel F-factorizing) natural τ -spectrum.

The Spectral Theorem for mapping and Proposition 3.3 imply the following corollary.

Corollary 3.4. Let F be a mutually disjoin indexed collection of mappings. Then, each kernel factorizing natural τ -spectrum for F
contains a cofinal and τ -closed subspectrum whose mappings are Containing Mappings.

Thus, Containing Mapping (and, therefore, Containing Spaces as the domains and ranges of these mappings) constructed
in [4] appear here without any concrete construction.



S. Iliadis / Topology and its Applications 157 (2010) 2646–2658 2657
Definition. A class F of mappings is said to be second-type saturated if for every mutually disjoin indexed collection F of
elements of F the associated τ -spectrum F(F) contains a cofinal and τ -closed subspectrum whose mappings belong to F.

The proof of the following proposition is similar to that of Proposition 1.6.

Corollary 3.5. A class F of mappings is second-type saturated if and only if for every mutually disjoin indexed collection F of elements
of F each kernel F-factorizing natural spectrum for F contains a cofinal and τ -closed subspectrum whose mappings belong to F or,
equivalently, if and only if for every indexed collection F of mutually disjoin elements of F there exists a kernel factorizing natural
τ -spectrum for F containing a cofinal and τ -closed subspectrum whose mappings belong to F.

Remark 3.6. 1. All notions and results of the paper are true if as realm of spaces we consider the class of all regular
spaces of weight less than or equal to τ . In this case, for every indexed collection S of mutually disjoin regular spaces the
associated to S τ -spectrum D[S] must be replaced by the spectrum

Dreg[S] ≡ {
T(c), pc′

c ,Creg(S)
}
,

where by Creg(S) we denote the subset of C(S) consisting of all elements c for which the space T(c) is regular. By the fact
that D[S] is a τ -spectrum it follows that Creg(S) is τ -complete and the spectrum Dreg[S] is τ -continuous, that is Dreg[S] is
a τ -spectrum. By the proof of Proposition 2.1.6 of [4] one can see that Creg(S) is a surjective cofinal subset of C(S), which
means that lim(Dreg[S]) contains a subspace S homeomorphic to the free union of elements of S and the spectrum Dreg[S]
is factorizing with respect to S .

Furthermore, for an indexed collection F of mutually disjoin mappings whose the indexed collection Sd of the domains
and the indexed collection Sr of the ranges consist of regular spaces, the associated to F τ -spectrum F[F] must be replaced
by the subspectrum

Freg[F] ≡ {
fc,

(
pc′

c ,qc′
c

)
,Creg(F)

}
,

where Creg(F) is a subset of C(F) consisting of all elements c ≡ (cd, cr) such that cd ∈ Creg(Sd) and cr ∈ Creg(Sr). Then, the
limit mapping lim(Freg[F]) have a surjective restriction g which is homeomorphic to the free union of elements of F and
Freg[F] is a τ -spectrum of mappings factorizing with respect to g .

Similarly, all notions and results of the paper remains true if as realm of spaces we shall consider the class of all
completely regular spaces of the weight less than or equal to τ . In this case, for an indexed collection S of mutually disjoin
completely regular spaces the τ -spectrum D[S] must be replaced by the τ -spectrum

Dcreg[S] ≡ {
T(c), pc′

c ,Ccreg(S)
}
,

where Ccreg(S) is the subset of C(S) consisting of all elements c such that the space T(c) is completely regular. Also, for
an indexed collection F of mutually disjoin mappings whose the indexed collection Sd of the domains and the indexed
collection Sr of the ranges consist of completely regular spaces, the τ -spectrum F[F] of mappings must replaced by the
τ -spectrum

Fcreg[F] ≡ {
fc,

(
pc′

c ,qc′
c

)
,Ccreg(F)

}
,

where Ccreg(F) is a subset of C(F) consisting of all elements c ≡ (cd, cr) of C(F) such that cd ∈ C(Sd) and cr ∈ C(Sr).

2. Suppose that the realm of spaces is the class of all regular spaces of the weight � τ and τ is the first infinite cardinal
ω, that is the realm of spaces is the class of all separable metrizable spaces. We observe that in this case, as it is proved in
[4], the following classes of separable metrizable spaces are second-type saturated:

(1) The class of all spaces,
(2) The class of all countable-dimensional spaces,
(3) The class of all strongly countable-dimensionally spaces,
(4) The class of all locally finite-dimensional spaces,
(5) The class of all spaces of dimension � n ∈ ω, and
(6) The class of all spaces of dimension ind less than or equal to a countable ordinal.

In [4] it is proved also that if D and R are independently one of the above mentioned classes, then the following classes of
mappings are saturated classes:

(7) The class of all mappings with the domain in D and range in R,
(8) The class of all open mappings with the domain in D and range in R,
(9) The class of all mappings f with the domain X in D and the range Y in R such that there exists a base B for the open

subsets of X with the property that the set f (ClX (U )) is closed in Y for every U ∈ B , and
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(10) The class of all mappings f with the domain X in D and the range Y in R such that there exists a base B for the open
subsets of X with the property that the set f (X \ U ) is closed for every U ∈ B .

However, it can be proved that these classes are also second-type saturated.
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